Skip to main content

Research Repository

Advanced Search

All Outputs (213)

Multidimensional benefits of improved sanitation: Evaluating 'PEE POWER®' in Kisoro, Uganda (2020)
Journal Article
You, J., Staddon, C., Cook, A., Walker, J., Boulton, J., Powell, W., & Ieropoulos, I. (2020). Multidimensional benefits of improved sanitation: Evaluating 'PEE POWER®' in Kisoro, Uganda. International Journal of Environmental Research and Public Health, 17(7), Article 2175. https://doi.org/10.3390/ijerph17072175

With 2.3 billion people around the world lacking adequate sanitation services, attention has turned to alternative service provision models. This study suggests an approach for meeting the sanitation challenge, especially as expressed in Sustainable... Read More about Multidimensional benefits of improved sanitation: Evaluating 'PEE POWER®' in Kisoro, Uganda.

Resilience and limitations of MFC anodic community when exposed to antibacterial agents (2020)
Journal Article
Ieropoulos, I., Obata, O., Greenman, J., Kurt, H., & Chandran, K. (2020). Resilience and limitations of MFC anodic community when exposed to antibacterial agents. Bioelectrochemistry, 134, Article 107500. https://doi.org/10.1016/j.bioelechem.2020.107500

This study evaluates the fate of certain bactericidal agents introduced into microbial fuel cell (MFC) cascades and the response of the microbial community. We tested the response of functioning urine fed MFC cascades using two very different bacteri... Read More about Resilience and limitations of MFC anodic community when exposed to antibacterial agents.

Urine in bioelectrochemical systems: An overall review (2020)
Journal Article
Santoro, C., Garcia, M. J. S., Walter, X. A., You, J., Theodosiou, P., Gajda, I., …Ieropoulos, I. (2020). Urine in bioelectrochemical systems: An overall review. ChemElectroChem, 7(6), 1312-1331. https://doi.org/10.1002/celc.201901995

In recent years, human urine has been successfully used as an electrolyte and organic substrate in bioelectrochemical systems (BESs) mainly due of its unique properties. Urine contains organic compounds that can be utilised as a fuel for energy recov... Read More about Urine in bioelectrochemical systems: An overall review.

Scalability and stacking of self-stratifying microbial fuel cells treating urine (2020)
Journal Article
Walter, X. A., Santoro, C., Greenman, J., & Ieropoulos, I. A. (2020). Scalability and stacking of self-stratifying microbial fuel cells treating urine. Bioelectrochemistry, 133, Article 107491. https://doi.org/10.1016/j.bioelechem.2020.107491

The scalability of Microbial fuel cells (MFCs) is key to the development of stacks. A recent study has shown that self-stratifying membraneless MFCs (S-MFCs) could be scaled down to 2 cm without performance deterioration. However, the scaling-up limi... Read More about Scalability and stacking of self-stratifying microbial fuel cells treating urine.

Microbial fuel cell stack performance enhancement through carbon veil anode modification with activated carbon powder (2020)
Journal Article
Gajda, I., Greenman, J., & Ieropoulos, I. (2020). Microbial fuel cell stack performance enhancement through carbon veil anode modification with activated carbon powder. Applied Energy, 262, Article 114475. https://doi.org/10.1016/j.apenergy.2019.114475

The chemical energy contained in urine can be efficiently extracted into direct electricity by Microbial Fuel Cell stacks to reach usable power levels for practical implementation and a decentralised power source in remote locations. Herein, a novel... Read More about Microbial fuel cell stack performance enhancement through carbon veil anode modification with activated carbon powder.

Optimisation of the internal structure of ceramic membranes for electricity production in urine-fed microbial fuel cells (2020)
Journal Article
Salar-García, M. J., & Ieropoulos, I. (2020). Optimisation of the internal structure of ceramic membranes for electricity production in urine-fed microbial fuel cells. Journal of Power Sources, 451, Article 227741. https://doi.org/10.1016/j.jpowsour.2020.227741

The need to find a feasible alternative to commercial membranes for microbial fuel cells (MFCs) poses an important challenge for the practical implementation of this technology. This work aims to analyse the influence of the internal structure of low... Read More about Optimisation of the internal structure of ceramic membranes for electricity production in urine-fed microbial fuel cells.

Long-term bio-power of ceramic microbial fuel cells in individual and stacked configurations (2020)
Journal Article
Gajda, I., Obata, O., Jose Salar-Garcia, M., Greenman, J., & Ieropoulos, I. A. (2020). Long-term bio-power of ceramic microbial fuel cells in individual and stacked configurations. Bioelectrochemistry, 133, Article 107459. https://doi.org/10.1016/j.bioelechem.2020.107459

© 2020 The Authors In order to improve the potential of Microbial Fuel Cells (MFCs) as an applicable technology, the main challenge is to engineer practical systems for bioenergy production at larger scales and to test how the prototypes withstand th... Read More about Long-term bio-power of ceramic microbial fuel cells in individual and stacked configurations.

Development of efficient electroactive biofilm in urine-fed microbial fuel cell cascades for bioelectricity generation (2020)
Journal Article
Obata, O., Salar-Garcia, M. J., Greenman, J., Kurt, H., Chandran, K., & Ieropoulos, I. (2020). Development of efficient electroactive biofilm in urine-fed microbial fuel cell cascades for bioelectricity generation. Journal of Environmental Management, 258, Article 109992. https://doi.org/10.1016/j.jenvman.2019.109992

The Microbial fuel cell (MFC) technology harnesses the potential of some naturally occurring bacteria for electricity generation. Digested sludge is commonly used as the inoculum to initiate the process. There are, however, health hazards and practic... Read More about Development of efficient electroactive biofilm in urine-fed microbial fuel cell cascades for bioelectricity generation.

Microbial fuel cells directly powering a microcomputer (2019)
Journal Article
Walter, A., Greenman, J., & Ieropoulos, I. (2020). Microbial fuel cells directly powering a microcomputer. Journal of Power Sources, 446, Article 227328. https://doi.org/10.1016/j.jpowsour.2019.227328

© 2019 The Authors Many studies have demonstrated that microbial fuel cells (MFC) can be energy-positive systems and power various low power applications. However, to be employed as a low-level power source, MFC systems rely on energy management circ... Read More about Microbial fuel cells directly powering a microcomputer.

A comprehensive study of custom-made ceramic separators for microbial fuel cells: Towards "living" bricks (2019)
Journal Article
You, J., Wallis, L., Radisavljevic, N., Pasternak, G., Sglavo, V. M., Hanczyc, M. M., …Ieropoulos, I. (2019). A comprehensive study of custom-made ceramic separators for microbial fuel cells: Towards "living" bricks. Energies, 12(21), Article 4071. https://doi.org/10.3390/en12214071

Towards the commercialisation of microbial fuel cell (MFC) technology, well-performing, cost-effective, and sustainable separators are being developed. Ceramic is one of the promising materials for this purpose. In this study, ceramic separators made... Read More about A comprehensive study of custom-made ceramic separators for microbial fuel cells: Towards "living" bricks.

Combination of bioelectrochemical systems and electrochemical capacitors: Principles, analysis and opportunities (2019)
Journal Article
Caizán-Juanarena, L., Borsje, C., Sleutels, T., Yntema, D., Santoro, C., Ieropoulos, I., …ter Heijne, A. (2020). Combination of bioelectrochemical systems and electrochemical capacitors: Principles, analysis and opportunities. Biotechnology Advances, 39, Article 107456. https://doi.org/10.1016/j.biotechadv.2019.107456

© 2019 The Authors Bioelectrochemical systems combine electrodes and reactions driven by microorganisms for many different applications. The conversion of organic material in wastewater into electricity occurs in microbial fuel cells (MFCs). The powe... Read More about Combination of bioelectrochemical systems and electrochemical capacitors: Principles, analysis and opportunities.

Long Term Feasibility Study of In-field Floating Microbial Fuel Cells for Monitoring Anoxic Wastewater and Energy Harvesting (2019)
Journal Article
Cristiani, P., Gajda, I., Greenman, J., Pizza, F., Bonelli, P., & Ieropoulos, I. (2019). Long Term Feasibility Study of In-field Floating Microbial Fuel Cells for Monitoring Anoxic Wastewater and Energy Harvesting. Frontiers in Energy Research, 7, https://doi.org/10.3389/fenrg.2019.00119

© Copyright © 2019 Cristiani, Gajda, Greenman, Pizza, Bonelli and Ieropoulos. In the present work different prototypes of floating MFCs have been tested in anoxic water environments of wastewater plants in Italy, over a period of 3 years. Several con... Read More about Long Term Feasibility Study of In-field Floating Microbial Fuel Cells for Monitoring Anoxic Wastewater and Energy Harvesting.

Living architecture: Toward energy generating buildings powered by microbial fuel cells (2019)
Journal Article
You, J., Rimbu, G. A., Wallis, L., Greenman, J., & Ieropoulos, I. (2019). Living architecture: Toward energy generating buildings powered by microbial fuel cells. Frontiers in Energy Research, 7, https://doi.org/10.3389/fenrg.2019.00094

In this study, possibilities of integrating microbial fuel cell (MFC) technology and buildings were investigated. Three kinds of conventional house bricks from two different locations were tested as MFC reactors and their electrochemical characterist... Read More about Living architecture: Toward energy generating buildings powered by microbial fuel cells.

Microbial fuel cells (MFC) and microalgae; Photo microbial fuel cell (PMFC) as complete recycling machines (2019)
Journal Article
Greenman, J., Gajda, I., & Ieropoulos, I. (2019). Microbial fuel cells (MFC) and microalgae; Photo microbial fuel cell (PMFC) as complete recycling machines. Sustainable Energy and Fuels, 3(10), 2546-2560. https://doi.org/10.1039/c9se00354a

© 2019 The Royal Society of Chemistry. Humans can exploit natural processes by microorganisms by using Microbial Fuel Cells and integrated Photo Microbial Fuel Cells (MFC/PMFC) chambers containing electrodes to maximise microbial oxidation rates and... Read More about Microbial fuel cells (MFC) and microalgae; Photo microbial fuel cell (PMFC) as complete recycling machines.

Removal of Hepatitis B virus surface HBsAg and core HBcAg antigens using microbial fuel cells producing electricity from human urine (2019)
Journal Article
Pasternak, G., Greenman, J., & Ieropoulos, I. (2019). Removal of Hepatitis B virus surface HBsAg and core HBcAg antigens using microbial fuel cells producing electricity from human urine. Scientific Reports, 9(1), Article 11787. https://doi.org/10.1038/s41598-019-48128-x

© 2019, The Author(s). Microbial electrochemical technology is emerging as an alternative way of treating waste and converting this directly to electricity. Intensive research on these systems is ongoing but it currently lacks the evaluation of possi... Read More about Removal of Hepatitis B virus surface HBsAg and core HBcAg antigens using microbial fuel cells producing electricity from human urine.

Supercapacitive paper based microbial fuel cell: High current/power production within a low cost design (2019)
Journal Article
Santoro, C., Winfield, J., Theodosiou, P., & Ieropoulos, I. (2019). Supercapacitive paper based microbial fuel cell: High current/power production within a low cost design. Bioresource Technology Reports, 7, Article 100297. https://doi.org/10.1016/j.biteb.2019.100297

Microbial fuel cells (MFCs) with paper separators and liquid containing elements were investigated in supercapacitive mode. MFCs (15 mL) in a supercapacitive configuration, consisted of plain wrapped carbon veil anode (negative) and conductive latex... Read More about Supercapacitive paper based microbial fuel cell: High current/power production within a low cost design.

Artificial neural network simulating microbial fuel cells with different membrane materials and electrode configurations (2019)
Journal Article
Tsompanas, M. A., You, J., Wallis, L., Greenman, J., & Ieropoulos, I. (2019). Artificial neural network simulating microbial fuel cells with different membrane materials and electrode configurations. Journal of Power Sources, 436, Article 226832. https://doi.org/10.1016/j.jpowsour.2019.226832

© 2019 Elsevier B.V. Microbial fuel cells (MFCs) are gaining interest due to higher power production achieved by deep analysis of their characteristics and their effect on the overall efficiency. To date, investigations on MFC efficiency, can only be... Read More about Artificial neural network simulating microbial fuel cells with different membrane materials and electrode configurations.

Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach (2019)
Journal Article
de Ramón-Fernández, A., Salar-García, M. J., Ruiz-Fernández, D., Greenman, J., & Ieropoulos, I. (2019). Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach. Applied Energy, 251, Article 113321. https://doi.org/10.1016/j.apenergy.2019.113321

© 2019 The Author(s) Microbial fuel cells (MFCs) is a promising technology that is able to simultaneously produce bioenergy and treat wastewater. Their potential large-scale application is still limited by the need of optimising their power density.... Read More about Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach.

Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation (2019)
Journal Article
Merino-Jimenez, I., Gonzalez-Juarez, F., Greenman, J., & Ieropoulos, I. (2019). Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation. Journal of Power Sources, 429, 30-37. https://doi.org/10.1016/j.jpowsour.2019.04.043

© 2019 The Authors Ceramic membranes for MFCs offer a low cost alternative to the expensive ion exchange membranes, whilst promoting catholyte accumulation. However, their physicochemical properties need to be optimised, in order to increase the powe... Read More about Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation.