Skip to main content

Research Repository

Advanced Search

All Outputs (14)

The robotic socket: A robotic design and biomimetic application of an auto-adjusting prosthetic socket prototype for above-knee amputees (2023)
Conference Proceeding
Rose, M., Carnochan, O., Gamlin, R., Tomlinson, L., Jafari, A., & Etoundi, A. (2023). The robotic socket: A robotic design and biomimetic application of an auto-adjusting prosthetic socket prototype for above-knee amputees. In 2023 IEEE International Conference on Robotics and Biomimetics (ROBIO). https://doi.org/10.1109/robio58561.2023.10354965

Comfort in prosthetic sockets remains a significant challenge for many amputees, particularly for above-knee amputees bearing substantial weight on their soft tissue [1], [2]. The predominant source of discomfort often originates from swelling of the... Read More about The robotic socket: A robotic design and biomimetic application of an auto-adjusting prosthetic socket prototype for above-knee amputees.

Investigation into the customization of a transfemoral prosthetic socket to minimize discomfort for residual limb (RL) volume change (2023)
Conference Proceeding
Hulke, M., Jafari, A., & Etoundi, A. C. (2023). Investigation into the customization of a transfemoral prosthetic socket to minimize discomfort for residual limb (RL) volume change. In 2023 International Conference on System Science and Engineering (ICSSE) (514-521). https://doi.org/10.1109/ICSSE58758.2023.10227215

It has been estimated that approximately 7000 people undergo limb amputation in the UK every year [1]. This issue is even more significant in the US, where over 150,000 people undergo lower limb extremity amputations, and this number is predicted to... Read More about Investigation into the customization of a transfemoral prosthetic socket to minimize discomfort for residual limb (RL) volume change.

Physiological data measurement in digital manufacturing (2022)
Conference Proceeding
Agrawal, S., Chong, J., Yacoub, A. A., Giuliani, M., Jafari, A., & Etoundi, A. (2022). Physiological data measurement in digital manufacturing. In 2021 24th International Conference on Mechatronics Technology (ICMT). https://doi.org/10.1109/ICMT53429.2021.9687200

As industry is moving towards a new digital rev-olution, identifying workers' mental and physical status is key to improved productivity in a digital manufacturing scenario. The main objective here is to provide an overview of sensing technologies in... Read More about Physiological data measurement in digital manufacturing.

Therapy Easy: A co-designed hand rehabilitation system using Leap motion controller (2022)
Conference Proceeding
Jena, A., Chong, J., Jafari, A., & Etoundi, A. (2022). Therapy Easy: A co-designed hand rehabilitation system using Leap motion controller. In 2021 24th International Conference on Mechatronics Technology (ICMT)https://doi.org/10.1109/icmt53429.2021.9687286

Disability affects over 1 billion people across the globe [1]. About 190 million people in this demographic aged 15 or older require healthcare services due to having significant difficulties in functioning [1]. Upper limb disability is one such issu... Read More about Therapy Easy: A co-designed hand rehabilitation system using Leap motion controller.

Integration of computer vision in a testing facility for prosthetic joint inspection and performance assessment (2022)
Conference Proceeding
Glanville, S., Chong, J. J., Jafari, A., & Etoundi, A. (2022). Integration of computer vision in a testing facility for prosthetic joint inspection and performance assessment. In 2021 24th International Conference on Mechatronics Technology (ICMT)https://doi.org/10.1109/icmt53429.2021.9687237

This paper presents a computer vision system within a test facility for prosthetic joint inspection and performance by analysing range of motion data. Testing with individuals rather than using a testing facility can cause issues, such as irritation,... Read More about Integration of computer vision in a testing facility for prosthetic joint inspection and performance assessment.

Mimicking condylar knee to design bio-inspired robotic knee joint based on magnetic resonance imaging (2022)
Conference Proceeding
Hung, C. H., Etoundi, A., Jafari, A., Matthews, J., Chang, W. C., & Chong, J. J. (2022). Mimicking condylar knee to design bio-inspired robotic knee joint based on magnetic resonance imaging. In 2021 24th International Conference on Mechatronics Technology (ICMT)https://doi.org/10.1109/icmt53429.2021.9687202

The process of designing bio-inspired knee joint has been a challenging issue due to the complicated kinematics and dynamics of the human knee joint. This paper addresses this issue by presenting a design methodology that has been used to model the h... Read More about Mimicking condylar knee to design bio-inspired robotic knee joint based on magnetic resonance imaging.

Application of machine learning towards design optimisation of bio-inspired transfemoral prosthetic socket for robotic leg test rig (2020)
Conference Proceeding
Sabau, P., Chong, J. J., Jafari, A., Agrawal, S., Semasinghe, C., & Etoundi, A. (2020). Application of machine learning towards design optimisation of bio-inspired transfemoral prosthetic socket for robotic leg test rig. https://doi.org/10.23919/iccas50221.2020.9268404

In the past century many medical advancements in prosthetics have been achieved, however, discomfort in prosthetic socket remains one of the toughest challenges faced by both amputees and prosthetists. Wearing an uncomfortable socket can lead to user... Read More about Application of machine learning towards design optimisation of bio-inspired transfemoral prosthetic socket for robotic leg test rig.

A de-risked bio-inspired condylar prosthetic knee joint for a robotic leg test rig (2020)
Conference Proceeding
Agrawal, S., Simasinghe, C., Jafari, A., Etoundi, A., & Jie Chong, J. (in press). A de-risked bio-inspired condylar prosthetic knee joint for a robotic leg test rig

The design of the human knee joint has been a challenging task due to the presence of intricate parts, complex mechanisms and their interdependence which joins them together. A bio-inspired design for the condylar knee joint has been proposed in earl... Read More about A de-risked bio-inspired condylar prosthetic knee joint for a robotic leg test rig.

Application of machine learning towards design optimisation of bio-inspired transfemoral prosthetic socket for robotic leg test rig (2020)
Conference Proceeding
Sabau, P., Jie Chong, J., Jafari, A., Agrawal, S., Semasinghe, C., & Etoundi, A. (in press). Application of machine learning towards design optimisation of bio-inspired transfemoral prosthetic socket for robotic leg test rig

In the past century many medical advancements in prosthetics have been achieved, however, discomfort in prosthetic socket remains one of the toughest challenges faced by both amputees and prosthetists. Wearing an uncomfortable socket can lead to user... Read More about Application of machine learning towards design optimisation of bio-inspired transfemoral prosthetic socket for robotic leg test rig.

Lyapunov observer/controller for stable haptic interaction (2018)
Conference Proceeding
Jafari, A., Singh, H., Karunanayaka, H., Ryu, J. H., Chong, J., & Etoundi, A. (2018). Lyapunov observer/controller for stable haptic interaction. . https://doi.org/10.1109/AIM.2018.8452311

© 2018 IEEE. Passivity has been the most common tool to achieve stability in haptic and teleoperation systems; however passivity-based approaches suffer from the conservativism of passivity criteria. Therefore, it is essential to have an approach whi... Read More about Lyapunov observer/controller for stable haptic interaction.

Modelling of a Bio-Inspired Knee Joint and Design of an Energy Saving Exoskeleton Based on Performance Maps Optimisation for Condylar Knee Prosthetics (2018)
Conference Proceeding
Etoundi, A., Chong, J., & Jafari, A. (2018). Modelling of a Bio-Inspired Knee Joint and Design of an Energy Saving Exoskeleton Based on Performance Maps Optimisation for Condylar Knee Prosthetics. . https://doi.org/10.1109/CoDIT.2018.8394776

© 2018 IEEE. The process of designing bio-inspired knee joint for prosthetics/exoskeletons has been a challenging issue due to the complicated relationships between the performance criteria and the link lengths of the design space, or workspace in th... Read More about Modelling of a Bio-Inspired Knee Joint and Design of an Energy Saving Exoskeleton Based on Performance Maps Optimisation for Condylar Knee Prosthetics.

Stable bilateral teleoperation with input-to-state stable approach (2015)
Conference Proceeding
Jafari, A., Nabeel, M., & Ryu, J. (2015). Stable bilateral teleoperation with input-to-state stable approach

Passivity has been the most often used constraint for the controller design of bilateral teleoperation systems. However passivity has been suffering from its own design conservatism since this is a sufficient condition for stability and representing... Read More about Stable bilateral teleoperation with input-to-state stable approach.

Network formulation and stability improvement of a bilateral teleoperation system with admittance-type master interfaces (2015)
Conference Proceeding
Nabeel, M., Jafari, A., & Ryu, J. H. (2015). Network formulation and stability improvement of a bilateral teleoperation system with admittance-type master interfaces. https://doi.org/10.1109/AIM.2015.7222796

© 2015 IEEE. This paper introduces a network formulation of bilateral teleoperation systems with admittance-type master interfaces to improve their stability range with Time Domain Passivity Approach (TDPA). Since traditional network representation o... Read More about Network formulation and stability improvement of a bilateral teleoperation system with admittance-type master interfaces.

Increasing the rate-hardness of haptic interaction: Successive force augmentation approach
Conference Proceeding
Singh, H., Jafari, A., & Ryu, J. (2017). Increasing the rate-hardness of haptic interaction: Successive force augmentation approach

There have been numerous approaches that have been proposed to enlarge the impedance range, however it is still a challenging issue to increase the rate-hardness of haptic interaction while maintaining stability. The actual perceived rate-hardness ha... Read More about Increasing the rate-hardness of haptic interaction: Successive force augmentation approach.