Skip to main content

Research Repository

Advanced Search

All Outputs (23)

Scalable production of 2D material heterostructure textiles for high-performance wearable supercapacitors (2023)
Journal Article
Islam, M. R., Afroj, S., & Karim, N. (2023). Scalable production of 2D material heterostructure textiles for high-performance wearable supercapacitors. ACS Nano, 17(18), 18481–18493. https://doi.org/10.1021/acsnano.3c06181

Wearable electronic textiles (e-textiles) have emerged as a promising platform for seamless integration of electronic devices into everyday life, enabling nonintrusive monitoring of human health. However, the development of efficient, flexible, and s... Read More about Scalable production of 2D material heterostructure textiles for high-performance wearable supercapacitors.

Toward sustainable composites: Graphene‐modified jute fiber composites with bio‐based epoxy resin (2023)
Journal Article
Islam, M. H., Afroj, S., & Karim, N. (2023). Toward sustainable composites: Graphene‐modified jute fiber composites with bio‐based epoxy resin. Global Challenges, 7(9), Article 2300111. https://doi.org/10.1002/gch2.202300111

Sustainable natural fiber reinforced composites have attracted significant interest due to the growing environmental concerns with conventional synthetic fiber as well as petroleum-based resins. One promising approach to reducing the large carbon foo... Read More about Toward sustainable composites: Graphene‐modified jute fiber composites with bio‐based epoxy resin.

Smart and multifunctional fiber‐reinforced composites of 2D heterostructure‐based textiles (2023)
Journal Article
Dulal, M., Islam, M. R., Maiti, S., Islam, M. H., Ali, I., Abdelkader, A. M., …Karim, N. (2023). Smart and multifunctional fiber‐reinforced composites of 2D heterostructure‐based textiles. Advanced Functional Materials, 33(40), Article 11015109. https://doi.org/10.1002/adfm.202305901

Smart and multifunctional fiber reinforced polymer (FRP) composites with energy storage, sensing, and heating capabilities have gained significant interest for automotive, civil, and aerospace applications. However, achieving smart and multifunctiona... Read More about Smart and multifunctional fiber‐reinforced composites of 2D heterostructure‐based textiles.

Highly sensitive and extremely durable wearable e-textiles of graphene/carbon nanotube hybrid for cardiorespiratory monitoring (2023)
Journal Article
Tan, S., Afroj, S., Li, D., Islam, M. R., Wu, J., Cai, G., …Zhao, Z. (2023). Highly sensitive and extremely durable wearable e-textiles of graphene/carbon nanotube hybrid for cardiorespiratory monitoring. iScience, 26(4), 106403. https://doi.org/10.1016/j.isci.2023.106403

Electroconductive textile yarns are of particular interest for their use as flexible and wearable sensors without compromising the properties and comfort of usual textiles. However, the detection of fine actions of the human body is quite challenging... Read More about Highly sensitive and extremely durable wearable e-textiles of graphene/carbon nanotube hybrid for cardiorespiratory monitoring.

Toward sustainable wearable electronic textiles (2022)
Journal Article
Dulal, M., Afroj, S., Ahn, J., Cho, Y., Carr, C., Kim, I. D., & Karim, N. (2023). Toward sustainable wearable electronic textiles. ACS Nano, 16(12), 19755–19788. https://doi.org/10.1021/acsnano.2c07723

Smart wearable electronic textiles (e-textiles) that can detect and differentiate multiple stimuli, while also collecting and storing the diverse array of data signals using highly innovative, multifunctional, and intelligent garments, are of great v... Read More about Toward sustainable wearable electronic textiles.

Highly scalable, sensitive and ultraflexible graphene‐based wearable e‐textiles sensor for bio‐signal detection (2022)
Journal Article
Tan, S., Islam, M. R., Li, H., Fernando, A., Afroj, S., & Karim, N. (2022). Highly scalable, sensitive and ultraflexible graphene‐based wearable e‐textiles sensor for bio‐signal detection. Advanced Sensor Research, 1(1), Article 2200010. https://doi.org/10.1002/adsr.202200010

Abstract: Graphene‐based wearable electronic textiles (e‐textiles) show promise for next‐generation personalized healthcare applications due to their non‐invasive nature. However, the poor performance, less comfort, and higher material cost limit the... Read More about Highly scalable, sensitive and ultraflexible graphene‐based wearable e‐textiles sensor for bio‐signal detection.

Mechanical and thermal properties of Graphene nanoplatelets-reinforced recycled polycarbonate composites (2022)
Journal Article
Wijerathne, D., Gong, Y., Afroj, S., Karim, N., & Abeykoon, C. (2023). Mechanical and thermal properties of Graphene nanoplatelets-reinforced recycled polycarbonate composites. International Journal of Lightweight Materials and Manufacture, 6(1), 117-128. https://doi.org/10.1016/j.ijlmm.2022.09.001

Nanocomposites have received significant interest in recent years, as they offer improved properties compared to conventional materials for various applications. Among many available nanofillers, graphene nanoplatelets (GNP) have shown promising resu... Read More about Mechanical and thermal properties of Graphene nanoplatelets-reinforced recycled polycarbonate composites.

Fully printed and multifunctional graphene-based wearable e-textiles for personalized healthcare applications (2022)
Journal Article
Islam, M. R., Afroj, S., Beach, C., Islam, M. H., Parraman, C., Abdelkader, A., …Karim, N. (2022). Fully printed and multifunctional graphene-based wearable e-textiles for personalized healthcare applications. iScience, 25(3), Article 103945. https://doi.org/10.1016/j.isci.2022.103945

Wearable e-textiles have gained huge tractions due to their potential for non-invasive health monitoring. However, manufacturing of multifunctional wearable e-textiles remains challenging, due to poor performance, comfortability, scalability, and cos... Read More about Fully printed and multifunctional graphene-based wearable e-textiles for personalized healthcare applications.

Three-dimensional composites with nearly isotropic negative Poisson's ratio by random inclusions: Experiments and finite element simulation (2021)
Journal Article
Zhang, M., Hu, H., Kamrul, H., Zhao, S., Chang, Y., Ho, M., & Karim, N. (2022). Three-dimensional composites with nearly isotropic negative Poisson's ratio by random inclusions: Experiments and finite element simulation. Composites Science and Technology, 218, Article 109195. https://doi.org/10.1016/j.compscitech.2021.109195

Composites with negative Poisson's Ratio (NPR), also known as auxetic composites, are of great interests due to excellent properties. Auxetic composites of various types have been developed, however most of them have anisotropic NPR behaviour. This p... Read More about Three-dimensional composites with nearly isotropic negative Poisson's ratio by random inclusions: Experiments and finite element simulation.

Robust and flexible optically active 2D membranes based on encapsulation of liquid crystals in graphene oxide pockets (2021)
Journal Article
Chen, M., Goh, S. M., Yang, K., Nikitina, A. A., Chen, S., Leng, X., …Andreeva, D. V. (2021). Robust and flexible optically active 2D membranes based on encapsulation of liquid crystals in graphene oxide pockets. Advanced Materials Interfaces, 8(22), Article 2101432. https://doi.org/10.1002/admi.202101432

Design and engineering of novel low dimensional metamaterials allow for new applications in membrane technology, aerospace and automotive industries, architecture, robotics, medicine, and textiles. Such materials can be strong, flexible, transparent,... Read More about Robust and flexible optically active 2D membranes based on encapsulation of liquid crystals in graphene oxide pockets.

Graphene‐based technologies for tackling COVID‐19 and future pandemics (2021)
Journal Article
Afroj, S., Britnell, L., Hasan, T., Andreeva, D. V., Novoselov, K. S., & Karim, N. (2021). Graphene‐based technologies for tackling COVID‐19 and future pandemics. Advanced Functional Materials, 31(52), Article 2107407. https://doi.org/10.1002/adfm.202107407

The COVID-19 pandemic highlighted the need for rapid tools and technologies to combat highly infectious viruses. The excellent electrical, mechanical and other functional properties of graphene and graphene-like 2D materials (2DM) can be utilized to... Read More about Graphene‐based technologies for tackling COVID‐19 and future pandemics.

Sustainable and multifunctional composites of graphene-based natural jute fibers (2021)
Journal Article
Karim, N., Sarker, F., Afroj, S., Zhang, M., Potluri, P., & Novoselov, K. S. (2021). Sustainable and multifunctional composites of graphene-based natural jute fibers. Advanced Sustainable Systems, 5(3), https://doi.org/10.1002/adsu.202000228

Smart and sustainable natural fiber‐based composites are of great interest due to their biodegradability, recyclability, and environmental benefits over synthetic fiber composites. In addition, the environmental impact of plastics and synthetic fiber... Read More about Sustainable and multifunctional composites of graphene-based natural jute fibers.

Sustainable personal protective clothing for healthcare applications: A review (2020)
Journal Article
Karim, N., Afroj, S., Lloyd, K., Clarke Oaten, L., Andreeva, D. V., Carr, C., …Novoselov, K. S. (2020). Sustainable personal protective clothing for healthcare applications: A review. ACS Nano, 14(10), 12313-12340. https://doi.org/10.1021/acsnano.0c05537

Personal protective equipment (PPE) is critical to protect healthcare workers (HCWs) from highly infectious diseases such as COVID-19. However, hospitals have been at risk of running out of the safe and effective PPE including personal protective clo... Read More about Sustainable personal protective clothing for healthcare applications: A review.

Graphene-enabled adaptive infrared textiles (2020)
Journal Article
Ergoktas, M. S., Bakan, G., Steiner, P., Bartlam, C., Malevich, Y., Ozden-Yenigun, E., …Kocabas, C. (2020). Graphene-enabled adaptive infrared textiles. Nano Letters, 20(7), 5346-5352. https://doi.org/10.1021/acs.nanolett.0c01694

Interactive clothing requires sensing and display functionalities to be embedded on textiles. Despite the significant progress of electronic textiles, the integration of optoelectronic materials on fabrics remains as an outstanding challenge. In this... Read More about Graphene-enabled adaptive infrared textiles.

Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications (2020)
Journal Article
Afroj, S., Tan, S., Abdelkader, A. M., Novoselov, K. S., & Karim, N. (2020). Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications. Advanced Functional Materials, 30(23), Article 2000293. https://doi.org/10.1002/adfm.202000293

Graphene‐based textiles show promise for next‐generation wearable electronic applications due to their advantages over metal‐based technologies. However, current reduced graphene oxide (rGO)‐based electronic textiles (e‐textiles) suffer from poor ele... Read More about Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications.

All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications (2019)
Journal Article
Karim, N., Afroj, S., Tan, S., Novoselov, K. S., & Yeates, S. G. (2019). All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications. Scientific Reports, 9(1), Article 8035. https://doi.org/10.1038/s41598-019-44420-y

© 2019, The Author(s). Inkjet-printed wearable electronic textiles (e-textiles) are considered to be very promising due to excellent processing and environmental benefits offered by digital fabrication technique. Inkjet-printing of conductive metalli... Read More about All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications.

Ultrahigh Performance of Nanoengineered Graphene-Based Natural Jute Fiber Composites (2019)
Journal Article
Sarker, F., Potluri, P., Afroj, S., Koncherry, V., Novoselov, K. S., & Karim, N. (2019). Ultrahigh Performance of Nanoengineered Graphene-Based Natural Jute Fiber Composites. ACS Applied Materials and Interfaces, 11(23), 21166-21176. https://doi.org/10.1021/acsami.9b04696

© 2019 American Chemical Society. Natural fibers composites are considered as a sustainable alternative to synthetic composites due to their environmental and economic benefits. However, they suffer from poor mechanical and interfacial properties due... Read More about Ultrahigh Performance of Nanoengineered Graphene-Based Natural Jute Fiber Composites.

Engineering Graphene Flakes for Wearable Textile Sensors via Highly Scalable and Ultrafast Yarn Dyeing Technique (2019)
Journal Article
Afroj, S., Karim, N., Wang, Z., Tan, S., He, P., Holwill, M., …Novoselov, K. S. (2019). Engineering Graphene Flakes for Wearable Textile Sensors via Highly Scalable and Ultrafast Yarn Dyeing Technique. ACS Nano, 13(4), 3847-3857. https://doi.org/10.1021/acsnano.9b00319

© 2019 American Chemical Society. Multifunctional wearable e-textiles have been a focus of much attention due to their great potential for healthcare, sportswear, fitness, space, and military applications. Among them, electroconductive textile yarn s... Read More about Engineering Graphene Flakes for Wearable Textile Sensors via Highly Scalable and Ultrafast Yarn Dyeing Technique.

High-Performance Graphene-Based Natural Fiber Composites (2018)
Journal Article
Sarker, F., Karim, N., Afroj, S., Koncherry, V., Novoselov, K. S., & Potluri, P. (2018). High-Performance Graphene-Based Natural Fiber Composites. ACS Applied Materials and Interfaces, 10(40), 34502-34512. https://doi.org/10.1021/acsami.8b13018

© 2018 American Chemical Society. Natural fiber composites are attracting significant interest due to their potential for replacing synthetic composites at lower cost with improved environmental sustainability. However, natural fiber composites suffe... Read More about High-Performance Graphene-Based Natural Fiber Composites.

Graphene-based surface heater for de-icing applications (2018)
Journal Article
Karim, N., Zhang, M., Afroj, S., Koncherry, V., Potluri, P., & Novoselov, K. S. (2018). Graphene-based surface heater for de-icing applications. RSC Advances, 8(30), 16815-16823. https://doi.org/10.1039/c8ra02567c

© 2018 The Royal Society of Chemistry. Graphene-based de-icing composites are of great interest due to incredible thermal, electrical and mechanical properties of graphene. Moreover, current technologies possess a number of challenges such as expensi... Read More about Graphene-based surface heater for de-icing applications.