Skip to main content

Research Repository

Advanced Search

All Outputs (213)

Development of small scale ceramic Microbial Fuel Cells for clean energy extraction from urine (2018)
Presentation / Conference
Gajda, I., Walter, X. A., Obata, T., Greenman, J., & Ieropoulos, I. (2018, June). Development of small scale ceramic Microbial Fuel Cells for clean energy extraction from urine. Presented at 14th International Ceramics Congress 2018, Perugia, Italy

During the last 20 years great interest in Microbial Fuel Cells (MFCs) has intensified due to the extraction of clean electricity from waste streams such as urine. The technology is based on ceramic built MFCs in which the terracotta chassis is also... Read More about Development of small scale ceramic Microbial Fuel Cells for clean energy extraction from urine.

3D-printable cathode electrode for monolithically printed microbial fuel cells (MFCs) (2018)
Presentation / Conference
Theodosiou, P., Ieropoulos, I., & Greenman, J. (2018, May). 3D-printable cathode electrode for monolithically printed microbial fuel cells (MFCs). Presented at 233rd ECS Meeting, Seattle, WA

Biological fuel cells (BFCs) are an increasingly growing area of research as it beholds long-term sustainable advantages over conventional fuel cells. Microbial Fuel Cells (MFCs) are just one type of BFCs, which as the name implies, employ microbial... Read More about 3D-printable cathode electrode for monolithically printed microbial fuel cells (MFCs).

PEE POWER® urinal II - Urinal scale-up with microbial fuel cell scale-down for improved lighting (2018)
Journal Article
Walter, X. A., Merino-Jiménez, I., Greenman, J., & Ieropoulos, I. (2018). PEE POWER® urinal II - Urinal scale-up with microbial fuel cell scale-down for improved lighting. Journal of Power Sources, 392, 150-158. https://doi.org/10.1016/j.jpowsour.2018.02.047

© 2018 The Authors A novel design of microbial fuel cells (MFC) fuelled with undiluted urine was demonstrated to be an efficient power source for decentralised areas, but had only been tested under controlled laboratory conditions. Hence, a field-tri... Read More about PEE POWER® urinal II - Urinal scale-up with microbial fuel cell scale-down for improved lighting.

Modelling microbial fuel cells using Lattice Boltzmann methods (2018)
Journal Article
Tsompanas, M. A., Adamatzky, A., Ieropoulos, I., Phillips, N., Sirakoulis, G., & Greenman, J. (2019). Modelling microbial fuel cells using Lattice Boltzmann methods. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 6(16), 2035-2045. https://doi.org/10.1109/TCBB.2018.2831223

An accurate modelling of bio-electrochemical processes that govern Microbial Fuel Cells (MFCs) and mapping their behaviour according to several parameters will enhance the development of MFC technology and enable their successful implementation in we... Read More about Modelling microbial fuel cells using Lattice Boltzmann methods.

Investigation of ceramic MFC stacks for urine energy extraction (2018)
Journal Article
Tremouli, A., Greenman, J., & Ieropoulos, I. (2018). Investigation of ceramic MFC stacks for urine energy extraction. Bioelectrochemistry, 123, 19-25. https://doi.org/10.1016/j.bioelechem.2018.03.010

© 2018 The Authors Two ceramic stacks, terracotta (t-stack) and mullite (m-stack), were developed to produce energy when fed with neat undiluted urine. Each stack consisted of twelve identical microbial fuel cells (MFCs) which were arranged in cascad... Read More about Investigation of ceramic MFC stacks for urine energy extraction.

Design mining microbial fuel cell cascades (2018)
Journal Article
Preen, R., You, J., Bull, L., & Ieropoulos, I. A. (2019). Design mining microbial fuel cell cascades. Soft Computing, 23(13), 4673-7643. https://doi.org/10.1007/s00500-018-3117-x

Microbial fuel cells (MFCs) perform wastewater treatment and electricity production through the conversion of organic matter using microorganisms. For practical applications, it has been suggested that greater efficiency can be achieved by arranging... Read More about Design mining microbial fuel cell cascades.

Enhancement of microbial fuel cell performance by introducing a nano-composite cathode catalyst (2018)
Journal Article
Mounika, K., Herrera, S., Kabir, S., Serov, A., Santoro, C., Ieropoulos, I., & Atanassov, P. (2018). Enhancement of microbial fuel cell performance by introducing a nano-composite cathode catalyst. Electrochimica Acta, 265, 56-64. https://doi.org/10.1016/j.electacta.2018.01.118

© 2018 The Authors Iron aminoantipyrine (Fe-AAPyr), graphene nanosheets (GNSs) derived catalysts and their physical mixture Fe-AAPyr-GNS were synthesized and investigated as cathode catalysts for oxygen reduction reaction (ORR) with the activated car... Read More about Enhancement of microbial fuel cell performance by introducing a nano-composite cathode catalyst.

Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs (2018)
Journal Article
Santoro, C., Kodali, M., Herrera, S., Serov, A., Ieropoulos, I., & Atanassov, P. (2018). Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs. Journal of Power Sources, 378, 169-175. https://doi.org/10.1016/j.jpowsour.2017.12.017

© 2017 The Authors Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the c... Read More about Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs.

Ceramic Microbial Fuel Cells Stack: Power generation in standard and supercapacitive mode (2018)
Journal Article
Santoro, C., Flores-Cadengo, C., Soavi, F., Kodali, M., Merino-Jimenez, I., Gajda, I., …Atanassov, P. (2018). Ceramic Microbial Fuel Cells Stack: Power generation in standard and supercapacitive mode. Scientific Reports, 8(3281), https://doi.org/10.1038/s41598-018-21404-y

© 2018 The Author(s). In this work, a microbial fuel cell (MFC) stack containing 28 ceramic MFCs was tested in both standard and supercapacitive modes. The MFCs consisted of carbon veil anodes wrapped around the ceramic separator and air-breathing ca... Read More about Ceramic Microbial Fuel Cells Stack: Power generation in standard and supercapacitive mode.

Microbial fuel cell, method of controlling and measuring the redox potential difference of the fuel cell (2018)
Patent
Greenman, J., & Ieropoulos, Y. (2020). Microbial fuel cell, method of controlling and measuring the redox potential difference of the fuel cell. US20180013162A1

A microbial fuel cell (MFC) in which the anode and/or cathode half-cell comprises at least one additional electrode insulated from direct contact with the working electrode and arranged to be coupled to an external voltage or current source, wherein... Read More about Microbial fuel cell, method of controlling and measuring the redox potential difference of the fuel cell.

Novel Analytical Microbial Fuel Cell Design for Rapid in Situ Optimisation of Dilution Rate and Substrate Supply Rate, by Flow, Volume Control and Anode Placement (2018)
Journal Article
You, J., Greenman, J., & Ieropoulos, I. (2018). Novel Analytical Microbial Fuel Cell Design for Rapid in Situ Optimisation of Dilution Rate and Substrate Supply Rate, by Flow, Volume Control and Anode Placement. Energies, 11(9), 2377. https://doi.org/10.3390/en11092377

© 2018 MDPI AG. All rights reserved. A new analytical design of continuously-fed microbial fuel cell was built in triplicate in order to investigate relations and effects of various operating parameters such as flow rate and substrate supply rate, in... Read More about Novel Analytical Microbial Fuel Cell Design for Rapid in Situ Optimisation of Dilution Rate and Substrate Supply Rate, by Flow, Volume Control and Anode Placement.

Passive feeding in paper-based microbial fuel cells (2018)
Journal Article
Winfield, J., Milani, P., Greenman, J., & Ieropoulos, I. (2018). Passive feeding in paper-based microbial fuel cells. ECS Transactions, 85(13), 1193-1200. https://doi.org/10.1149/08513.1193ecst

Microbial fuel cells (MFCs) are often constructed using materials such as plastic that can be hazardous to the environment. Building MFCs from paper is a sustainable option, making the fuel cells lightweight and easy to carry. Transported in the bott... Read More about Passive feeding in paper-based microbial fuel cells.

Energy and metabolism (2018)
Book Chapter
Ieropoulos, I. A., Ledezma, P., Scandroglio, G., Melhuish, C., & Greenman, J. (2018). Energy and metabolism. In T. J. Prescott, N. Lepora, & P. F. Verschure (Eds.), Living Machines: A Handbook of Research in Biomimetics and Biohybrid Systems (62-72). Oxford University Press (OUP). https://doi.org/10.1093/oso/9780199674923.003.0006

© Oxford University Press, 2018 and University of Tartu Press, 2012. Energy resulting from metabolism is essential for any living system-from single-cell to multicellular organisms. This also applies to symbiotic robots (SymBots), which function util... Read More about Energy and metabolism.

Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode (2017)
Journal Article
Gajda, I., Greenman, J., Santoro, C., Serov, A., Melhuish, C., Atanassov, P., & Ieropoulos, I. (2018). Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode. Energy, 144, 1073-1079. https://doi.org/10.1016/j.energy.2017.11.135

© 2017 Power output limitation is one of the main challenges that needs to be addressed for full-scale applications of the Microbial Fuel Cell (MFC) technology. Previous studies have examined electrochemical performance of different cathode electrode... Read More about Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode.

EvoBot: Towards a robot-chemostat for culturing and maintaining Microbial Fuel Cells (MFCs) (2017)
Conference Proceeding
Theodosiou, P., Faina, A., Nejatimoharrami, F., Stoy, K., Greenman, J., Melhuish, C., & Ieropoulos, I. (2017). EvoBot: Towards a robot-chemostat for culturing and maintaining Microbial Fuel Cells (MFCs). In N. Lepora, T. Prescott, P. F. Verschure, A. Mura, M. Cutkosky, & M. Mangan (Eds.), Biomimetic and Biohybrid Systems. , (453-464). https://doi.org/10.1007/978-3-319-63537-8_38

In this paper we present EvoBot, a RepRap open-source 3D-printer modified to operate like a robot for culturing and maintaining Microbial Fuel Cells (MFCs). EvoBot is a modular liquid handling robot that has been adapted to host MFCs in its experimen... Read More about EvoBot: Towards a robot-chemostat for culturing and maintaining Microbial Fuel Cells (MFCs).

Towards a self-powered biosensors for environmental applications in remote, off-grid areas (2017)
Journal Article
Pasternak, G., Greenman, J., & Ieropoulos, I. (2017). Towards a self-powered biosensors for environmental applications in remote, off-grid areas. Procedia Technology, 27, 8-9. https://doi.org/10.1016/j.protcy.2017.04.005

One important factor for developing biosensors is taking the source of electrical energy into account. The source of electricity is needed whenever we consider point-of-care diagnostics, in-vivo tests or in particular – environmental applications. Th... Read More about Towards a self-powered biosensors for environmental applications in remote, off-grid areas.

Electricity production from human urine in ceramic microbial fuel cells with alternative non-fluorinated polymer binders for cathode construction (2017)
Journal Article
Salar-Garcia, M. J., Ortiz-Martinez, V., Gajda, I., Greenman, J., Hernández-Fernández, F. J., & Ieropoulos, I. (2017). Electricity production from human urine in ceramic microbial fuel cells with alternative non-fluorinated polymer binders for cathode construction. Separation and Purification Technology, 187, 436-442. https://doi.org/10.1016/j.seppur.2017.06.025

© 2017 Elsevier B.V. Polytetrafluoroethylene (PTFE) is one of the most common binders employed to prepare cathode electrodes in microbial fuel cells (MFCs) and yet this fluorinated polymer is neither sustainable nor environmentally friendly. In this... Read More about Electricity production from human urine in ceramic microbial fuel cells with alternative non-fluorinated polymer binders for cathode construction.

Towards implementation of cellular automata in Microbial Fuel Cells (2017)
Journal Article
Sirakoulis, G. C., Tsompanas, M. A., Adamatzky, A., Greenman, J., & Ieropoulos, I. (2017). Towards implementation of cellular automata in Microbial Fuel Cells. PLoS ONE, 12(5), e0177528. https://doi.org/10.1371/journal.pone.0177528

© 2017 Tsompanas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are... Read More about Towards implementation of cellular automata in Microbial Fuel Cells.

Urine disinfection and in situ pathogen killing using a Microbial Fuel Cell cascade system (2017)
Journal Article
Ieropoulos, I., Pasternak, G., & Greenman, J. (2017). Urine disinfection and in situ pathogen killing using a Microbial Fuel Cell cascade system. PLoS ONE, 12(5), e0176475. https://doi.org/10.1371/journal.pone.0176475

© 2017 Ieropoulos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are... Read More about Urine disinfection and in situ pathogen killing using a Microbial Fuel Cell cascade system.

Special section: “Microbial fuel cells: From fundamentals to applications”: Guest editors' note (2017)
Journal Article
Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Special section: “Microbial fuel cells: From fundamentals to applications”: Guest editors' note. Journal of Power Sources, 356, 223-224. https://doi.org/10.1016/j.jpowsour.2017.04.071

The Special Section “Microbial fuel cells: From fundamentals to applications” covers many diverse and multidisciplinary aspects of the entire microbial electrochemical field, with a special emphasis on microbial and abiotic/microbial electron transfe... Read More about Special section: “Microbial fuel cells: From fundamentals to applications”: Guest editors' note.