Skip to main content

Research Repository

Advanced Search

All Outputs (162)

Impact of feedstock dilution on the performance of urine-fed ceramic and membrane-less microbial fuel cell cascades designs (2023)
Journal Article
Walter, X. A., You, J., Gajda, I., Greenman, J., & Ieropoulos, I. (2023). Impact of feedstock dilution on the performance of urine-fed ceramic and membrane-less microbial fuel cell cascades designs. Journal of Power Sources, 561(30), 232708. https://doi.org/10.1016/j.jpowsour.2023.232708

Recent advancements in the microbial fuel cell (MFC) field have led to the deployment of pilot-scale autonomous sanitation systems converting the organic content of urine into electricity to power lights in decentralised areas. Two designs have been... Read More about Impact of feedstock dilution on the performance of urine-fed ceramic and membrane-less microbial fuel cell cascades designs.

Microbial fuel cell compared to a chemostat (2022)
Journal Article
Greenman, J., Mendis, B. A., Gajda, I., & Ieropoulos, I. A. (2022). Microbial fuel cell compared to a chemostat. Chemosphere, 296, Article 133967. https://doi.org/10.1016/j.chemosphere.2022.133967

Microbial Fuel Cells (MFCs) represent a green and sustainable energy conversion system that integrate bacterial biofilms within an electrochemical two-electrode set-up to produce electricity from organic waste. In this review, we focus on a novel exp... Read More about Microbial fuel cell compared to a chemostat.

Microbial fuel cell scale-up options: Performance evaluation of membrane (c-MFC) and membrane-less (s-MFC) systems under different feeding regimes (2021)
Journal Article
Walter, X. A., Madrid, E., Gajda, I., Greenman, J., & Ieropoulos, I. (2022). Microbial fuel cell scale-up options: Performance evaluation of membrane (c-MFC) and membrane-less (s-MFC) systems under different feeding regimes. Journal of Power Sources, 520, 230875. https://doi.org/10.1016/j.jpowsour.2021.230875

In recent years, bioelectrochemical systems have advanced towards upscaling applications and tested during field trials, primarily for wastewater treatment. Amongst reported trials, two designs of urine-fed microbial fuel cells (MFCs) were tested suc... Read More about Microbial fuel cell scale-up options: Performance evaluation of membrane (c-MFC) and membrane-less (s-MFC) systems under different feeding regimes.

Microbial fuel cells in the house: A study on real household wastewater samples for treatment and power (2021)
Journal Article
You, J., Greenman, J., & Ieropoulos, I. A. (2021). Microbial fuel cells in the house: A study on real household wastewater samples for treatment and power. Sustainable Energy Technologies and Assessments, 48, Article 101618. https://doi.org/10.1016/j.seta.2021.101618

In line with the global movement towards sustainable buildings and dwellings, this work investigated the potential for integrating microbial fuel cell technology into future architecture. Various types of domestic greywater and wastewater from five d... Read More about Microbial fuel cells in the house: A study on real household wastewater samples for treatment and power.

Microbial fuel cells and their electrified biofilms (2021)
Journal Article
Greenman, J., Gajda, I., You, J., Mendis, B. A., Obata, O., Pasternak, G., & Ieropoulos, I. (2021). Microbial fuel cells and their electrified biofilms. Biofilms, 3, Article 100057. https://doi.org/10.1016/j.bioflm.2021.100057

Bioelectrochemical systems (BES) represent a wide range of different biofilm-based bioreactors that includes microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial desalination cells (MDCs). The first described bioelectrical b... Read More about Microbial fuel cells and their electrified biofilms.

Electrosynthesis, modulation, and self-driven electroseparation in microbial fuel cells (2021)
Journal Article
Gajda, I., You, J., Mendis, B. A., Greenman, J., & Ieropoulos, I. A. (2021). Electrosynthesis, modulation, and self-driven electroseparation in microbial fuel cells. iScience, 24(8), Article 102805. https://doi.org/10.1016/j.isci.2021.102805

Microbial electrosynthesis (MES) represents a sustainable platform that converts waste into resources, using microorganisms within an electrochemical cell. Traditionally, MES refers to the oxidation/reduction of a reactant at the electrode surface wi... Read More about Electrosynthesis, modulation, and self-driven electroseparation in microbial fuel cells.

Neural networks predicting microbial fuel cells output for soft robotics applications (2021)
Journal Article
Tsompanas, M. A., You, J., Philamore, H., Rossiter, J., & Ieropoulos, I. (2021). Neural networks predicting microbial fuel cells output for soft robotics applications. Frontiers in Robotics and AI, 8, Article 633414. https://doi.org/10.3389/frobt.2021.633414

The development of biodegradable soft robotics requires an appropriate eco-friendly source of energy. The use of Microbial Fuel Cells (MFCs) is suggested as they can be designed completely from soft materials with little or no negative effects to the... Read More about Neural networks predicting microbial fuel cells output for soft robotics applications.

Impact of inoculum type on the microbial community and power performance of urine-fed microbial fuel cells (2020)
Journal Article
Salar-Garcia, M. J., Obata, O., Kurt, H., Chandran, K., Greenman, J., & Ieropoulos, I. A. (2020). Impact of inoculum type on the microbial community and power performance of urine-fed microbial fuel cells. Microorganisms, 8(12), Article 1921. https://doi.org/10.3390/microorganisms8121921

Bacteria are the driving force of the microbial fuel cell (MFC) technology, which benefits from their natural ability to degrade organic matter and generate electricity. The development of an efficient anodic biofilm has a significant impact on the p... Read More about Impact of inoculum type on the microbial community and power performance of urine-fed microbial fuel cells.

Effect of iron oxide content and microstructural porosity on the performance of ceramic membranes as microbial fuel cell separators (2020)
Journal Article
Salar-García, M. J., Walter, X. A., Gurauskis, J., de Ramón Fernández, A., & Ieropoulos, I. (2021). Effect of iron oxide content and microstructural porosity on the performance of ceramic membranes as microbial fuel cell separators. Electrochimica Acta, 367, Article 137385. https://doi.org/10.1016/j.electacta.2020.137385

Ceramic materials based on naturally occurring clays are a low cost and environmentally friendly alternative to commercial polymer-based membranes in bioelectrochemical systems. In this work, ceramic membranes containing different amounts of iron oxi... Read More about Effect of iron oxide content and microstructural porosity on the performance of ceramic membranes as microbial fuel cell separators.

Effect of microbial fuel cell operation time on the disinfection efficacy of electrochemically synthesised catholyte from urine (2020)
Journal Article
Merino-Jimenez, I., Obata, O., Pasternak, G., Gajda, I., Greenman, J., & Ieropoulos, I. (2021). Effect of microbial fuel cell operation time on the disinfection efficacy of electrochemically synthesised catholyte from urine. Process Biochemistry, 101, 294-303. https://doi.org/10.1016/j.procbio.2020.10.014

Microbial fuel cells (MFCs) offer an excellent solution to tackle some of the major challenges currently faced by humankind: sustainable energy sources, waste management and water stress. Besides treating wastewater and producing useful electricity f... Read More about Effect of microbial fuel cell operation time on the disinfection efficacy of electrochemically synthesised catholyte from urine.

Evaluation of artificial neural network algorithms for predicting the effect of the urine flow rate on the power performance of microbial fuel cells (2020)
Journal Article
de Ramón-Fernández, A., Salar-García, M. J., Ruiz Fernández, D., Greenman, J., & Ieropoulos, I. A. (2020). Evaluation of artificial neural network algorithms for predicting the effect of the urine flow rate on the power performance of microbial fuel cells. Energy, 213, Article 118806. https://doi.org/10.1016/j.energy.2020.118806

© 2020 The Authors Microbial fuel cell (MFC) power performance strongly depends on the biofilm growth, which in turn is affected by the feed flow rate. In this work, an artificial neural network (ANN) approach has been used to simulate the effect of... Read More about Evaluation of artificial neural network algorithms for predicting the effect of the urine flow rate on the power performance of microbial fuel cells.

Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes (2020)
Journal Article
Salar-Garcia, M. J., Montilla, F., Quijada, C., Morallon, E., & Ieropoulos, I. (2020). Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes. Applied Energy, 278, Article 115528. https://doi.org/10.1016/j.apenergy.2020.115528

© 2020 The Authors The need for improving the energy harvesting from Microbial Fuel Cells (MFCs) has boosted the design of new materials in order to increase the power performance of this technology and facilitate its practical application. According... Read More about Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes.

Scaling up self-stratifying supercapacitive microbial fuel cell (2020)
Journal Article
Walter, X. A., Santoro, C., Greenman, J., & Ieropoulos, I. A. (2020). Scaling up self-stratifying supercapacitive microbial fuel cell. International Journal of Hydrogen Energy, 45(46), 25240-25248. https://doi.org/10.1016/j.ijhydene.2020.06.070

Self-stratifying microbial fuel cells with three different electrodes sizes and volumes were operated in supercapacitive mode. As the electrodes size increased, the equivalent series resistance decreased, and the overall power was enhanced (small: ES... Read More about Scaling up self-stratifying supercapacitive microbial fuel cell.

Developing 3D-printable cathode electrode for monolithically printed microbial fuel cells (MFCs) (2020)
Journal Article
Theodosiou, P., Greenman, J., & Ieropoulos, I. A. (2020). Developing 3D-printable cathode electrode for monolithically printed microbial fuel cells (MFCs). Molecules, 25(16), 1-11. https://doi.org/10.3390/molecules25163635

© 2020 by the authors. Microbial Fuel Cells (MFCs) employ microbial electroactive species to convert chemical energy stored in organic matter, into electricity. The properties of MFCs have made the technology attractive for bioenergy production. Howe... Read More about Developing 3D-printable cathode electrode for monolithically printed microbial fuel cells (MFCs).

From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights (2020)
Journal Article
Walter, X. A., You, J., Winfield, J., Bajarunas, U., Greenman, J., & Ieropoulos, I. A. (2020). From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights. Applied Energy, 277, Article 115514. https://doi.org/10.1016/j.apenergy.2020.115514

The microbial fuel cell (MFC) technology relies on energy storage and harvesting circuitry to deliver stable power outputs. This increases costs, and for wider deployment into society, these should be kept minimal. The present study reports how a MFC... Read More about From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights.

Complete microbial fuel cell fabrication using additive layer manufacturing (2020)
Journal Article
You, J., Fan, H., Winfield, J., & Ieropoulos, I. A. (2020). Complete microbial fuel cell fabrication using additive layer manufacturing. Molecules, 25(13), Article 3051. https://doi.org/10.3390/molecules25133051

Improving the efficiency of microbial fuel cell (MFC) technology by enhancing the system performance and reducing the production cost is essential for commercialisation. In this study, building an additive manufacturing (AM)-built MFC comprising all... Read More about Complete microbial fuel cell fabrication using additive layer manufacturing.

Air-breathing cathode self-powered supercapacitive microbial fuel cell with human urine as electrolyte (2020)
Journal Article
Santoro, C., Walter, X. A., Soavi, F., Greenman, J., & Ieropoulos, I. (2020). Air-breathing cathode self-powered supercapacitive microbial fuel cell with human urine as electrolyte. Electrochimica Acta, 353, Article 136530. https://doi.org/10.1016/j.electacta.2020.136530

In this work, a membraneless microbial fuel cell (MFC) with an empty volume of 1.5 mL, fed continuously with hydrolysed urine, was tested in supercapacitive mode (SC-MFC). In order to enhance the power output, a double strategy was used: i) a double... Read More about Air-breathing cathode self-powered supercapacitive microbial fuel cell with human urine as electrolyte.

A new method for urine electrofiltration and long term power enhancement using surface modified anodes with activated carbon in ceramic microbial fuel cells (2020)
Journal Article
Gajda, I., You, J., Santoro, C., Greenman, J., & Ieropoulos, I. A. (2020). A new method for urine electrofiltration and long term power enhancement using surface modified anodes with activated carbon in ceramic microbial fuel cells. Electrochimica Acta, 353, Article 136388. https://doi.org/10.1016/j.electacta.2020.136388

This work is presenting for the first time the use of inexpensive and efficient anode material for boosting power production, as well as improving electrofiltration of human urine in tubular microbial fuel cells (MFCs). The MFCs were constructed usin... Read More about A new method for urine electrofiltration and long term power enhancement using surface modified anodes with activated carbon in ceramic microbial fuel cells.

Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species (2020)
Journal Article
Gajda, I., Obata, O., Greenman, J., & Ieropoulos, I. A. (2020). Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species. Scientific Reports, 10, Article 5533. https://doi.org/10.1038/s41598-020-60626-x

This work presents a small scale and low cost ceramic based microbial fuel cell, utilising human urine into electricity, while producing clean catholyte into an initially empty cathode chamber through the process of electro-osmostic drag. It is the f... Read More about Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species.

Multidimensional benefits of improved sanitation: Evaluating 'PEE POWER®' in Kisoro, Uganda (2020)
Journal Article
You, J., Staddon, C., Cook, A., Walker, J., Boulton, J., Powell, W., & Ieropoulos, I. (2020). Multidimensional benefits of improved sanitation: Evaluating 'PEE POWER®' in Kisoro, Uganda. International Journal of Environmental Research and Public Health, 17(7), Article 2175. https://doi.org/10.3390/ijerph17072175

With 2.3 billion people around the world lacking adequate sanitation services, attention has turned to alternative service provision models. This study suggests an approach for meeting the sanitation challenge, especially as expressed in Sustainable... Read More about Multidimensional benefits of improved sanitation: Evaluating 'PEE POWER®' in Kisoro, Uganda.