Skip to main content

Research Repository

Advanced Search

All Outputs (53)

Optimisation of an elastomeric pre-buckled honeycomb helmet liner for advanced impact mitigation (2023)
Journal Article
Adams, R., Soe, S., & Theobald, P. (2023). Optimisation of an elastomeric pre-buckled honeycomb helmet liner for advanced impact mitigation. Smart Materials and Structures, 32(9), Article 095012. https://doi.org/10.1088/1361-665x/ace94b

Advances in computational modelling now offer an efficient route to developing novel helmet liners that could exceed contemporary materials’ performance. Furthermore, the rise of accessible additive manufacturing presents a viable route to achieving... Read More about Optimisation of an elastomeric pre-buckled honeycomb helmet liner for advanced impact mitigation.

Novel use of robotic 3D paste printing technology for the creation of ceramic shell investment casting moulds (2023)
Presentation / Conference
Bolouri, A., Jorgensen, T., Khayatzadeh, S., Soe, S., Leon, M., Lightfoot, S., …Farzadnia, F. (2023, June). Novel use of robotic 3D paste printing technology for the creation of ceramic shell investment casting moulds

This paper presentation outlines early-stage, ongoing research into novel approaches with Additive Layer Manufacturing for the direct manufacture of ceramic shell investment casting moulds. The research is focused on the use of 3D printing with refra... Read More about Novel use of robotic 3D paste printing technology for the creation of ceramic shell investment casting moulds.

Compressive behaviour of a square origami surface-based lattice structure fabricated by selective laser melting (2023)
Conference Proceeding
Gao, J., Han, Q., Soe, S., Liu, Z., Feng, J., Zhang, Z., & Wang, L. (2023). Compressive behaviour of a square origami surface-based lattice structure fabricated by selective laser melting. In R. J. Howlett, S. G. Scholz, & R. Setchi (Eds.), SDM 2022: Sustainable Design and Manufacturing (57-66). https://doi.org/10.1007/978-981-19-9205-6_6

Selective laser melting (SLM) is a metal additive manufacturing process that shows significant advantages in manufacturing lattice structures. In this paper, a novel surface-based square origami structure made of a nickel-based superalloy was fabrica... Read More about Compressive behaviour of a square origami surface-based lattice structure fabricated by selective laser melting.

An explorative study on the antimicrobial effects and mechanical properties of 3D printed PLA and TPU surfaces loaded with Ag and Cu against nosocomial and foodborne pathogens (2022)
Journal Article
Εkonomou, S. Ι., Soe, S., & Stratakos, A. C. (2023). An explorative study on the antimicrobial effects and mechanical properties of 3D printed PLA and TPU surfaces loaded with Ag and Cu against nosocomial and foodborne pathogens. Journal of the Mechanical Behavior of Biomedical Materials, 137, 105536. https://doi.org/10.1016/j.jmbbm.2022.105536

Antimicrobial 3D printed surfaces made of PLA and TPU polymers loaded with copper (Cu), and silver (Ag) nanoparticles (NPs) were developed via fused deposition modeling (FDM). The potential antimicrobial effect of the 3D printed surfaces against Esch... Read More about An explorative study on the antimicrobial effects and mechanical properties of 3D printed PLA and TPU surfaces loaded with Ag and Cu against nosocomial and foodborne pathogens.

Laser powder bed fusion of TiB2-modified Cu15Ni8Sn alloy: Processability, microstructure and mechanical performance (2022)
Journal Article
Gao, J., Han, Q., Wang, L., Liu, Z., Soe, S., Zhang, Z., & Gu, Y. (2022). Laser powder bed fusion of TiB2-modified Cu15Ni8Sn alloy: Processability, microstructure and mechanical performance. Materials Science and Engineering: A, 855, 143879. https://doi.org/10.1016/j.msea.2022.143879

Cu15Ni8Sn is widely used in the aerospace and electronics domains because of its good conductivity and toughness. Due to the material's high laser reflectivity and thermal conductivity, however, employing the laser powder bed fusion (LPBF) additive m... Read More about Laser powder bed fusion of TiB2-modified Cu15Ni8Sn alloy: Processability, microstructure and mechanical performance.

Response of gyroid lattice structures to impact loads (2022)
Journal Article
Ramos, H., Santiago, R., Soe, S., Theobald, P., & Alves, M. (2022). Response of gyroid lattice structures to impact loads. International Journal of Impact Engineering, 164, Article 104202. https://doi.org/10.1016/j.ijimpeng.2022.104202

This paper reports on a comprehensive investigation of gyroid lattice structures subject to impact loading. AlSi10Mg samples were manufactured using selective laser melting (SLM) and mechanically characterized using Digital Image Correlation (DIC). U... Read More about Response of gyroid lattice structures to impact loads.

Mechanical behaviour of additively manufactured elastomeric pre-buckled honeycombs under quasi-static and impact loading (2022)
Journal Article
Adams, R., Townsend, S., Soe, S., & Theobald, P. (2022). Mechanical behaviour of additively manufactured elastomeric pre-buckled honeycombs under quasi-static and impact loading. Materials and Design, 213, Article 110368. https://doi.org/10.1016/j.matdes.2021.110368

Selective laser sintering has been used to manufacture different structural variations of a pre-buckled circular honeycomb. The mechanical behaviour of these structures has been examined under both quasi-static and dynamic impact loading. Pre-buckled... Read More about Mechanical behaviour of additively manufactured elastomeric pre-buckled honeycombs under quasi-static and impact loading.

Finite element-based optimisation of an elastomeric honeycomb for impact mitigation in helmet liners (2021)
Journal Article
Adams, R., Townsend, S., Soe, S., & Theobald, P. (2022). Finite element-based optimisation of an elastomeric honeycomb for impact mitigation in helmet liners. International Journal of Mechanical Sciences, 214, Article 106920. https://doi.org/10.1016/j.ijmecsci.2021.106920

Finite element simulation was used to analyse the response of an elastomeric pre-buckled honeycomb structure under impact loading, to establish its suitability for use in helmet liners. A finite element-based optimisation was performed using a search... Read More about Finite element-based optimisation of an elastomeric honeycomb for impact mitigation in helmet liners.

Auxetic metamaterial optimisation for head impact mitigation in American football (2021)
Journal Article
Hanna, B., Adams, R., Townsend, S., Robinson, M., Soe, S., Stewart, M., …Theobald, P. (2021). Auxetic metamaterial optimisation for head impact mitigation in American football. International Journal of Impact Engineering, 157, Article 103991. https://doi.org/10.1016/j.ijimpeng.2021.103991

American football has a comparatively high rate of sports-related concussions, despite mitigating strategies including the use of protective helmets. The traditional energy absorbing component, elastomeric foam pads, have limited scope for leveraging... Read More about Auxetic metamaterial optimisation for head impact mitigation in American football.

Investigating the dynamic compression response of elastomeric, additively manufactured fluid-filled structures via experimental and finite element analyses (2021)
Journal Article
Soe, S., Adams, R., Hossain, M., & Theobald, P. (2021). Investigating the dynamic compression response of elastomeric, additively manufactured fluid-filled structures via experimental and finite element analyses. Additive Manufacturing, 39, 101885. https://doi.org/10.1016/j.addma.2021.101885

This study evaluates a fluid-filled, closed-cell lattice as a novel route to reducing peak acceleration in impact environments. A conical structure was designed and built using fused filament fabrication. One structure was manufactured hollow (100% a... Read More about Investigating the dynamic compression response of elastomeric, additively manufactured fluid-filled structures via experimental and finite element analyses.

Laser powder bed fusion of WC-reinforced Hastelloy-X composite: Microstructure and mechanical properties (2020)
Journal Article
Han, Q., Gu, Y., Gu, H., Yin, Y., Song, J., Zhang, Z., & Soe, S. (2021). Laser powder bed fusion of WC-reinforced Hastelloy-X composite: Microstructure and mechanical properties. Journal of Materials Science, 56, 1768-1782. https://doi.org/10.1007/s10853-020-05327-6

Nickel-based superalloys such as Hastelloy X (HX) are widely used in gas turbine engines for their exceptional oxidation resistance and high-temperature strength. The addition of ceramic reinforcement further enhances these superalloys’ mechanical pe... Read More about Laser powder bed fusion of WC-reinforced Hastelloy-X composite: Microstructure and mechanical properties.

Using FFF and topology optimisation to increase crushing strength in equestrian helmets (2020)
Conference Proceeding
Soe, S., Robinson, M., Gaisin, K., Adams, R., Palkowski, T., & Theobald, P. (2021). Using FFF and topology optimisation to increase crushing strength in equestrian helmets. In S. Scholz, R. Howlett, & R. Setchi (Eds.), Sustainable Design and Manufacturing 2020. , (369-377). https://doi.org/10.1007/978-981-15-8131-1_33

International standards ensure that equestrian helmets achieve high performance. Recently, one such standard (PAS 015) was revised to include a lateral deformation requirement, ensuring helmets can withstand the potential crushing forces associated w... Read More about Using FFF and topology optimisation to increase crushing strength in equestrian helmets.

The effect of heat treatment of AlSi10Mg on the energy absorption performance of surface-based structures (2020)
Conference Proceeding
Robinson, M., Han, Q., Gu, H., Soe, S., & Setchi, R. (2021). The effect of heat treatment of AlSi10Mg on the energy absorption performance of surface-based structures. In S. Scholz, R. Howlett, & R. Setchi (Eds.), Sustainable Design and Manufacturing 2020. , (395-402). https://doi.org/10.1007/978-981-15-8131-1_35

Additive Manufacturing of cellular lattice structures offers opportunities to fine-tune the mechanical response by altering geometric variables. It is known that heat treatment cycles provide an effective way of altering mechanical properties while r... Read More about The effect of heat treatment of AlSi10Mg on the energy absorption performance of surface-based structures.

Effect of hot cracking on the mechanical properties of Hastelloy X superalloy fabricated by laser powder bed fusion additive manufacturing (2019)
Journal Article
Han, Q., Gu, Y., Soe, S., Lacan, F., & Setchi, R. (2020). Effect of hot cracking on the mechanical properties of Hastelloy X superalloy fabricated by laser powder bed fusion additive manufacturing. Optics and Laser Technology, 124, Article 105984. https://doi.org/10.1016/j.optlastec.2019.105984

Nickel-based superalloys such as Hastelloy X (HX) are widely used in gas turbine engine applications and the aerospace industry. HX is susceptible to hot cracking, however, when processed using additive manufacturing technologies such as laser powder... Read More about Effect of hot cracking on the mechanical properties of Hastelloy X superalloy fabricated by laser powder bed fusion additive manufacturing.

A novel pathway for efficient characterisation of additively manufactured thermoplastic elastomers (2019)
Journal Article
Adams, R., Soe, S., Santiago, R., Robinson, M., Hanna, B., McShane, G., …Theobald, P. (2019). A novel pathway for efficient characterisation of additively manufactured thermoplastic elastomers. Materials and Design, 180, Article 107917. https://doi.org/10.1016/j.matdes.2019.107917

Thermoplastic elastomers (TPE) are commonly used to fabricate structures for application in repeatable, energy absorption environments. The emergence of additive manufacturing (AM) means scope now exists to design and build complex TPE components tha... Read More about A novel pathway for efficient characterisation of additively manufactured thermoplastic elastomers.

Finite element modeling of gyroid structures subjected to impact loadings (2019)
Presentation / Conference
Ramos, H., Santiago, R., Alves, M., Theobald, P., Soe, S., & Brasil, R. (2019, April). Finite element modeling of gyroid structures subjected to impact loadings. Paper presented at 7th International Symposium on Solid Mechanics, ABCM, Sao Carlos, SP, Brazil

On the AIC-based model reduction for the general Holzapfel–Ogden myocardial constitutive law (2019)
Journal Article
Guan, D., Ahmad, F., Theobald, P., Soe, S., Luo, X., & Gao, H. (2019). On the AIC-based model reduction for the general Holzapfel–Ogden myocardial constitutive law. Biomechanics and Modeling in Mechanobiology, 18(4), 1213-1232. https://doi.org/10.1007/s10237-019-01140-6

© 2019, The Author(s). Constitutive laws that describe the mechanical responses of cardiac tissue under loading hold the key to accurately model the biomechanical behaviour of the heart. There have been ample choices of phenomenological constitutive... Read More about On the AIC-based model reduction for the general Holzapfel–Ogden myocardial constitutive law.

Mechanical characterisation of additively manufactured elastomeric structures for variable strain rate applications (2019)
Journal Article
Robinson, M., Soe, S., Johnston, R., Adams, R., Hanna, B., Burek, R., …Theobald, P. (2019). Mechanical characterisation of additively manufactured elastomeric structures for variable strain rate applications. Additive Manufacturing, 27, 398-407. https://doi.org/10.1016/j.addma.2019.03.022

© 2019 Elsevier B.V. Additive manufacturing (AM) enables production of geometrically-complex elastomeric structures. The elastic recovery and strain-rate dependence of these materials means they are ideal for use in dynamic, repetitive mechanical loa... Read More about Mechanical characterisation of additively manufactured elastomeric structures for variable strain rate applications.

Manufacturability of AlSi10Mg overhang structures fabricated by laser powder bed fusion (2018)
Journal Article
Han, Q., Gu, H., Soe, S., Setchi, R., Lacan, F., & Hill, J. (2018). Manufacturability of AlSi10Mg overhang structures fabricated by laser powder bed fusion. Materials and Design, 160, 1080-1095. https://doi.org/10.1016/j.matdes.2018.10.043

© 2018 Elsevier Ltd The main advantage of laser powder bed fusion (LPBF) is its use for directly manufacturing metal components with highly complex geometries. But the LPBF manufacture of overhang structures, also known as downward-facing surfaces, i... Read More about Manufacturability of AlSi10Mg overhang structures fabricated by laser powder bed fusion.

Biomechanical properties and microstructure of neonatal porcine ventricles (2018)
Journal Article
Ahmad, F., Prabhu, R., Liao, J., Soe, S., Jones, M. D., Miller, J., …Theobald, P. S. (2018). Biomechanical properties and microstructure of neonatal porcine ventricles. Journal of the Mechanical Behavior of Biomedical Materials, 88, 18-28. https://doi.org/10.1016/j.jmbbm.2018.07.038

© 2018 Elsevier Ltd Neonatal heart disorders represent a major clinical challenge, with congenital heart disease alone affecting 36,000 new-borns annually within the European Union. Surgical intervention to restore normal function includes the implan... Read More about Biomechanical properties and microstructure of neonatal porcine ventricles.