Skip to main content

Research Repository

Advanced Search

Outputs (15)

Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride (2016)
Journal Article
Winfield, J., Greenman, J., Dennis, J., & Ieropoulos, I. (2016). Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride. Journal of Chemical Technology and Biotechnology, 91(1), 138-143. https://doi.org/10.1002/jctb.4552

© 2014 Society of Chemical Industry. BACKGROUND: Ferric chloride (FeCl3) is widely used as a flocculating agent during wastewater treatment but can detrimentally lower pH and increase iron concentration. Microbial fuel cells (MFCs) are a promising te... Read More about Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride.

The first self-sustainable microbial fuel cell stack (2013)
Journal Article
Ledezma, P., Stinchcombe, A., Greenman, J., & Ieropoulos, I. (2013). The first self-sustainable microbial fuel cell stack. Physical Chemistry Chemical Physics, 15(7), 2278-2281. https://doi.org/10.1039/c2cp44548d

This study reports for the first time on the development of a self-sustainable microbial fuel cell stack capable of self-maintenance (feeding, hydration, sensing & reporting). Furthermore, the stack system is producing excess energy, which can be use... Read More about The first self-sustainable microbial fuel cell stack.

Bi-directional electrical characterisation of microbial fuel cell (2013)
Journal Article
Ieropoulos, I. A., Greenman, J., Ledezma, P., Degrenne, N., Ledezma, P., Bevilacqua, P., …Ieropoulos, I. (2013). Bi-directional electrical characterisation of microbial fuel cell. Bioresource Technology, 128, 769-773. https://doi.org/10.1016/j.biortech.2012.10.110

The electrical performance of microbial fuel cells in steady-state is usually investigated by standard characterisation methods that reveal many important parameters e.g. maximum power. This paper introduces a novel " bi-directional" method to study... Read More about Bi-directional electrical characterisation of microbial fuel cell.

MFC-cascade stacks maximise COD reduction and avoid voltage reversal under adverse conditions (2013)
Journal Article
Ledezma, P., Greenman, J., & Ieropoulos, I. (2013). MFC-cascade stacks maximise COD reduction and avoid voltage reversal under adverse conditions. Bioresource Technology, 134, 158-165. https://doi.org/10.1016/j.biortech.2013.01.119

Six continuous-flow Microbial Fuel Cells (MFCs) configured as a vertical cascade and tested under different electrical connections are presented. When in parallel, stable operation and higher power and current densities than individual MFCs were obse... Read More about MFC-cascade stacks maximise COD reduction and avoid voltage reversal under adverse conditions.

Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells (2012)
Journal Article
Ledezma, P., Greenman, J., & Ieropoulos, I. (2012). Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells. Bioresource Technology, 118, 615-618. https://doi.org/10.1016/j.biortech.2012.05.054

The aim of this work is to study the relationship between growth rate and electricity production in perfusion-electrode microbial fuel cells (MFCs), across a wide range of flow rates by co-measurement of electrical output and changes in population nu... Read More about Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells.

EcoBot-III: A robot with guts (2010)
Conference Proceeding
Ieropoulos, I., Greenman, J., Melhuish, C., & Horsfield, I. (2010). EcoBot-III: A robot with guts. In H. Fellermann, M. Dörr, M. M. Hanczyc, L. L. Laursen, S. Maurer, D. Merkle, …S. Rasmussen (Eds.), Artificial Life XII: Proceedings of the 12th International Conference on the Synthesis and Simulation of Living Systems, ALIFE 2010. , (733-740)

This paper describes the work carried out to develop EcoBot- III, which is a robot with an artificial digestion system. The robot is powered by Microbial Fuel Cells (MFCs) and it is designed to collect food and water from the environment, digest the... Read More about EcoBot-III: A robot with guts.

Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells (2010)
Journal Article
Ieropoulos, I., Winfield, J., & Greenman, J. (2010). Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresource Technology, 101(10), 3520-3525. https://doi.org/10.1016/j.biortech.2009.12.108

To process large volumes of wastewater, microbial fuel cells (MFCs) would require anodophilic bacteria preferably operating at high flow-rates. The effect of flow-rate on different microbial consortia was examined during anodic biofilm development, u... Read More about Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells.

Improved energy output levels from small-scale Microbial Fuel Cells (2010)
Journal Article
Ieropoulos, I., Greenman, J., & Melhuish, C. (2010). Improved energy output levels from small-scale Microbial Fuel Cells. Bioelectrochemistry, 78(1), 44-50. https://doi.org/10.1016/j.bioelechem.2009.05.009

This study reports on the findings from the investigation into small-scale (6.25mL) MFCs, connected together as a network of multiple units. The MFCs contained unmodified (no catalyst) carbon fibre electrodes and for initial and later experiments, a... Read More about Improved energy output levels from small-scale Microbial Fuel Cells.

Peripherals of BES from processing current to data transmission (2009)
Book Chapter
Ieropoulos, I., Greenman, J., Melhuish, C., & Horsfield, I. (2009). Peripherals of BES from processing current to data transmission. In K. Rabaey, L. Angenent, U. Schroder, & J. Keller (Eds.), Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Applications. London: IWA Publishing

Artificial life models in hardware (2009)
Book
Komosinski, M., Adamatzky, A., Ieropoulos, I., Greenman, J., Melhuish, C., & Horsfield, I. (2009). A. Adamatzky, & M. Komosinski (Eds.), Artificial life models in hardware. London: Spinger-Verlag. https://doi.org/10.1007/978-1-84882-530-7

Hopping, climbing and swimming robots, nano-size neural networks, motorless walkers, slime mould and chemical brains - 'Artificial Life Models in Hardware' offers unique designs and prototypes of life-like creatures in conventional hardware and hybri... Read More about Artificial life models in hardware.

Landfill leachate treatment with microbial fuel cells; scale-up through plurality (2009)
Journal Article
Gálvez, A., Greenman, J., & Ieropoulos, I. (2009). Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresource Technology, 100(21), 5085-5091. https://doi.org/10.1016/j.biortech.2009.05.061

Three Microbial Fuel Cells (MFCs) were fluidically connected in series, with a single feed-line going into the 1st column through the 2nd column and finally as a single outflow coming from the 3rd column. Provision was also made for re-circulation in... Read More about Landfill leachate treatment with microbial fuel cells; scale-up through plurality.

Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter (2009)
Journal Article
Gálvez, A., Greenman, J., Giusti, L., & Ieropoulos, I. (2009). Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter. Enzyme and Microbial Technology, 44(2), 112-119. https://doi.org/10.1016/j.enzmictec.2008.09.012

Four experimental columns were employed in this study to investigate their performance under wastewater treatment conditions. One column was set-up as a biological aerated filter and the remaining three were set-up as microbial fuel cells (MFCs), two... Read More about Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter.

Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability (2008)
Journal Article
Ieropoulos, I., Greenman, J., & Melhuish, C. (2008). Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability. International Journal of Energy Research, 32(13), 1228-1240. https://doi.org/10.1002/er.1419

The aim of this study was to compare the performance of three different sizes of microbial fuel cell (MFC) when operated under continuous flow conditions using acetate as the fuel substrate and show how small-scale multiple units may be best configur... Read More about Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability.

Artificial gills for robots: MFC behaviour in water (2007)
Journal Article
Ieropoulos, I., Melhuish, C., & Greenman, J. (2007). Artificial gills for robots: MFC behaviour in water. Bioinspiration and Biomimetics, 2(3), S83. https://doi.org/10.1088/1748-3182/2/3/S02

This paper reports on the first stage in developing microbial fuel cells (MFCs) which can operate underwater by utilizing dissolved oxygen. In this context, the cathodic half-cell is likened to an artificial gill. Such an underwater power generator h... Read More about Artificial gills for robots: MFC behaviour in water.