Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Propagation of electrical signals by fungi (2023)
Journal Article
Mayne, R., Roberts, N., Phillips, N., Weerasekera, R., & Adamatzky, A. (2023). Propagation of electrical signals by fungi. BioSystems, 229, Article 104933. https://doi.org/10.1016/j.biosystems.2023.104933

Living fungal mycelium networks are proven to have properties of memristors, capacitors and various sensors. To further progress our designs in fungal electronics we need to evaluate how electrical signals can be propagated through mycelium networks.... Read More about Propagation of electrical signals by fungi.

Marimo actuated rover systems (2022)
Journal Article
Phillips, N., Draper, T. C., Mayne, R., Reynolds, D. M., & Adamatzky, A. (2022). Marimo actuated rover systems. Journal of Biological Engineering, 16(1), Article 3. https://doi.org/10.1186/s13036-021-00279-0

Background: The potential to directly harness photosynthesis to make actuators, biosensors and bioprocessors has been previously demonstrated in the literature. Herein, this capability has been expanded to more advanced systems — Marimo Actuated Rove... Read More about Marimo actuated rover systems.

Neuromorphic liquid marbles with aqueous carbon nanotube cores (2019)
Journal Article
Mayne, R., Draper, T. C., Phillips, N., Whiting, J. G. H., Weerasekera, R., Fullarton, C., …Adamatzky, A. (2019). Neuromorphic liquid marbles with aqueous carbon nanotube cores. Langmuir, 35, 13182-13188. https://doi.org/10.1021/acs.langmuir.9b02552

Neuromorphic computing devices attempt to emulate features of biological nervous systems through mimicking the properties of synapses, towards implementing the emergent properties of their counterparts, such as learning. Inspired by recent advances i... Read More about Neuromorphic liquid marbles with aqueous carbon nanotube cores.