Skip to main content

Research Repository

Advanced Search

All Outputs (7)

Energy and metabolism (2018)
Book Chapter
Ieropoulos, I. A., Ledezma, P., Scandroglio, G., Melhuish, C., & Greenman, J. (2018). Energy and metabolism. In T. J. Prescott, N. Lepora, & P. F. Verschure (Eds.), Living Machines: A Handbook of Research in Biomimetics and Biohybrid Systems (62-72). Oxford University Press (OUP). https://doi.org/10.1093/oso/9780199674923.003.0006

© Oxford University Press, 2018 and University of Tartu Press, 2012. Energy resulting from metabolism is essential for any living system-from single-cell to multicellular organisms. This also applies to symbiotic robots (SymBots), which function util... Read More about Energy and metabolism.

Microbial fuel cells: Scalability and their use in robotics (2011)
Book Chapter
Greenman, J., Ieropoulos, I., & Melhuish, C. (2011). Microbial fuel cells: Scalability and their use in robotics. In N. Eliaz (Ed.), Applications of Electrochemistry and Nanotechnology in Biology and Medicine I (239-290). Springer

This is probably the first written and relatively accurate description of microorganisms, made by the Roman scholar Marcus Terentius Varro (116-27 B.C.). It was then Anthony van Leeuwenhoek (ca. 1677) who, for the first time, observed little animals... Read More about Microbial fuel cells: Scalability and their use in robotics.

Towards accelerated distributed evolution for adaptive behaviours in swarm robotics (2010)
Book Chapter
O'Dowd, P., Winfield, A. F., & Studley, M. (2010). Towards accelerated distributed evolution for adaptive behaviours in swarm robotics. In T. Belpaeme, G. Bugmann, C. Melhuish, & M. Witkowski (Eds.), Proceedings of Towards Autonomous Robotic Systems 2010 (169-175). University of Plymouth

The major problem facing swarm robotics is that of design. A recent promising approach is the application of evolutionary algorithms to solve the problem of decomposing group behaviour to that of interacting individual behaviours. This paper presents... Read More about Towards accelerated distributed evolution for adaptive behaviours in swarm robotics.

Peripherals of BES from processing current to data transmission (2009)
Book Chapter
Ieropoulos, I., Greenman, J., Melhuish, C., & Horsfield, I. (2009). Peripherals of BES from processing current to data transmission. In K. Rabaey, L. Angenent, U. Schroder, & J. Keller (Eds.), Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Applications. London: IWA Publishing

Artificial symbiosis in EcoBots (2009)
Book Chapter
Ieropoulos, I. A., Greenman, J., Melhuish, C., & Horsfield, I. (2009). Artificial symbiosis in EcoBots. In A. Adamatzky, & M. Komosinski (Eds.), Artificial Life Models in Hardware (185-211). London: Springer. https://doi.org/10.1007/978-1-84882-530-7_9

Truly autonomous robotic systems will be required to abstract energy from the environment in order to function. Energetic autonomy refers to the ability of an agent, to maintain itself in a viable state for long periods of time. Its behaviour must be... Read More about Artificial symbiosis in EcoBots.