Skip to main content

Research Repository

Advanced Search

All Outputs (10)

Quantitative transformation for implementation of adder circuits in physical systems (2015)
Journal Article
Jones, J., Whiting, J. G. H., & Adamatzky, A. (2015). Quantitative transformation for implementation of adder circuits in physical systems. BioSystems, 134, 16-23. https://doi.org/10.1016/j.biosystems.2015.05.005

© 2015 Elsevier Ireland Ltd. Computing devices are composed of spatial arrangements of simple fundamental logic gates. These gates may be combined to form more complex adding circuits and, ultimately, complete computer systems. Implementing classical... Read More about Quantitative transformation for implementation of adder circuits in physical systems.

On using compressibility to detect when slime mould completed computation (2015)
Journal Article
Adamatzky, A., & Jones, J. (2016). On using compressibility to detect when slime mould completed computation. Complexity, 21(5), 162-175. https://doi.org/10.1002/cplx.21645

© 2016 Wiley Periodicals, Inc. Slime mould Physarum polycephalum is a single cell visible by an unaided eye. The slime mould optimizes its network of protoplasmic tubes in gradients of attractants and repellents. This behavior is interpreted as compu... Read More about On using compressibility to detect when slime mould completed computation.

Mechanisms inducing parallel computation in a model of physarum polycephalum transport networks (2015)
Journal Article
Jones, J. (2015). Mechanisms inducing parallel computation in a model of physarum polycephalum transport networks. Parallel Processing Letters, 25(1), https://doi.org/10.1142/S0129626415400046

© 2015 World Scientific Publishing Company. The giant amoeboid organism true slime mould Physarum polycephalum dynamically adapts its body plan in response to changing environmental conditions and its protoplasmic transport network is used to distrib... Read More about Mechanisms inducing parallel computation in a model of physarum polycephalum transport networks.

A morphological adaptation approach to path planning inspired by slime mould (2015)
Journal Article
Jones, J. (2015). A morphological adaptation approach to path planning inspired by slime mould. International Journal of General Systems, 44(3), 279-291. https://doi.org/10.1080/03081079.2014.997526

© 2015 Taylor & Francis. Path planning is a classic problem in computer science and robotics which has recently been implemented in unconventional computing substrates such as chemical reaction-diffusion computers. These novel computing schemes uti... Read More about A morphological adaptation approach to path planning inspired by slime mould.

Approximation of statistical analysis and estimation by morphological adaptation in a model of slime mould (2015)
Journal Article
Jones, J., & Adamatzky, A. (2015). Approximation of statistical analysis and estimation by morphological adaptation in a model of slime mould. International Journal of Unconventional Computing, 11(1), 37-62

True slime mould Physarum polycephalum approximates a range of complex computations via growth and adaptation of its protoplasmic transport network, stimulating a large body of recent research into how such a simple organism can perform such complex... Read More about Approximation of statistical analysis and estimation by morphological adaptation in a model of slime mould.

Network coarsening dynamics in a plasmodial slime mould: Modelling and experiments (2015)
Journal Article
Hauser, M. J., Baumgarten, W., Jones, J., & Hauser, M. (2015). Network coarsening dynamics in a plasmodial slime mould: Modelling and experiments. Acta Physica Polonica B, 46(6), 1201-1218. https://doi.org/10.5506/APhysPolB.46.1201

© 2015, Jagellonian University. All rights reserved. The giant unicellular slime mould Physarum polycephalum forms an extended network of stands (veins) that provide for an effective intracellular transportation system, which coarsens in time. The ne... Read More about Network coarsening dynamics in a plasmodial slime mould: Modelling and experiments.

On the role of the plasmodial cytoskeleton in facilitating intelligent behavior in slime mold physarum polycephalum (2015)
Journal Article
Mayne, R., Adamatzky, A., & Jones, J. (2015). On the role of the plasmodial cytoskeleton in facilitating intelligent behavior in slime mold physarum polycephalum. Communicative and Integrative Biology, 8(4), 1-11. https://doi.org/10.1080/19420889.2015.1059007

© Richard Mayne, Andrew Adamatzky, and Jeff Jones. The plasmodium of slime mold Physarum polycephalum behaves as an amorphous reaction-diffusion computing substrate and is capable of apparently ‘intelligent’ behavior. But how does intelligence emerge... Read More about On the role of the plasmodial cytoskeleton in facilitating intelligent behavior in slime mold physarum polycephalum.