Skip to main content

Research Repository

Advanced Search

All Outputs (31)

From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights (2020)
Journal Article
Walter, X. A., You, J., Winfield, J., Bajarunas, U., Greenman, J., & Ieropoulos, I. A. (2020). From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights. Applied Energy, 277, Article 115514. https://doi.org/10.1016/j.apenergy.2020.115514

The microbial fuel cell (MFC) technology relies on energy storage and harvesting circuitry to deliver stable power outputs. This increases costs, and for wider deployment into society, these should be kept minimal. The present study reports how a MFC... Read More about From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights.

Complete microbial fuel cell fabrication using additive layer manufacturing (2020)
Journal Article
You, J., Fan, H., Winfield, J., & Ieropoulos, I. A. (2020). Complete microbial fuel cell fabrication using additive layer manufacturing. Molecules, 25(13), Article 3051. https://doi.org/10.3390/molecules25133051

Improving the efficiency of microbial fuel cell (MFC) technology by enhancing the system performance and reducing the production cost is essential for commercialisation. In this study, building an additive manufacturing (AM)-built MFC comprising all... Read More about Complete microbial fuel cell fabrication using additive layer manufacturing.

Urine in bioelectrochemical systems: An overall review (2020)
Journal Article
Santoro, C., Garcia, M. J. S., Walter, X. A., You, J., Theodosiou, P., Gajda, I., …Ieropoulos, I. (2020). Urine in bioelectrochemical systems: An overall review. ChemElectroChem, 7(6), 1312-1331. https://doi.org/10.1002/celc.201901995

In recent years, human urine has been successfully used as an electrolyte and organic substrate in bioelectrochemical systems (BESs) mainly due of its unique properties. Urine contains organic compounds that can be utilised as a fuel for energy recov... Read More about Urine in bioelectrochemical systems: An overall review.

Microbial fuel cells, concept, and applications (2019)
Book Chapter
Santoro, C., Brown, M., Gajda, I., Greenman, J., Obata, O., García, M. J. S., …Ieropoulos, I. (2019). Microbial fuel cells, concept, and applications. In G. Thouand (Ed.), Handbook of Cell Biosensors (1-35). Springer International Publishing. https://doi.org/10.1007/978-3-319-47405-2_93-1

The first published report of microbial fuel cells (MFCs) was over 100 years ago, yet it is only recently that interest in the technology has grown exponentially with the discovery that bacteria can transfer electrons to the anode without the need fo... Read More about Microbial fuel cells, concept, and applications.

Supercapacitive paper based microbial fuel cell: High current/power production within a low cost design (2019)
Journal Article
Santoro, C., Winfield, J., Theodosiou, P., & Ieropoulos, I. (2019). Supercapacitive paper based microbial fuel cell: High current/power production within a low cost design. Bioresource Technology Reports, 7, Article 100297. https://doi.org/10.1016/j.biteb.2019.100297

Microbial fuel cells (MFCs) with paper separators and liquid containing elements were investigated in supercapacitive mode. MFCs (15 mL) in a supercapacitive configuration, consisted of plain wrapped carbon veil anode (negative) and conductive latex... Read More about Supercapacitive paper based microbial fuel cell: High current/power production within a low cost design.

Response of ceramic microbial fuel cells to direct anodic airflow and novel hydrogel cathodes (2019)
Journal Article
Winfield, J., Greenman, J., & Ieropoulos, I. (2019). Response of ceramic microbial fuel cells to direct anodic airflow and novel hydrogel cathodes. International Journal of Hydrogen Energy, 44(29), 15344-15354. https://doi.org/10.1016/j.ijhydene.2019.04.024

© 2019 The Authors The presence of air in the anode chamber of microbial fuel cells (MFCs)might be unavoidable in some applications. This study purposely exposed the anodic biofilm to air for sustained cycles using ceramic cylindrical MFCs. A method... Read More about Response of ceramic microbial fuel cells to direct anodic airflow and novel hydrogel cathodes.

Passive feeding in paper-based microbial fuel cells (2018)
Journal Article
Winfield, J., Milani, P., Greenman, J., & Ieropoulos, I. (2018). Passive feeding in paper-based microbial fuel cells. ECS Transactions, 85(13), 1193-1200. https://doi.org/10.1149/08513.1193ecst

Microbial fuel cells (MFCs) are often constructed using materials such as plastic that can be hazardous to the environment. Building MFCs from paper is a sustainable option, making the fuel cells lightweight and easy to carry. Transported in the bott... Read More about Passive feeding in paper-based microbial fuel cells.

Eating, drinking, living, dying and decaying soft robots (2016)
Conference Proceeding
Rossiter, J., Winfield, J., & Ieropoulos, I. (2016). Eating, drinking, living, dying and decaying soft robots. In C. Laschi, J. Rossiter, F. Lida, M. Cianchetti, & L. Margheri (Eds.), Soft Robotics: Trends, Applications and Challenges (95-101). https://doi.org/10.1007/978-3-319-46460-2_12

Soft robotics opens up a whole range of possibilities that go far beyond conventional rigid and electromagnetic robotics. New smart materials and new design and modelling methodologies mean we can start to replicate the operations and functionalities... Read More about Eating, drinking, living, dying and decaying soft robots.

The dawn of biodegradable robots (2016)
Journal Article
Winfield, J., Rossiter, J., & Ieropoulos, I. (2016). The dawn of biodegradable robots

Robotics is a field that is not normally associated with green technology or sustainability. Robots are generally constructed using materials that are non-biodegradable, toxic and expensive. These factors can limit the potential uses that an artifici... Read More about The dawn of biodegradable robots.

A review into the use of ceramics in microbial fuel cells (2016)
Journal Article
Winfield, J., Gajda, I., Greenman, J., & Ieropoulos, I. (2016). A review into the use of ceramics in microbial fuel cells. Bioresource Technology, 215, 296-303. https://doi.org/10.1016/j.biortech.2016.03.135

© 2016 The Authors. Microbial fuel cells (MFCs) offer great promise as a technology that can produce electricity whilst at the same time treat wastewater. Although significant progress has been made in recent years, the requirement for cheaper materi... Read More about A review into the use of ceramics in microbial fuel cells.

Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column (2016)
Journal Article
Walter, X. A., Gajda, I., Forbes, S., Winfield, J., Greenman, J., & Ieropoulos, I. (2016). Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column. Biotechnology for Biofuels, 9(1), https://doi.org/10.1186/s13068-016-0504-3

© 2016 Walter et al. Background: The microbial fuel cell (MFC) is a technology in which microorganisms employ an electrode (anode) as a solid electron acceptor for anaerobic respiration. This results in direct transformation of chemical energy into e... Read More about Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column.

The practical implementation of microbial fuel cell technology (2016)
Book Chapter
Ieropoulos, I., Winfield, J., Gajda, I., Walter, X. A., Papacharalampos, G., Merino Jimenez, I., …Greenman, J. (2016). The practical implementation of microbial fuel cell technology. In K. Scott, & E. Hao Yu (Eds.), Microbial Electrochemical and Fuel Cells (357-380). Woodhead (Elsevier). https://doi.org/10.1016/B978-1-78242-375-1.00012-5

© 2016 Elsevier Ltd. All rights reserved. New green technologies are emerging in response to decades of damaging human activity. Among those are microbial fuel cells (MFCs), electric transducers that transform wet organic matter into electricity via... Read More about The practical implementation of microbial fuel cell technology.

Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride (2016)
Journal Article
Winfield, J., Greenman, J., Dennis, J., & Ieropoulos, I. (2016). Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride. Journal of Chemical Technology and Biotechnology, 91(1), 138-143. https://doi.org/10.1002/jctb.4552

© 2014 Society of Chemical Industry. BACKGROUND: Ferric chloride (FeCl3) is widely used as a flocculating agent during wastewater treatment but can detrimentally lower pH and increase iron concentration. Microbial fuel cells (MFCs) are a promising te... Read More about Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride.

Here today, gone tomorrow: Biodegradable soft robots (2016)
Journal Article
Rossiter, J., Winfield, J., & Ieropoulos, I. (2016). Here today, gone tomorrow: Biodegradable soft robots. Proceedings of SPIE, 9798, 97981S. https://doi.org/10.1117/12.2220611

© 2016 SPIE. One of the greatest challenges to modern technologies is what to do with them when they go irreparably wrong or come to the end of their productive lives. The convention, since the development of modern civilisation, is to discard a brok... Read More about Here today, gone tomorrow: Biodegradable soft robots.

Fade to Green: A Biodegradable Stack of Microbial Fuel Cells (2015)
Journal Article
Winfield, J., Chambers, L. D., Rossiter, J., Stinchcombe, A., Walter, X. A., Greenman, J., & Ieropoulos, I. (2015). Fade to Green: A Biodegradable Stack of Microbial Fuel Cells. ChemSusChem, 8(16), 2705-2712. https://doi.org/10.1002/cssc.201500431

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. The focus of this study is the development of biodegradable microbial fuel cells (MFCs) able to produce useful power. Reactors with an 8mL chamber volume were designed using all biodegradable produ... Read More about Fade to Green: A Biodegradable Stack of Microbial Fuel Cells.

Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication (2015)
Journal Article
Philamore, H., Philamorea, H., Rossiter, J., Walters, P., Winfield, J., & Ieropoulos, I. (2015). Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication. Journal of Power Sources, 289, 91-99. https://doi.org/10.1016/j.jpowsour.2015.04.113

© 2015 Elsevier B.V. All rights reserved. We present novel solutions to a key challenge in microbial fuel cell (MFC) technology; greater power density through increased relative surface area of the ion exchange membrane that separates the anode and c... Read More about Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication.

Urine-activated origami microbial fuel cells to signal proof of life (2015)
Journal Article
Winfield, J., Chambers, L. D., Rossiter, J., Greenman, J., & Ieropoulos, I. (2015). Urine-activated origami microbial fuel cells to signal proof of life. Journal of Materials Chemistry A, 3(13), 7058-7065. https://doi.org/10.1039/c5ta00687b

© The Royal Society of Chemistry 2015. The adaptability and practicality of microbial fuel cells (MFCs) are highly desirable traits in the search for alternative sources of energy. An innovative application for the technology could be to power portab... Read More about Urine-activated origami microbial fuel cells to signal proof of life.

Towards disposable microbial fuel cells: Natural rubber glove membranes (2014)
Journal Article
Chambers, L. D., Winfield, J., Rossiter, J., Greenman, J., & Ieropoulos, I. (2014). Towards disposable microbial fuel cells: Natural rubber glove membranes. International Journal of Hydrogen Energy, 39(36), 21803-21810. https://doi.org/10.1016/j.ijhydene.2014.09.071

© 2014 Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. Natural rubber from laboratory gloves (GNR) was compared to cation exchange membrane (CEM) in microbial fuel cells (MFCs). GNR-MFCs immediately generated power... Read More about Towards disposable microbial fuel cells: Natural rubber glove membranes.

Towards fully biodegradable microbial fuel cells (2014)
Book Chapter
Winfield, J., Chambers, L., Rossiter, J., Greenman, J., & Ieropoulos, I. (2014). Towards fully biodegradable microbial fuel cells. In XVI International Biodeterioration and Biodegradation Symposium. Lodz, Poland: International Biodeterioration and Biodegradation Society (IBBS)

Introduction. In order to sustainably protect and manage the environment, a number of challenges need to be addressed, including: (i) the search for new sources of green energy; (ii) improving the efficiency of human waste treatment; and (iii) identi... Read More about Towards fully biodegradable microbial fuel cells.

Biodegradable and edible gelatine actuators for use as artificial muscles (2014)
Journal Article
Ieropoulos, I., Chambers, L. D., Winfield, J., Ieropoulos, I., & Rossiter, J. (2014). Biodegradable and edible gelatine actuators for use as artificial muscles. Proceedings of SPIE, 9056, 90560B. https://doi.org/10.1117/12.2045104

The expense and use of non-recyclable materials often requires the retrieval and recovery of exploratory robots. Therefore, conventional materials such as plastics and metals in robotics can be limiting. For applications such as environmental monitor... Read More about Biodegradable and edible gelatine actuators for use as artificial muscles.