Skip to main content

Research Repository

Advanced Search

All Outputs (8)

Cellular automata modelling of slime mould actin network signalling (2016)
Journal Article
Adamatkzy, A., Mayne, R., & Adamatzky, A. (2019). Cellular automata modelling of slime mould actin network signalling. Natural Computing, 18(1), 5-12. https://doi.org/10.1007/s11047-016-9559-0

© 2016, The Author(s). Actin is a cytoskeletal protein which forms dense, highly interconnected networks within eukaryotic cells. A growing body of evidence suggests that actin-mediated intra- and extracellular signalling is instrumental in facilitat... Read More about Cellular automata modelling of slime mould actin network signalling.

On modulating the Physarum polycephalum plasmodium's electrical resistance, resting membrane potential and capacitance by application of nanoparticles and nanostructures (2016)
Journal Article
Gizzie, N., Mayne, R., & Adamatzky, A. (2016). On modulating the Physarum polycephalum plasmodium's electrical resistance, resting membrane potential and capacitance by application of nanoparticles and nanostructures. Organic Electronics, 32, 267-273. https://doi.org/10.1016/j.orgel.2016.02.033

© 2016 Elsevier B.V. All rights reserved. Physarum polycephalum is a model organism used in the creation of hybrid artificial-biological devices. Among its demonstrated uses in biocomputing it is able to grow self healing 'wires' which can be used to... Read More about On modulating the Physarum polycephalum plasmodium's electrical resistance, resting membrane potential and capacitance by application of nanoparticles and nanostructures.

Practical circuits with Physarum Wires (2016)
Journal Article
Whiting, J. G. H., Mayne, R., Moody, N., de Lacy Costello, B., & Adamatzky, A. (2016). Practical circuits with Physarum Wires. Biomedical Engineering Letters, 6(2), 57-65. https://doi.org/10.1007/s13534-016-0212-8

© 2016, Korean Society of Medical and Biological Engineering and Springer. Purpose: Protoplasmic tubes of Physarum polycephalum, also know as Physarum Wires (PW), have been previously suggested as novel bio-electronic components. Until recently, prac... Read More about Practical circuits with Physarum Wires.

On hybrid circuits exploiting thermistive properties of slime mould (2016)
Journal Article
Walter, X. A., Horsfield, I., Mayne, R., Ieropoulos, I. A., & Adamatzky, A. (2016). On hybrid circuits exploiting thermistive properties of slime mould. Scientific Reports, 6(23924), https://doi.org/10.1038/srep23924

Slime mould Physarum polycephalum is a single cell visible by the unaided eye. Let the slime mould span two electrodes with a single protoplasmic tube: if the tube is heated to approximately ≈40 °C, the electrical resistance of the protoplasmic tube... Read More about On hybrid circuits exploiting thermistive properties of slime mould.

On coupled oscillator dynamics and incident behaviour patterns in slime mould Physarum polycephalum: emergence of wave packets, global streaming clock frequencies and anticipation of periodic stimuli (2016)
Journal Article
Mayne, R., Jones, J., Gale, E., & Adamatzky, A. (2017). On coupled oscillator dynamics and incident behaviour patterns in slime mould Physarum polycephalum: emergence of wave packets, global streaming clock frequencies and anticipation of periodic stimuli. International Journal of Parallel, Emergent and Distributed Systems, 32(1), 95-118. https://doi.org/10.1080/17445760.2016.1156108

© 2016 Informa UK Limited, trading as Taylor & Francis Group. Slime mould Physarum polycephalum is a single cell which physically oscillates via contraction of actomyosin in order to achieve motility. Several of its apparently ‘intelligent’ behavio... Read More about On coupled oscillator dynamics and incident behaviour patterns in slime mould Physarum polycephalum: emergence of wave packets, global streaming clock frequencies and anticipation of periodic stimuli.

Living wires — Effects of size and coating of gold nanoparticles in altering the electrical properties of Physarum polycephalum and lettuce seedlings (2016)
Journal Article
Gizzie, N., Mayne, R., Yitzchaik, S., Ikbal, M., & Adamatzky, A. (2016). Living wires — Effects of size and coating of gold nanoparticles in altering the electrical properties of Physarum polycephalum and lettuce seedlings. Nano LIFE, 6(1), 1650001. https://doi.org/10.1142/S179398441650001X

The manipulation of biological substrates is becoming more popular route toward generating novel computing devices. Physarum polycephalum is used as a model organism in biocomputingbecause it can create "wires" for use in hybrid circuits; programmab... Read More about Living wires — Effects of size and coating of gold nanoparticles in altering the electrical properties of Physarum polycephalum and lettuce seedlings.

Emergent behaviors in a bio-inspired platform controlled by a physical cellular automata cluster (2016)
Journal Article
Assaf, T., Mayne, R., Adamatzky, A., & Melhuish, C. (2016). Emergent behaviors in a bio-inspired platform controlled by a physical cellular automata cluster. Biomimetics, 1(1), 5. https://doi.org/10.3390/biomimetics1010005

This work illustrates behavior patterns and trajectories of a bio-inspired artificial platform induced by a cellular automata (CA)-based control strategy. The platform embeds both CA control as physical electronic architecture and a distributed hardw... Read More about Emergent behaviors in a bio-inspired platform controlled by a physical cellular automata cluster.

On the development of slime mould morphological, intracellular and heterotic computing devices (2016)
Thesis
Mayne, R. On the development of slime mould morphological, intracellular and heterotic computing devices. (Thesis). University of the West of England. Retrieved from https://uwe-repository.worktribe.com/output/921284

The use of live biological substrates in the fabrication of unconventional computing (UC) devices is steadily transcending the barriers between science fiction and reality, but efforts in this direction are impeded by ethical considerations, the fiel... Read More about On the development of slime mould morphological, intracellular and heterotic computing devices.