Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging (2016)
Journal Article
Walter, X. A., Stinchcombe, A., Greenman, J., & Ieropoulos, I. (2017). Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging. Applied Energy, 192, 575-581. https://doi.org/10.1016/j.apenergy.2016.06.006

© 2016 The Authors This study reports for the first time the full charging of a state-of-the-art mobile smartphone, using Microbial Fuel Cells fed with urine. This was possible by employing a new design of MFC that allowed scaling-up without power de... Read More about Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging.

Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column (2016)
Journal Article
Walter, X. A., Gajda, I., Forbes, S., Winfield, J., Greenman, J., & Ieropoulos, I. (2016). Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column. Biotechnology for Biofuels, 9(1), https://doi.org/10.1186/s13068-016-0504-3

© 2016 Walter et al. Background: The microbial fuel cell (MFC) is a technology in which microorganisms employ an electrode (anode) as a solid electron acceptor for anaerobic respiration. This results in direct transformation of chemical energy into e... Read More about Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column.

On hybrid circuits exploiting thermistive properties of slime mould (2016)
Journal Article
Walter, X. A., Horsfield, I., Mayne, R., Ieropoulos, I. A., & Adamatzky, A. (2016). On hybrid circuits exploiting thermistive properties of slime mould. Scientific Reports, 6(23924), https://doi.org/10.1038/srep23924

Slime mould Physarum polycephalum is a single cell visible by the unaided eye. Let the slime mould span two electrodes with a single protoplasmic tube: if the tube is heated to approximately ≈40 °C, the electrical resistance of the protoplasmic tube... Read More about On hybrid circuits exploiting thermistive properties of slime mould.

The practical implementation of microbial fuel cell technology (2016)
Book Chapter
Ieropoulos, I., Winfield, J., Gajda, I., Walter, X. A., Papacharalampos, G., Merino Jimenez, I., …Greenman, J. (2016). The practical implementation of microbial fuel cell technology. In K. Scott, & E. Hao Yu (Eds.), Microbial Electrochemical and Fuel Cells (357-380). Woodhead (Elsevier). https://doi.org/10.1016/B978-1-78242-375-1.00012-5

© 2016 Elsevier Ltd. All rights reserved. New green technologies are emerging in response to decades of damaging human activity. Among those are microbial fuel cells (MFCs), electric transducers that transform wet organic matter into electricity via... Read More about The practical implementation of microbial fuel cell technology.

From single MFC to cascade configuration: The relationship between size, hydraulic retention time and power density (2016)
Journal Article
Walter, X. A., Forbes, S., Greenman, J., & Ieropoulos, I. A. (2016). From single MFC to cascade configuration: The relationship between size, hydraulic retention time and power density. Sustainable Energy Technologies and Assessments, 14, 74-79. https://doi.org/10.1016/j.seta.2016.01.006

© 2016 The Authors. Achieving useful electrical power production with the MFC technology requires a plurality of units. Therefore, the main objective of much of the MFC research is to increase the power density of each unit. Collectives of MFCs will... Read More about From single MFC to cascade configuration: The relationship between size, hydraulic retention time and power density.