Skip to main content

Research Repository

Advanced Search

All Outputs (31)

Design mining microbial fuel cell cascades (2018)
Journal Article
Preen, R., You, J., Bull, L., & Ieropoulos, I. A. (2019). Design mining microbial fuel cell cascades. Soft Computing, 23(13), 4673-7643. https://doi.org/10.1007/s00500-018-3117-x

Microbial fuel cells (MFCs) perform wastewater treatment and electricity production through the conversion of organic matter using microorganisms. For practical applications, it has been suggested that greater efficiency can be achieved by arranging... Read More about Design mining microbial fuel cell cascades.

Novel Analytical Microbial Fuel Cell Design for Rapid in Situ Optimisation of Dilution Rate and Substrate Supply Rate, by Flow, Volume Control and Anode Placement (2018)
Journal Article
You, J., Greenman, J., & Ieropoulos, I. (2018). Novel Analytical Microbial Fuel Cell Design for Rapid in Situ Optimisation of Dilution Rate and Substrate Supply Rate, by Flow, Volume Control and Anode Placement. Energies, 11(9), 2377. https://doi.org/10.3390/en11092377

© 2018 MDPI AG. All rights reserved. A new analytical design of continuously-fed microbial fuel cell was built in triplicate in order to investigate relations and effects of various operating parameters such as flow rate and substrate supply rate, in... Read More about Novel Analytical Microbial Fuel Cell Design for Rapid in Situ Optimisation of Dilution Rate and Substrate Supply Rate, by Flow, Volume Control and Anode Placement.

3D printed components of microbial fuel cells: Towards monolithic microbial fuel cell fabrication using additive layer manufacturing (2016)
Journal Article
Preen, R. J., You, J., Preen, R., Bull, L., Greenman, J., & Ieropoulos, I. (2017). 3D printed components of microbial fuel cells: Towards monolithic microbial fuel cell fabrication using additive layer manufacturing. Sustainable Energy Technologies and Assessments, 19, 94-101. https://doi.org/10.1016/j.seta.2016.11.006

© 2016 The Authors For practical applications of the MFC technology, the design as well as the processes of manufacturing and assembly, should be optimised for the specific target use. Another burgeoning technology, additive manufacturing (3D printin... Read More about 3D printed components of microbial fuel cells: Towards monolithic microbial fuel cell fabrication using additive layer manufacturing.

Waste and wastewater clean-up using microbial fuel cells (2016)
Thesis
You, J. Waste and wastewater clean-up using microbial fuel cells. (Thesis). University of the West of England. Retrieved from https://uwe-repository.worktribe.com/output/907941

A sustainable energy portfolio should include a range of carbon-neutral and renewable energy technologies. Amongst the renewable energy technologies, MFCs can offer a solution for both sustainable energy and clean water demands. In order to take the... Read More about Waste and wastewater clean-up using microbial fuel cells.

The practical implementation of microbial fuel cell technology (2016)
Book Chapter
Ieropoulos, I., Winfield, J., Gajda, I., Walter, X. A., Papacharalampos, G., Merino Jimenez, I., …Greenman, J. (2016). The practical implementation of microbial fuel cell technology. In K. Scott, & E. Hao Yu (Eds.), Microbial Electrochemical and Fuel Cells (357-380). Woodhead (Elsevier). https://doi.org/10.1016/B978-1-78242-375-1.00012-5

© 2016 Elsevier Ltd. All rights reserved. New green technologies are emerging in response to decades of damaging human activity. Among those are microbial fuel cells (MFCs), electric transducers that transform wet organic matter into electricity via... Read More about The practical implementation of microbial fuel cell technology.

Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors (2015)
Journal Article
Walter, X. A., You, J., Greenman, J., Melhuish, C., & Ieropoulos, I. (2015). Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors. Sensing and Bio-Sensing Research, 6, 43-50. https://doi.org/10.1016/j.sbsr.2015.11.007

© 2015 The Authors. Stability and reliability of microbial fuel cell anodic biofilms, consisting of mixed cultures, were investigated in a continuously fed system. Two groups of anodic biofilm matured with different substrates, acetate and casein for... Read More about Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors.

Electricity generation and struvite recovery from human urine using microbial fuel cells (2014)
Journal Article
You, J., Greenman, J., Melhuish, C., & Ieropoulos, I. (2016). Electricity generation and struvite recovery from human urine using microbial fuel cells. Journal of Chemical Technology and Biotechnology, 91(3), 647-654. https://doi.org/10.1002/jctb.4617

BACKGROUND: Urine is an abundant waste product which requires energy intensive treatment processes in modern wastewater treatment plants. However urine can be utilised as fertiliser in the form of struvite. Microbial fuel cells (MFCs) are a promising... Read More about Electricity generation and struvite recovery from human urine using microbial fuel cells.

Micro-porous layer (MPL)-based anode for microbial fuel cells (2014)
Journal Article
You, J., Santoro, C., Greenman, J., Melhuish, C., Cristiani, P., Li, B., & Ieropoulos, I. (2014). Micro-porous layer (MPL)-based anode for microbial fuel cells. International Journal of Hydrogen Energy, 39(36), 21811-21818. https://doi.org/10.1016/j.ijhydene.2014.07.136

© 2014 Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. Two different anode materials, carbon veil (CV) and carbon cloth (CC), were modified with a micro-porous layer (MPL) in microbial fuel cells (MFCs). When the bi... Read More about Micro-porous layer (MPL)-based anode for microbial fuel cells.

Small-scale microbial fuel cells utilising uric salts (2014)
Journal Article
You, J., Greenman, J., Melhuish, C., & Ieropoulos, I. (2014). Small-scale microbial fuel cells utilising uric salts. Sustainable Energy Technologies and Assessments, 6, 60-63. https://doi.org/10.1016/j.seta.2014.01.005

With exhausting fossil fuels and increasing greenhouse gas emissions, numerous attempts, to overcome future energy challenges, are being pursued. In this study, small-scale microbial fuel cells (MFCs, 0.7mL anodic chamber volume) were built to invest... Read More about Small-scale microbial fuel cells utilising uric salts.

MPL based anode for improved performance in microbial fuel cells (2013)
Conference Proceeding
You, J., Santoro, C., Greenman, J., Melhuish, C., Cristiani, P., Li, B., & Ieropoulos, I. (2013). MPL based anode for improved performance in microbial fuel cells

Copyright © 2013 Delta Energy and Environment. Two different anode materials, carbon veil and carbon cloth, were modified with a micro-porous layer for microbial fuel cells. 2.2 and 1.8 times higher power was achieved as a result of this modification... Read More about MPL based anode for improved performance in microbial fuel cells.

Living architecture bioreactor wall window demonstration
Digital Artefact
You, J., Francois, C., Mendis, A., & Ieropolous, I. Living architecture bioreactor wall window demonstration

These video files show the demonstration window and EECMS (electronic energy and cell management system) in the bioreactor wall for the Living Architecture project funded by EU.