Skip to main content

Research Repository

Advanced Search

Outputs (20)

Microbial fuel cells directly powering a microcomputer (2019)
Journal Article
Walter, A., Greenman, J., & Ieropoulos, I. (2020). Microbial fuel cells directly powering a microcomputer. Journal of Power Sources, 446, Article 227328. https://doi.org/10.1016/j.jpowsour.2019.227328

© 2019 The Authors Many studies have demonstrated that microbial fuel cells (MFC) can be energy-positive systems and power various low power applications. However, to be employed as a low-level power source, MFC systems rely on energy management circ... Read More about Microbial fuel cells directly powering a microcomputer.

A comprehensive study of custom-made ceramic separators for microbial fuel cells: Towards "living" bricks (2019)
Journal Article
You, J., Wallis, L., Radisavljevic, N., Pasternak, G., Sglavo, V. M., Hanczyc, M. M., …Ieropoulos, I. (2019). A comprehensive study of custom-made ceramic separators for microbial fuel cells: Towards "living" bricks. Energies, 12(21), Article 4071. https://doi.org/10.3390/en12214071

Towards the commercialisation of microbial fuel cell (MFC) technology, well-performing, cost-effective, and sustainable separators are being developed. Ceramic is one of the promising materials for this purpose. In this study, ceramic separators made... Read More about A comprehensive study of custom-made ceramic separators for microbial fuel cells: Towards "living" bricks.

Combination of bioelectrochemical systems and electrochemical capacitors: Principles, analysis and opportunities (2019)
Journal Article
Caizán-Juanarena, L., Borsje, C., Sleutels, T., Yntema, D., Santoro, C., Ieropoulos, I., …ter Heijne, A. (2020). Combination of bioelectrochemical systems and electrochemical capacitors: Principles, analysis and opportunities. Biotechnology Advances, 39, Article 107456. https://doi.org/10.1016/j.biotechadv.2019.107456

© 2019 The Authors Bioelectrochemical systems combine electrodes and reactions driven by microorganisms for many different applications. The conversion of organic material in wastewater into electricity occurs in microbial fuel cells (MFCs). The powe... Read More about Combination of bioelectrochemical systems and electrochemical capacitors: Principles, analysis and opportunities.

Long Term Feasibility Study of In-field Floating Microbial Fuel Cells for Monitoring Anoxic Wastewater and Energy Harvesting (2019)
Journal Article
Cristiani, P., Gajda, I., Greenman, J., Pizza, F., Bonelli, P., & Ieropoulos, I. (2019). Long Term Feasibility Study of In-field Floating Microbial Fuel Cells for Monitoring Anoxic Wastewater and Energy Harvesting. Frontiers in Energy Research, 7, https://doi.org/10.3389/fenrg.2019.00119

© Copyright © 2019 Cristiani, Gajda, Greenman, Pizza, Bonelli and Ieropoulos. In the present work different prototypes of floating MFCs have been tested in anoxic water environments of wastewater plants in Italy, over a period of 3 years. Several con... Read More about Long Term Feasibility Study of In-field Floating Microbial Fuel Cells for Monitoring Anoxic Wastewater and Energy Harvesting.

Living architecture: Toward energy generating buildings powered by microbial fuel cells (2019)
Journal Article
You, J., Rimbu, G. A., Wallis, L., Greenman, J., & Ieropoulos, I. (2019). Living architecture: Toward energy generating buildings powered by microbial fuel cells. Frontiers in Energy Research, 7, https://doi.org/10.3389/fenrg.2019.00094

In this study, possibilities of integrating microbial fuel cell (MFC) technology and buildings were investigated. Three kinds of conventional house bricks from two different locations were tested as MFC reactors and their electrochemical characterist... Read More about Living architecture: Toward energy generating buildings powered by microbial fuel cells.

Microbial fuel cells (MFC) and microalgae; Photo microbial fuel cell (PMFC) as complete recycling machines (2019)
Journal Article
Greenman, J., Gajda, I., & Ieropoulos, I. (2019). Microbial fuel cells (MFC) and microalgae; Photo microbial fuel cell (PMFC) as complete recycling machines. Sustainable Energy and Fuels, 3(10), 2546-2560. https://doi.org/10.1039/c9se00354a

© 2019 The Royal Society of Chemistry. Humans can exploit natural processes by microorganisms by using Microbial Fuel Cells and integrated Photo Microbial Fuel Cells (MFC/PMFC) chambers containing electrodes to maximise microbial oxidation rates and... Read More about Microbial fuel cells (MFC) and microalgae; Photo microbial fuel cell (PMFC) as complete recycling machines.

Removal of Hepatitis B virus surface HBsAg and core HBcAg antigens using microbial fuel cells producing electricity from human urine (2019)
Journal Article
Pasternak, G., Greenman, J., & Ieropoulos, I. (2019). Removal of Hepatitis B virus surface HBsAg and core HBcAg antigens using microbial fuel cells producing electricity from human urine. Scientific Reports, 9(1), Article 11787. https://doi.org/10.1038/s41598-019-48128-x

© 2019, The Author(s). Microbial electrochemical technology is emerging as an alternative way of treating waste and converting this directly to electricity. Intensive research on these systems is ongoing but it currently lacks the evaluation of possi... Read More about Removal of Hepatitis B virus surface HBsAg and core HBcAg antigens using microbial fuel cells producing electricity from human urine.

Supercapacitive paper based microbial fuel cell: High current/power production within a low cost design (2019)
Journal Article
Santoro, C., Winfield, J., Theodosiou, P., & Ieropoulos, I. (2019). Supercapacitive paper based microbial fuel cell: High current/power production within a low cost design. Bioresource Technology Reports, 7, Article 100297. https://doi.org/10.1016/j.biteb.2019.100297

Microbial fuel cells (MFCs) with paper separators and liquid containing elements were investigated in supercapacitive mode. MFCs (15 mL) in a supercapacitive configuration, consisted of plain wrapped carbon veil anode (negative) and conductive latex... Read More about Supercapacitive paper based microbial fuel cell: High current/power production within a low cost design.

Artificial neural network simulating microbial fuel cells with different membrane materials and electrode configurations (2019)
Journal Article
Tsompanas, M. A., You, J., Wallis, L., Greenman, J., & Ieropoulos, I. (2019). Artificial neural network simulating microbial fuel cells with different membrane materials and electrode configurations. Journal of Power Sources, 436, Article 226832. https://doi.org/10.1016/j.jpowsour.2019.226832

© 2019 Elsevier B.V. Microbial fuel cells (MFCs) are gaining interest due to higher power production achieved by deep analysis of their characteristics and their effect on the overall efficiency. To date, investigations on MFC efficiency, can only be... Read More about Artificial neural network simulating microbial fuel cells with different membrane materials and electrode configurations.

Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach (2019)
Journal Article
de Ramón-Fernández, A., Salar-García, M. J., Ruiz-Fernández, D., Greenman, J., & Ieropoulos, I. (2019). Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach. Applied Energy, 251, Article 113321. https://doi.org/10.1016/j.apenergy.2019.113321

© 2019 The Author(s) Microbial fuel cells (MFCs) is a promising technology that is able to simultaneously produce bioenergy and treat wastewater. Their potential large-scale application is still limited by the need of optimising their power density.... Read More about Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach.

Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation (2019)
Journal Article
Merino-Jimenez, I., Gonzalez-Juarez, F., Greenman, J., & Ieropoulos, I. (2019). Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation. Journal of Power Sources, 429, 30-37. https://doi.org/10.1016/j.jpowsour.2019.04.043

© 2019 The Authors Ceramic membranes for MFCs offer a low cost alternative to the expensive ion exchange membranes, whilst promoting catholyte accumulation. However, their physicochemical properties need to be optimised, in order to increase the powe... Read More about Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation.

Response of ceramic microbial fuel cells to direct anodic airflow and novel hydrogel cathodes (2019)
Journal Article
Winfield, J., Greenman, J., & Ieropoulos, I. (2019). Response of ceramic microbial fuel cells to direct anodic airflow and novel hydrogel cathodes. International Journal of Hydrogen Energy, 44(29), 15344-15354. https://doi.org/10.1016/j.ijhydene.2019.04.024

© 2019 The Authors The presence of air in the anode chamber of microbial fuel cells (MFCs)might be unavoidable in some applications. This study purposely exposed the anodic biofilm to air for sustained cycles using ceramic cylindrical MFCs. A method... Read More about Response of ceramic microbial fuel cells to direct anodic airflow and novel hydrogel cathodes.

Iron-streptomycin derived catalyst for efficient oxygen reduction reaction in ceramic microbial fuel cells operating with urine (2019)
Journal Article
Salar Garcia, M. J., Santoro, C., Kodali, M., Serov, A., Artyushkova, K., Atanassov, P., & Ieropoulos, I. (2019). Iron-streptomycin derived catalyst for efficient oxygen reduction reaction in ceramic microbial fuel cells operating with urine. Journal of Power Sources, 425, 50-59. https://doi.org/10.1016/j.jpowsour.2019.03.052

© 2019 The Authors In recent years, the microbial fuel cell (MFC) technology has drawn the attention of the scientific community due to its ability to produce clean energy and treat different types of waste at the same time. Often, expensive catalyst... Read More about Iron-streptomycin derived catalyst for efficient oxygen reduction reaction in ceramic microbial fuel cells operating with urine.

Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine (2019)
Journal Article
Santoro, C., Walter, X. A., Soavi, F., Greenman, J., & Ieropoulos, I. (2019). Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine. Electrochimica Acta, 307, 241-252. https://doi.org/10.1016/j.electacta.2019.03.194

© 2019 The Authors A self-stratified microbial fuel cell fed with human urine with a total internal volume of 0.55 ml was investigated as an internal supercapacitor, for the first time. The internal self-stratification allowed the development of two... Read More about Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine.

Fate of three bioluminescent pathogenic bacteria fed through a cascade of urine microbial fuel cells (2019)
Journal Article
Ieropoulos, I., Obata, O., Pasternak, G., & Greenman, J. (2019). Fate of three bioluminescent pathogenic bacteria fed through a cascade of urine microbial fuel cells. Journal of Industrial Microbiology and Biotechnology, 46(5), 587-599. https://doi.org/10.1007/s10295-019-02153-x

Microbial fuel cell (MFC) technology is currently gaining recognition as one of the most promising bioenergy technologies of the future. One aspect of this technology that has received little attention is the disinfection of effluents and the fate of... Read More about Fate of three bioluminescent pathogenic bacteria fed through a cascade of urine microbial fuel cells.

Towards monolithically printed MFCs: Development of a 3D-printable membrane electrode assembly (MEA) (2019)
Journal Article
Theodosiou, P., Greenman, J., & Ieropoulos, I. (2019). Towards monolithically printed MFCs: Development of a 3D-printable membrane electrode assembly (MEA). International Journal of Hydrogen Energy, 44(9), 4450-4462. https://doi.org/10.1016/j.ijhydene.2018.12.163

Additive manufacturing (3D-printing) and microbial fuel cells (MFCs) are two rapidly growing technologies which have been previously combined to advance the development of the latter. In the same line of work, this paper reports on the fabrication of... Read More about Towards monolithically printed MFCs: Development of a 3D-printable membrane electrode assembly (MEA).

Towards the optimisation of ceramic-based microbial fuel cells: A three-factor three-level response surface analysis design (2019)
Journal Article
Salar-García, M. J., de Ramón-Fernández, A., Ortiz-Martínez, V. M., Ruiz-Fernández, D., & Ieropoulos, I. (2019). Towards the optimisation of ceramic-based microbial fuel cells: A three-factor three-level response surface analysis design. Biochemical Engineering Journal, 144, 119-124. https://doi.org/10.1016/j.bej.2019.01.015

© 2019 The Authors Microbial fuel cells (MFCs) are an environment-friendly technology, which addresses two of the most important environmental issues worldwide: fossil fuel depletion and water scarcity. Modelling is a useful tool that allows us to un... Read More about Towards the optimisation of ceramic-based microbial fuel cells: A three-factor three-level response surface analysis design.

Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation (2019)
Journal Article
Walter, X. A., Santoro, C., Greenman, J., & Ieropoulos, I. A. (2019). Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation. Bioelectrochemistry, 127, 68-75. https://doi.org/10.1016/j.bioelechem.2019.01.004

© 2019 The Authors The scalability of bioelectrochemical systems is a key parameter for their practical implementation in the real-world. Up until now, only urine-fed self-stratifying microbial fuel cells (SSM-MFCs) have been shown to be scalable in... Read More about Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation.