Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Towards disposable microbial fuel cells: Natural rubber glove membranes (2013)
Conference Proceeding
Winfield, J., Chambers, L., Rossiter, J., & Ieropoulos, I. (2013). Towards disposable microbial fuel cells: Natural rubber glove membranes. In C. Barchiesi, M. Chianella, & V. Cigolotti (Eds.), Proceedings of the 5th European Fuel Cell Piero Lunghi Conference. , (35-36)

Copyright © 2013 Delta Energy and Environment. Natural rubber from laboratory gloves (GNR) was compared to cation exchange membrane (CEM) in microbial fuel cells (MFC). GNR-MFCs produced an immediate working voltage (50mV) indicating the availability... Read More about Towards disposable microbial fuel cells: Natural rubber glove membranes.

Biodegradation and proton exchange using natural rubber in microbial fuel cells (2013)
Journal Article
Winfield, J., Ieropoulos, I., Rossiter, J., Greenman, J., & Patton, D. (2013). Biodegradation and proton exchange using natural rubber in microbial fuel cells. Biodegradation, 24(6), 733-739. https://doi.org/10.1007/s10532-013-9621-x

Microbial fuel cells (MFCs) generate electricity from waste but to date the technology's development and scale-up has been held-up by the need to incorporate expensive materials. A costly but vital component is the ion exchange membrane (IEM) which c... Read More about Biodegradation and proton exchange using natural rubber in microbial fuel cells.

Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells (2013)
Journal Article
Winfield, J., Greenman, J., Huson, D., & Ieropoulos, I. (2013). Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells. Bioprocess and Biosystems Engineering, 36(12), 1913-1921. https://doi.org/10.1007/s00449-013-0967-6

The properties of earthenware and terracotta were investigated in terms of structural integrity and ion conductivity, in two microbial fuel cell (MFC) designs. Parameters such as wall thickness (4, 8, 18 mm), porosity and cathode hydration were analy... Read More about Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells.

The power of glove: Soft microbial fuel cell for low-power electronics (2013)
Journal Article
Winfield, J., Chambers, L. D., Stinchcombe, A., Rossiter, J., & Ieropoulos, I. (2014). The power of glove: Soft microbial fuel cell for low-power electronics. Journal of Power Sources, 249, 327-332. https://doi.org/10.1016/j.jpowsour.2013.10.096

A novel, soft microbial fuel cell (MFC) has been constructed using the finger-piece of a standard laboratory natural rubber latex glove. The natural rubber serves as structural and proton exchange material whilst untreated carbon veil is used for the... Read More about The power of glove: Soft microbial fuel cell for low-power electronics.

Comparing the short and long term stability of biodegradable, ceramic and cation exchange membranes in microbial fuel cells (2013)
Journal Article
Chambers, L. D., Winfield, J., Chambers, L., Rossiter, J., & Ieropoulos, I. (2013). Comparing the short and long term stability of biodegradable, ceramic and cation exchange membranes in microbial fuel cells. Bioresource Technology, 148, 480-486. https://doi.org/10.1016/j.biortech.2013.08.163

The long and short-term stability of two porous dependent ion exchange materials; starch-based compostable bags (BioBag) and ceramic, were compared to commercially available cation exchange membrane (CEM) in microbial fuel cells. Using bi-directional... Read More about Comparing the short and long term stability of biodegradable, ceramic and cation exchange membranes in microbial fuel cells.