Skip to main content

Research Repository

Advanced Search

Outputs (30)

3D printed components of microbial fuel cells: Towards monolithic microbial fuel cell fabrication using additive layer manufacturing (2016)
Journal Article
Preen, R. J., You, J., Preen, R., Bull, L., Greenman, J., & Ieropoulos, I. (2017). 3D printed components of microbial fuel cells: Towards monolithic microbial fuel cell fabrication using additive layer manufacturing. Sustainable Energy Technologies and Assessments, 19, 94-101. https://doi.org/10.1016/j.seta.2016.11.006

© 2016 The Authors For practical applications of the MFC technology, the design as well as the processes of manufacturing and assembly, should be optimised for the specific target use. Another burgeoning technology, additive manufacturing (3D printin... Read More about 3D printed components of microbial fuel cells: Towards monolithic microbial fuel cell fabrication using additive layer manufacturing.

Autonomous energy harvesting and prevention of cell reversal in MFC stacks (2016)
Journal Article
Papaharalabos, G., Stinchcombe, A., Horsfield, I., Melhuish, C., Greenman, J., & Ieropoulos, I. (2017). Autonomous energy harvesting and prevention of cell reversal in MFC stacks. Journal of The Electrochemical Society, 164(3), H3047-H3051. https://doi.org/10.1149/2.0081703jes

© The Author(s) 2016. This study presents a novel method for avoiding cell reversal whilst optimising energy harvesting from stacked Microbial Fuel Cells (MFCs) by dynamically reconfiguring the electrical connections between them. The sequential chan... Read More about Autonomous energy harvesting and prevention of cell reversal in MFC stacks.

Electricity and catholyte production from ceramic MFCs treating urine (2016)
Journal Article
Merino Jimenez, I., Ieropoulos, I., & Greenman, J. (2017). Electricity and catholyte production from ceramic MFCs treating urine. International Journal of Hydrogen Energy, 42(3), 1791-1799. https://doi.org/10.1016/j.ijhydene.2016.09.163

© 2016 The Authors The use of ceramics as low cost membrane materials for Microbial Fuel Cells (MFCs) has gained increasing interest, due to improved performance levels in terms of power and catholyte production. The catholyte production in ceramic M... Read More about Electricity and catholyte production from ceramic MFCs treating urine.

Enhanced MFC power production and struvite recovery by the addition of sea salts to urine (2016)
Journal Article
Merino-Jimenez, I., Celorrio, V., Fermin, D. J., Greenman, J., & Ieropoulos, I. (2017). Enhanced MFC power production and struvite recovery by the addition of sea salts to urine. Water Research, 109, 46-53. https://doi.org/10.1016/j.watres.2016.11.017

© 2016 The Authors Urine is an excellent fuel for electricity generation in Microbial Fuel Cells (MFCs), especially with practical implementations in mind. Moreover, urine has a high content in nutrients which can be easily recovered. Struvite (MgNH4... Read More about Enhanced MFC power production and struvite recovery by the addition of sea salts to urine.

Toward Energetically Autonomous Foraging Soft Robots (2016)
Journal Article
Philamore, H., Ieropoulos, I., Stinchcombe, A., & Rossiter, J. (2016). Toward Energetically Autonomous Foraging Soft Robots. Soft Robotics, 3(4), 186-197. https://doi.org/10.1089/soro.2016.0020

© 2016, Mary Ann Liebert, Inc. A significant goal of robotics is to develop autonomous machines, capable of independent and collective operation free from human assistance. To operate with complete autonomy robots must be capable of independent movem... Read More about Toward Energetically Autonomous Foraging Soft Robots.

Eating, drinking, living, dying and decaying soft robots (2016)
Conference Proceeding
Rossiter, J., Winfield, J., & Ieropoulos, I. (2016). Eating, drinking, living, dying and decaying soft robots. In C. Laschi, J. Rossiter, F. Lida, M. Cianchetti, & L. Margheri (Eds.), Soft Robotics: Trends, Applications and Challenges (95-101). https://doi.org/10.1007/978-3-319-46460-2_12

Soft robotics opens up a whole range of possibilities that go far beyond conventional rigid and electromagnetic robotics. New smart materials and new design and modelling methodologies mean we can start to replicate the operations and functionalities... Read More about Eating, drinking, living, dying and decaying soft robots.

The dawn of biodegradable robots (2016)
Journal Article
Winfield, J., Rossiter, J., & Ieropoulos, I. (2016). The dawn of biodegradable robots

Robotics is a field that is not normally associated with green technology or sustainability. Robots are generally constructed using materials that are non-biodegradable, toxic and expensive. These factors can limit the potential uses that an artifici... Read More about The dawn of biodegradable robots.

An iTRAQ characterisation of the role of TolC during electron transfer from Shewanella oneidensis MR-1 (2016)
Journal Article
Fowler, G. J., Pereira-Medrano, A. G., Jaffe, S., Pasternak, G., Pham, T. K., Ledezma, P., …Wright, P. C. (2016). An iTRAQ characterisation of the role of TolC during electron transfer from Shewanella oneidensis MR-1. Proteomics, 16(21), 2764-2775. https://doi.org/10.1002/pmic.201500538

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Anodophilic bacteria have the ability to generate electricity in microbial fuel cells (MFCs) by extracellular electron transfer to the anode. We investigated the anode-specific responses of Shewanel... Read More about An iTRAQ characterisation of the role of TolC during electron transfer from Shewanella oneidensis MR-1.

A review into the use of ceramics in microbial fuel cells (2016)
Journal Article
Winfield, J., Gajda, I., Greenman, J., & Ieropoulos, I. (2016). A review into the use of ceramics in microbial fuel cells. Bioresource Technology, 215, 296-303. https://doi.org/10.1016/j.biortech.2016.03.135

© 2016 The Authors. Microbial fuel cells (MFCs) offer great promise as a technology that can produce electricity whilst at the same time treat wastewater. Although significant progress has been made in recent years, the requirement for cheaper materi... Read More about A review into the use of ceramics in microbial fuel cells.

Carbon-based air-breathing cathodes for microbial fuel cells (2016)
Journal Article
Merino-Jimenez, I., Santoro, C., Rojas-Carbonell, S., Greenman, J., Ieropoulos, I., & Atanassov, P. (2016). Carbon-based air-breathing cathodes for microbial fuel cells. Catalysts, 6(9), 127. https://doi.org/10.3390/catal6090127

© 2016 by the authors; licensee MDPI, Basel, Switzerland. A comparison between different carbon-based gas-diffusion air-breathing cathodes for microbial fuel cells (MFCs) is presented in this work. A micro-porous layer (MPL) based on carbon black (CB... Read More about Carbon-based air-breathing cathodes for microbial fuel cells.

Microbial fuel cell – A novel self-powered wastewater electrolyser for electrocoagulation of heavy metals (2016)
Journal Article
Gajda, I., Stinchcombe, A., Greenman, J., Melhuish, C., & Ieropoulos, I. (2017). Microbial fuel cell – A novel self-powered wastewater electrolyser for electrocoagulation of heavy metals. International Journal of Hydrogen Energy, 42(3), 1813-1819. https://doi.org/10.1016/j.ijhydene.2016.06.161

© 2016 The Authors This paper describes the suitability of the Microbial Fuel Cell (MFC) for generation of electrical power with a simultaneous synthesis of active catholyte in the form of caustic solution. The active solution formed inside a terraco... Read More about Microbial fuel cell – A novel self-powered wastewater electrolyser for electrocoagulation of heavy metals.

EvoBot: An open-source, modular liquid handling robot for nurturing microbial fuel cells (2016)
Conference Proceeding
Ieropoulos, I., Taylor, B., Theodosiou, P., Stoy, K., Nejatimoharrami, F., & Faiña, A. (2016). EvoBot: An open-source, modular liquid handling robot for nurturing microbial fuel cells. In ALIFE 2016: The Fifteenth International Conference on the Synthesis and Simulation of Living Systems. https://doi.org/10.7551/978-0-262-33936-0-ch099

Liquid handling robots are rarely used in the domain of artificial life. In this field, transitory behaviours of nonequilibrium man-made systems are studied and need an automatic monitoring and logging of results. In addition, artificial life experi... Read More about EvoBot: An open-source, modular liquid handling robot for nurturing microbial fuel cells.

Supercapacitive microbial fuel cell: Characterization and analysis for improved charge storage/delivery performance (2016)
Journal Article
Houghton, J., Santoro, C., Soavi, F., Serov, A., Ieropoulos, I., Arbizzani, C., & Atanassov, P. (2016). Supercapacitive microbial fuel cell: Characterization and analysis for improved charge storage/delivery performance. Bioresource Technology, 218, 552-560. https://doi.org/10.1016/j.biortech.2016.06.105

© 2016 The Author(s) Supercapacitive microbial fuel cells with various anode and cathode dimensions were investigated in order to determine the effect on cell capacitance and delivered power quality. The cathode size was shown to be the limiting comp... Read More about Supercapacitive microbial fuel cell: Characterization and analysis for improved charge storage/delivery performance.

Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging (2016)
Journal Article
Walter, X. A., Stinchcombe, A., Greenman, J., & Ieropoulos, I. (2017). Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging. Applied Energy, 192, 575-581. https://doi.org/10.1016/j.apenergy.2016.06.006

© 2016 The Authors This study reports for the first time the full charging of a state-of-the-art mobile smartphone, using Microbial Fuel Cells fed with urine. This was possible by employing a new design of MFC that allowed scaling-up without power de... Read More about Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging.

Microalgae as substrate in low cost terracotta-based microbial fuel cells: Novel application of the catholyte produced (2016)
Journal Article
Ieropoulos, I. A., Hanczyc, M. M., Greenman, J., Ortiz-Martínez, V. M., Gajda, I., Salar-García, M. J., …Ieropoulos, I. (2016). Microalgae as substrate in low cost terracotta-based microbial fuel cells: Novel application of the catholyte produced. Bioresource Technology, 209, 380-385. https://doi.org/10.1016/j.biortech.2016.02.083

© 2016 Elsevier Ltd. In this work, the by-product generated during the operation of cylindrical MFCs, made out of terracotta material, is investigated as a feasible means of degrading live microalgae for the first time. In addition to the low cost ma... Read More about Microalgae as substrate in low cost terracotta-based microbial fuel cells: Novel application of the catholyte produced.

Small scale ceramic MFCs for efficient energy harvesting from wastewater and full system development (2016)
Presentation / Conference
Gajda, I., Greenman, J., Melhuish, C., & Ieropoulos, I. (2016, May). Small scale ceramic MFCs for efficient energy harvesting from wastewater and full system development. Presented at The Electrochemical Society, 29th ECS Meeting, San Diego, CA, USA

The main aim of this work was to increase the efficiency of the ceramic based MFCs by compacting the design and exploring the ceramic support as the building block for small scale modular multi-unit systems. The improved energy density would then all... Read More about Small scale ceramic MFCs for efficient energy harvesting from wastewater and full system development.

Electricity and disinfectant production from wastewater: Microbial Fuel Cell as a self-powered electrolyser (2016)
Journal Article
Gajda, I., Greenman, J., Melhuish, C., & Ieropoulos, I. A. (2016). Electricity and disinfectant production from wastewater: Microbial Fuel Cell as a self-powered electrolyser. Scientific Reports, 6(25571), https://doi.org/10.1038/srep25571

This study presents a simple and sustainable Microbial Fuel Cell as a standalone, self-powered reactor for in situ wastewater electrolysis, recovering nitrogen from wastewater. A process is proposed whereby the MFC electrical performance drives the e... Read More about Electricity and disinfectant production from wastewater: Microbial Fuel Cell as a self-powered electrolyser.

Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column (2016)
Journal Article
Walter, X. A., Gajda, I., Forbes, S., Winfield, J., Greenman, J., & Ieropoulos, I. (2016). Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column. Biotechnology for Biofuels, 9(1), https://doi.org/10.1186/s13068-016-0504-3

© 2016 Walter et al. Background: The microbial fuel cell (MFC) is a technology in which microorganisms employ an electrode (anode) as a solid electron acceptor for anaerobic respiration. This results in direct transformation of chemical energy into e... Read More about Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column.

Study of the effects of ionic liquid-modified cathodes and ceramic separators on MFC performance (2016)
Journal Article
Ieropoulos, I., Hernández-Fernández, F. J., Greenman, J., Salar-García, M. J., Gajda, I., Ortiz-Martínez, V. M., …Ieropoulos, I. (2016). Study of the effects of ionic liquid-modified cathodes and ceramic separators on MFC performance. Chemical Engineering Journal, 291, 317-324. https://doi.org/10.1016/j.cej.2016.01.084

© 2016 Elsevier B.V. Ceramic-based MFC designs have proven to be a low cost alternative for power production and wastewater treatment. The use of ionic liquids in ceramic MFCs is explored for the first time in the present work in order to improve pow... Read More about Study of the effects of ionic liquid-modified cathodes and ceramic separators on MFC performance.

Regeneration of the power performance of cathodes affected by biofouling (2016)
Journal Article
Pasternak, G., Greenman, J., & Ieropoulos, I. (2016). Regeneration of the power performance of cathodes affected by biofouling. Applied Energy, 173, 431-437. https://doi.org/10.1016/j.apenergy.2016.04.009

© 2016 The Authors. Air cathode microbial fuel cells (MFCs) were used in a cascade-system, to treat neat human urine as the fuel. Their long-term operation caused biodeterioration and biofouling of the cathodes. The cathodes were made from two graphi... Read More about Regeneration of the power performance of cathodes affected by biofouling.

On hybrid circuits exploiting thermistive properties of slime mould (2016)
Journal Article
Walter, X. A., Horsfield, I., Mayne, R., Ieropoulos, I. A., & Adamatzky, A. (2016). On hybrid circuits exploiting thermistive properties of slime mould. Scientific Reports, 6(23924), https://doi.org/10.1038/srep23924

Slime mould Physarum polycephalum is a single cell visible by the unaided eye. Let the slime mould span two electrodes with a single protoplasmic tube: if the tube is heated to approximately ≈40 °C, the electrical resistance of the protoplasmic tube... Read More about On hybrid circuits exploiting thermistive properties of slime mould.

Microbial Fuel Cell-driven caustic potash production from wastewater for carbon sequestration (2016)
Journal Article
Gajda, I., Greenman, J., Melhuish, C., Santoro, C., & Ieropoulos, I. (2016). Microbial Fuel Cell-driven caustic potash production from wastewater for carbon sequestration. Bioresource Technology, 215, 285-289. https://doi.org/10.1016/j.biortech.2016.04.004

© 2016 The Authors. This work reports on the novel formation of caustic potash (KOH) directly on the MFC cathode locking carbon dioxide into potassium bicarbonate salt (kalicinite) while producing, instead of consuming electrical power. Using potassi... Read More about Microbial Fuel Cell-driven caustic potash production from wastewater for carbon sequestration.

Towards effective small scale microbial fuel cells for energy generation from urine (2016)
Journal Article
Chouler, J., Padgett, G. A., Cameron, P. J., Preuss, K., Titirici, M. M., Ieropoulos, I., & Di Lorenzo, M. (2016). Towards effective small scale microbial fuel cells for energy generation from urine. Electrochimica Acta, 192, 89-98. https://doi.org/10.1016/j.electacta.2016.01.112

© 2016 The Authors. Published by Elsevier Ltd. To resolve an increasing global demand in energy, a source of sustainable and environmentally friendly energy is needed. Microbial fuel cells (MFC) hold great potential as a sustainable and green bioener... Read More about Towards effective small scale microbial fuel cells for energy generation from urine.

The practical implementation of microbial fuel cell technology (2016)
Book Chapter
Ieropoulos, I., Winfield, J., Gajda, I., Walter, X. A., Papacharalampos, G., Merino Jimenez, I., …Greenman, J. (2016). The practical implementation of microbial fuel cell technology. In K. Scott, & E. Hao Yu (Eds.), Microbial Electrochemical and Fuel Cells (357-380). Woodhead (Elsevier). https://doi.org/10.1016/B978-1-78242-375-1.00012-5

© 2016 Elsevier Ltd. All rights reserved. New green technologies are emerging in response to decades of damaging human activity. Among those are microbial fuel cells (MFCs), electric transducers that transform wet organic matter into electricity via... Read More about The practical implementation of microbial fuel cell technology.

From single MFC to cascade configuration: The relationship between size, hydraulic retention time and power density (2016)
Journal Article
Walter, X. A., Forbes, S., Greenman, J., & Ieropoulos, I. A. (2016). From single MFC to cascade configuration: The relationship between size, hydraulic retention time and power density. Sustainable Energy Technologies and Assessments, 14, 74-79. https://doi.org/10.1016/j.seta.2016.01.006

© 2016 The Authors. Achieving useful electrical power production with the MFC technology requires a plurality of units. Therefore, the main objective of much of the MFC research is to increase the power density of each unit. Collectives of MFCs will... Read More about From single MFC to cascade configuration: The relationship between size, hydraulic retention time and power density.

Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells (2016)
Journal Article
Pasternak, G., Greenman, J., & Ieropoulos, I. (2016). Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells. ChemSusChem, 9(1), 88-96. https://doi.org/10.1002/cssc.201501320

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Microbial fuel cells (MFCs) made with different types of ceramic membranes were investigated to find a low-cost alternative to commercially available proton exchange membranes. The MFCs operated wi... Read More about Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells.

Pee power urinal-microbial fuel cell technology field trials in the context of sanitation (2016)
Journal Article
Ieropoulos, I., Stinchcombe, A., Gajda, I., Forbes, S., Merino-Jimenez, I., Pasternak, G., …Greenman, J. (2016). Pee power urinal-microbial fuel cell technology field trials in the context of sanitation. Environmental Science: Water Research & Technology, 2(2), 336-343. https://doi.org/10.1039/c5ew00270b

This paper reports on the pee power urinal field trials, which are using microbial fuel cells for internal lighting. The first trial was conducted on Frenchay Campus (UWE, Bristol) from February-May 2015 and demonstrated the feasibility of modular MF... Read More about Pee power urinal-microbial fuel cell technology field trials in the context of sanitation.

Here today, gone tomorrow: Biodegradable soft robots (2016)
Journal Article
Rossiter, J., Winfield, J., & Ieropoulos, I. (2016). Here today, gone tomorrow: Biodegradable soft robots. Proceedings of SPIE, 9798, 97981S. https://doi.org/10.1117/12.2220611

© 2016 SPIE. One of the greatest challenges to modern technologies is what to do with them when they go irreparably wrong or come to the end of their productive lives. The convention, since the development of modern civilisation, is to discard a brok... Read More about Here today, gone tomorrow: Biodegradable soft robots.

Slime Mould Controller for Microbial Fuel Cells (2016)
Journal Article
Taylor, B., Adamatzky, A., Greenman, J., & Ieropoulos, I. (2016). Slime Mould Controller for Microbial Fuel Cells. https://doi.org/10.1007/978-3-319-26662-6_14

Microbial fuels cells (MFCs) are bio-electrochemical transducers that generate energy from the metabolism of electro-active microorganisms. The organism Physarum polycephalum is a species of slime mould, which has demonstrated many novel and interest... Read More about Slime Mould Controller for Microbial Fuel Cells.

Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride (2016)
Journal Article
Winfield, J., Greenman, J., Dennis, J., & Ieropoulos, I. (2016). Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride. Journal of Chemical Technology and Biotechnology, 91(1), 138-143. https://doi.org/10.1002/jctb.4552

© 2014 Society of Chemical Industry. BACKGROUND: Ferric chloride (FeCl3) is widely used as a flocculating agent during wastewater treatment but can detrimentally lower pH and increase iron concentration. Microbial fuel cells (MFCs) are a promising te... Read More about Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride.