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Abstract. We present a neurorobotic model that can associate self mo-
tion (odometry) with vision to correct for drift in a spiking neural net-
work model of head direction based closely on known rodent neurophys-
iology. We use a deep predictive coding network to learn the generative
model of representations of head direction from the spiking neural net-
work to views of naturalistic scenery from a simulated mobile robot. This
model has been deployed onto the Neurorobotics Platform of the Human
Brain Project which allows full closed loop experiments with spiking neu-
ral network models simulated using NEST, a biomimetic robot platform
called WhiskEye in Gazebo robot simulator, and a Deep Predictive Cod-
ing network implemented in Tensorflow.
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1 Introduction

Neurorobotics is a discipline that works toward building embodied, bio-plausible
models of animal neurology often with a view to improving our understanding of
living neural systems. Modelling approaches include, but are not limited to, ma-
chine learning [13], bio- and neuromorphic hardware [9], functional sub-networks
[18], layered control architectures [14] and spiking neural networks [1]. It is par-
ticularly well suited to addressing neuroscience questions for which conventional
approaches are not ethically viable thus directly supporting one of the pillars of
the NC3Rs: Replacement, by using advanced tools to address neuroscience ques-
tions without the use of animals [12]. Neurorobotics also allows us to perform
experiments that alleviate the technical difficulties of animal behavioural experi-
ments through the embodiment of models and their closed-loop interaction with
either physical or real environmental stimuli.
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The Neurorobotics Platform is a tool developed as part of the Human Brain
Project for conducting embodied robotics experiments with embedded bioin-
spired brain and control systems [4]. It provides synchronisation between Spiking
Neural Network (SNN) simulators such as NEST, robot control and simulation
tools such as ROS and Gazebo, as well as other popular libraries. Robot be-
haviours can be specified using the ROS framework and all run time data can
be captured and exported after the experiment for analysis.

In this article we present the use of the Neurorobotics Platform (NRP) to
integrate and coordinate an online model of the rodent head direction system.
We model the rodent head direction cell system as an SNN which estimates
the current head angle of a simulated robot based on self-motion (ideothetic)
cues, and provides environmental (allothetic) information to the network using
a Predictive Coding Network (PCN) implemented in Tensorflow. The model was
developed offline in prior works [17] to explore the bidirectional learning that
exists between self-motion cues serving as a scaffold for initial learning of change
in pose, followed by corrective input from associated allocentrically anchored
visual cues after learning. We had found that both discriminative Convolutional
Neural Networks (CNN) and generative PCN approaches were appropriate for
learning this association but that PCNs were more robust in applying corrective
input to the SNN when visual allothetic cues were unreliable [17]. We explore
this further in this article by correlating the prediction error generated by the
PCN at its lowest layer as a proxy for the reliability of allothetic cues. We
contend that this provides a biologically plausible signal which an animal may
use to delineate trust in ideothetic or allothetic sensory cues for the update
and representation of its estimate of head direction. The experiments presented
to support this contention were made possible only through the closed loop
integration provided by the NRP.

1.1 Background

Although the rodent head direction system works in the absence of vision, relying
on self-motion (ideothetic) information to track head direction, the signal is
subject to accumulated error (drift) [7, 8, 15, 19, 21, 22]. Rodents use allothetic
information such as vision, to counter this drift in head direction estimate [19].
This requires forming learned associations between visual scenes and the current
head angle, so that the estimated head angle can be corrected when this visual
scene is experienced again. This visual control of head direction begins at the
Lateral Mammillary Nuclei (LMN) [20], stabilising the head direction signal at
its origin. The head direction is thought to originate in the reciprocal connections
between the LMN and dorsal tegmental nuclei (DTN) [2, 3]. We model the head
direction system as a continuous attractor network, exploiting the excitatory
and inhibitory connections between these two regions.

To learn associations between heading and the visual scene we employ a gen-
erative paradigm that aims to learn to generate appropriate data samples like
the training data in the appropriate contexts. The Predictive Coding Network
(PCN) based on MultiPredNet [13], was re-purposed to receive head direction
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and vision information rather than vision and tactile. The PCN works by out-
putting a prediction from its latent layer that passes through the nodes of the
hidden layers (if any) to the input later of each modality. At each layer, the
prediction from the layer above is compared to the activity at the current layer
and the difference (error) calculated. Weights between layers are then updated
locally according to their prediction errors. For a full description of both the
PCN and the SNN see [17].

Fig. 1. Illustration showing the Chinese garden environment projected onto a sphere.
(A) WhiskEye robot on a floating platform. (B) Image of the WhiskEye robot in the
environment. (C) Image from a camera mounted on the WhiskEye robot.

2 Method

2.1 Neurorobotics Platform

We use a local copy of the NRP version 3.2.0. The NRP is a complete neuro-
robotics experiment platform that builds upon many de facto standard open
source software for robotics and physics simulation. Specific components used
in this paper include ROS (Noetic)[16], Gazebo (11.3)[11] and NEST (2.18)[6].
Gazebo and its integrated ODE physics engine supports the use of robot model
files describing joints, actuators and sensors, which can be imported alongside
meshes and textures to simulate moving, sensing, 3D models of robots with rigid
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Fig. 2. Diagram showing the structure of the experiment in the NRP. The simulated
WhiskEye robot turns on the spot as described by a transfer function. The pose of the
robot is sent to a transfer function which calculates angular head velocity and converts
it to current inputs to the conjunctive cells of the spiking neural network (SNN). The
camera feed from the robot is passed to the trained Predictive Coding Network (PCN)
in a transfer function and used to produce predictions which are converted to current
input to each of the Head Direction cells in the SNN. The head direction estimate from
the SNN, taken as the average of the active cells since the last prediction, is also passed
to the PCN to measure prediction error.

body interactions inside a 3D virtual world. This often involves creating a vir-
tual simulacrum of a real robot, such as the WhiskEye [10] robot, originally built
physically at the BRL and later built in simulation for the NRP. This is then
extended further by linking Gazebo to NEST and ensuring timely delivery of
messages between them (such as sensory data from the virtual environment, or
spiking output from NEST) via the Closed-Loop Engine (CLE). The CLE is the
heart of the NRP, providing a framework for all supported tools to communi-
cate to each other using ROS Messages and transfer functions in the form of
Python scripts. Such congruence between real and simulated robots allows for
experimental results to be compared and serves as a valid substitute for work-
ing with physical robots. This is all assisted by a web portal GUI that allows
for the environment to be altered, robots to be added on the fly and transfer
functions to be created, enabled, disabled and deleted as needed. A summary of
NRP-specific terms are summarised in Table 1.

Integrating Tensorflow To avoid compatibility issues, Tensorflow 2.3 was in-
stalled into a separate Python virtual environment and imported via the Brain
File. Though intended to set up NEST models, the Brain File also blocks simu-
lation setup whilst it is running, making ideal for any heavy computations that
need to be run once. Tensorflow code included defining the Predictive Coding
model itself, creating a new session, and loading trained weights from file. Access
to the Tensorflow model within transfer functions was achieved by assigning the
model to a Brain File variable, which stay in memory for the duration of the
simulation. Inference can then be done ’on the fly’ as the robot explores the en-
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Term Meaning

Experiment A collection of robot, brain and asset files for a particular simu-
lation. This is described by an EXC file, which holds the settings
of the simulation.

CLE The Closed Loop Engine. This orchestrates the various compo-
nents of the NRP with a unifying simulation clock, and enables
communication between them via transfer functions.

Transfer Function A Python script that is run as part of the CLE’s loop. They are
decorated with @Robot2Neuron or @Neuron2Robot accordingly.

Brain File A Python file that describes the NEST model to be loaded.

Table 1. List of terms used within the NRP

vironment. This allows us to close the loop, producing head direction predictions
from virtual camera images as the simulation runs, and passing these predictions
as current input to the brain model to track and correct drift in the estimated
head angle in real time. The PCN can also receive live input from the NEST
model, with each tick of the CLE retrieving the activity of the NEST devices that
form its own ideothetic prediction of head direction. This provides both a target
for causal inference for the PCN and allows error between the PCN and NEST
estimates to be calculated, both which would be impossible without the syn-
chronised execution of Tensorflow and NEST that the NRP supports. The flow
diagram shown in figure 2 describes the interplay between major components of
the experiment.

2.2 WhiskEye

WhiskEye in the NRP is a simulated version of a rat-inspired omnidrive robot
with RGB cameras in place of eyes and active whisker-like tactile sensors re-
ported previously (see Figure 1). WhiskEye was integrated into the Human Brain
Project’s Neurorobotics Platform as part of prior work [10, 13]. ROS topics in-
cluding body angle, neck position, camera feeds published related to the robot
are subscribed to in transfer functions and these data passed to the PCN or SNN,
see below. Camera feeds must be deserialised and converted into the flattened
RGB format that the PCN expects; this is accomplished by the PCN Inference
transfer function.

2.3 Environment

Within the NRP we situate a sphere mesh onto which a background image is
projected, enclosing a central suspended platform with grey stone texture for
WhiskEye to move on. The sphere is large enough that translation within the
bounds of the platform lead to no perceptible changes to the visual scene. This
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ensures the robot nominally observes the same scene when it returns to that
head angle, analogous to rodents observing distal environmental cues.

2.4 Brain Model

The brain model is a pyNEST (2.18) SNN. Using a network structure supported
by experimental observations, we define four populations each of 180 standard
leaky integrate-and-fire neurons (iaf psc alpha) which use alpha-function shaped
synaptic currents. These populations represent head direction cells in the Lat-
eral Mammillary nuclei (LMN) and Dorsal Tegmental nuclei (DTN); and two
conjunctive head direction by asymmetric angular head velocity populations [2].
LNM cells have constant current input of 450 pA that maintains spontaneous
firing at a rate of 50 spikes per second prior to inhibitory input from the DTN.

Reciprocal connections between the LMN and DTN have been shown to be
essential for generating the head direction signal [3]. A single stationary bump
of activity is produced by providing inhibitory input to all cells surrounding the
most active LMN cell. Excitatory connections from LMN neurons to the DTN
with declining synaptic strength as a function of distance, inhibition is returned
from DTN cells with synaptic strength decreasing as a function of distance offset
by a constant (µ).

Conjunctive cells are connected one to one with LMN cells offset by one cell
either clockwise or anticlockwise. Conjunctive cells require both AHV and HD
input to fire, and shift the bump around the ring. AHV input is provided by a
transfer function. For further description of the spiking neural network structure
see [17].

2.5 Transfer Functions

In the NRP transfer functions are used to coordinate interactions between the
various component simulators and libraries that make up an experiment. Table
2 summarises the transfer functions used in this study.

2.6 Predictive Coding Network

We use a multimodal predictive coding network, based on the previously pro-
posed MultiPredNet [13], that attempts to reconstruct each pair of inputs - im-
ages of visual scenes and head direction - from a multimodal latent space. Prior
work [13, 17] has shown this network’s effectiveness at predicting pose and head
direction from natural scenes using its bio-plausible local learning rules. Having
been trained in an offline setting on at least one full rotation of views from the
same environment, these weights are loaded into the network during setup. This
enables it to produce robust predictions of head direction based on the allothetic
cues of the visual scene. These predictions are 180 elements in width at each up-
date step, matching the number of HD cells. The prediction values are injected
as current into the network via 180 dc source devices connected one to one with
the LMN population. To prevent negative current injections, any negative values
in the prediction are set to 0.
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Name Function

AHV Input The head velocity is cached using a Brain File variable, enabling
Angular Head Velocity (AHV) to be calculated in each time step.
Any changes in AHV are passed to the NEST model and injected
into the conjunctive cell population.

Spinning Head angle is varied continuously by sending z-axis angular ve-
locity commands to WhiskEye.

PCN Inference The PCN model is passed the current camera state as input, with
influence from head direction input disabled. It then generates an
inference of the current head direction based on its prediction of
the camera state, which is then converted into a current value
and passed to the NEST model.

Neuron Monitor LMN head direction cell population spikes are collected using a
spike recorder device, and written to a CSV using a CSVRecorder.
Recorded spikes are also displayed in the spike train window.

Table 2. List of transfer functions supporting the experiment

2.7 Spike Analysis

The most active cell in 40 ms bins is identified and assumed to be the current
most active cell and the peak of the bump. Converting the cell number to a
value between π and −π, these values are then compared to the ground truth
head angle. The difference between the estimated and ground truth head angle
indicates accumulation of drift over time, with total error measured as Root
Mean Squared Error (RMSE).

3 Results

3.1 Head Angle Estimated by the SNN Follows Ground Truth

The bump of activity in the SNN is centred on the current estimate of head angle.
Movement of the bump is driven by Direct Current (DC) input to the conjunctive
layers which are connected one cell clockwise or anticlockwise around the ring.
In the absence of corrective input from the PCN, the bump, driven by ideothetic
input only, is subject to drift (Figure 3A blue), as the model for transferring AHV
to current is not optimal. The difference between the ground truth head angle
and the estimated head angle increases over time (Figure 3B blue), resulting in
a total error of 2.42 radians (1.263 RMSE), after 3 minutes of simulation.

When the PCN transfer function is active, it produces predictions of the
current head angle based on the current visual scene observed by the robot’s
cameras. These predictions are converted to DC and injected into the head di-
rection cells as corrective input. As seen in our previous work [17], this corrective
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signal reduced the drift resulting in total error of 0.43 radians (82.23% reduction;
0.370 RMSE).

Fig. 3. Estimated head angle from the spiking neural network (SNN). (A) Plot showing
estimated head angle with ideothetic drive only (blue), the corrected estimated head
angle (red) which is updated using predictions from the predictive coding network
(PCN), and ground truth head angle (black). (B) Error measured as the difference
between the estimate and the ground truth is shown. Allothetic input from the PCN
results in minimised drift and the corrected estimate and ground truth are almost
indistinguishable. (C) Plot showing the prediction error at each time point when the
head direction estimate is passed back to the PCN, when the predictions are used to
correct for drift (red) or not (blue).

3.2 PCN Prediction Error Increases with Drift

Until this point we have measured the drift in the SNN by directly comparing the
HD estimate to the ground truth. However, rodents do not have access to this
ground truth information in order to evaluate the confidence of the HD estimate.
As part of its inference process, the PCN produces a prediction error between the
expected head angle and its reconstruction, which may be a suitable alternative.
The NRP allows both the SNN and the PCN to run synchronously as the robot
moves. This makes it possible to send continuous feedback between the two
models. The predictions from the PCN can be used to update the SNN estimate,
and in return the current HD estimate supplied to the PCN to be compared to
the prediction generated based on the visual data. By passing the current head
angle to the PCN, the prediction error between the presented head angle and
the reconstruction is calculated. When the predictions are used to correct for
error in the HD estimate, the prediction error remains low (Figure 3C red)
with small peaks representing small inconsistencies that remain in the corrected
head direction estimate. If we generate the predictions but do not feed these
to the SNN, the head direction estimate drifts, resulting in an overall gradual
increase in error (Figure 3C blue). The prediction error in the drifting case
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correlates strongly with the calculated error (Figure 3B,C blue; 0.929 Pearson
correlation coefficient). When the predictions are used to correct for error in the
HD estimate, the prediction error reflects the reconstruction quality for each of
the head angles (Figure 3C red). The oscillation in the prediction error indicates
the prediction quality is not equal across all head angles.

Fig. 4. Network response during periods of low visual information. (A) Plot showing
the corrected estimated head angle (red) which is updated using predictions from the
predictive coding network (PCN), and ground truth head angle (black). Visual infor-
mation is obscured in the region shaded blue. (B) Plot showing the calculated error
(red) between the ground truth and the estimate, and the prediction error from the
PCN (red). Visual information is obscured in the regions shaded blue.

3.3 Ideothetic information drives network in periods of darkness

During periods of darkness or when distal visual information is not available
because it is obscured by proximal objects, animals must rely upon ideothetic
information to keep track of their head direction. To observe the response of the
network to ambiguous visual information we obscured a 90 degree portion of the
visual scene (Figure 4A blue shaded region). During this period the predictions
produced by the PCN became close to a flat line, and very little current was
injected into the network. Figure 4A shows ideothetic information driving the
bump during the dark period with minimal drift. Figure 4B shows while the
calculated error between the ground truth and the estimated head angle remains
low (red), the prediction error (green) from the PCN shows peaks not visible in
the calculated error which match up the the periods of darkness. This is a strong
signal that the predictions are inaccurate, and in future experiments could be
used to trigger learning after extended periods of poor prediction.

4 Discussion

This work demonstrates the use of using machine learning and spiking neural
networks in a closed loop, embodied, and situated model on the Neurorobotics
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platform (NRP). We have replicated the results of our previous work reducing
drift in a Spiking Neural Network (SNN) model of the head direction system
using head angle predictions inferred by a Predictive Coding Network (PCN).
The NRP allowed us to close the loop, with the SNN and the PCN running
synchronously as the robot moves, controlled by the Closed-Loop Engine of the
NRP. Closing the loop has enabled new avenues for reciprocal information trans-
fer between the PCN and the SNN to be explored that were not possible before
NRP integration. As the prediction error produced by the PCN reflects drift in
the network, it could serve as a parsimonious indicator of poor predictions. In
novel environments or in the dark, where visual information is unreliable, we
would expect this error to increase and the SNN to drift, as the PCN would be
unable to reconstruct the head angle associated with a novel visual scene. This
highlights, at least at a functional level of description, a biologically plausible
error signal that could be used to drive learning as required. Furthermore, this
error signal can act as a proxy for confidence in a particular modality, allowing
the agent to dynamically apportion its reliance on allothetic vs ideothetic cues
when estimating head direction.

Currently the simulation inside the NRP runs slower than real time. The
NRP allows this by blocking processes, such as transfer functions (including the
PCN) and the brain model, until the current process is complete. As the online
NRP currently utilises CPUs only, we have restricted our work to CPUs, however
Tensorflow is suited to using GPUs and as NEST is CPU intensive, a combina-
tion of the two will lead to faster simulation. Further, by working with SNN
invites the future integration of SpiNNaker based neuromorphic hardware [5]
via the NRP and ultimately leading toward real-time, embedded physical robot
deployment. Using these methods and tools enable new neuroscience questions
to be explored which in turn inspires new questions for experimental studies
to be generated. We anticipate similar experiments will encourage collaboration
between experimental and computational neuroscientists or roboticists, working
towards the principles of Replacement and Reduction of animal research set out
by the NC3Rs.

The use of the NRP presented in this paper centres around rat navigation.
Though the hippocampal formation has been clearly linked to navigation in
mammals, there are competing models of how the various sub-problems of nav-
igation - integrating position and head direction, incorporating external sensory
cues, dealing with unreliable sensors - are solved in the brain. This paper’s solu-
tion is consistent with available neuroscience data and theory; a ring attractor
network formed by reciprocal LMN-DTN connections, driven by angular head
velocity input from the supragenual nucleus, with a deep predictive coding model
of sensory cortices feeding corrective inputs via the postsubiculum. Our contri-
bution in this space being that one of the intrinsic network components of the
predictive coding approach to learning can be used as a useful proxy for de-
termining confidence in associating sensory stimuli to head directions. This is
turn could be used to drive further learning or initiate changes in behaviour to
accommodate the sensory ambiguity.
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1. Aljalbout, E., Walter, F., Röhrbein, F., Knoll, A.: Task-independent spiking central
pattern generator: A learning-based approach. Neural Processing Letters 51(3),
2751–2764 (2020)

2. Bassett, J.P., Taube, J.S.: Neural correlates for angular head velocity in the rat
dorsal tegmental nucleus. The Journal of Neuroscience 21, 5740–51 (8 2001)

3. Blair, H.T., Cho, J., Sharp, P.E.: The anterior thalamic head-direction signal is
abolished by bilateral but not unilateral lesions of the lateral mammillary nucleus.
The Journal of neuroscience 19, 6673–83 (8 1999)

4. Falotico, E., Vannucci, L., Ambrosano, A., Albanese, U., Ulbrich, S., Vasquez Tieck,
J.C., Hinkel, G., Kaiser, J., Peric, I., Denninger, O., Cauli, N., Kirtay, M., Roen-
nau, A., Klinker, G., Von Arnim, A., Guyot, L., Peppicelli, D., Mart́ınez-Cañada,
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