Skip to main content

Research Repository

Advanced Search

All Outputs (3)

An anthropomorphic design for a minimally invasive surgical system based on a survey of surgical technologies, techniques and training (2014)
Journal Article
Tzemanaki, A., Walters, P., Pipe, A. G., Melhuish, C., & Dogramadzi, S. (2014). An anthropomorphic design for a minimally invasive surgical system based on a survey of surgical technologies, techniques and training. International Journal of Medical Robotics and Computer Assisted Surgery, 10(3), 368-378. https://doi.org/10.1002/rcs.1544

© 2013 John Wiley & Sons, Ltd. Background: Over the past century, abdominal surgery has seen a rapid transition from open procedures to less invasive methods, such as robot-assisted minimally invasive surgery (MIS). This study aimed to investigate... Read More about An anthropomorphic design for a minimally invasive surgical system based on a survey of surgical technologies, techniques and training.

Seeing by touch: Evaluation of a soft biologically-inspired artificial fingertip in real-time active touch (2014)
Journal Article
Assaf, T., Roke, C., Rossiter, J., Pipe, T., & Melhuish, C. (2014). Seeing by touch: Evaluation of a soft biologically-inspired artificial fingertip in real-time active touch. Sensors, 14(2), 2561-2577. https://doi.org/10.3390/s140202561

Effective tactile sensing for artificial platforms remains an open issue in robotics. This study investigates the performance of a soft biologically-inspired artificial fingertip in active exploration tasks. The fingertip sensor replicates the mechan... Read More about Seeing by touch: Evaluation of a soft biologically-inspired artificial fingertip in real-time active touch.

Hardware architecture of the protein processing associative memory and the effects of dimensionality and quantisation on performance (2014)
Journal Article
Qadir, O., Lenz, A., Tempesti, G., Timmis, J., Pipe, T., & Tyrrell, A. (2014). Hardware architecture of the protein processing associative memory and the effects of dimensionality and quantisation on performance. Genetic Programming and Evolvable Machines, 15(3), 245-274. https://doi.org/10.1007/s10710-014-9217-1

The Protein Processor Associative Memory (PPAM) is a novel hardware architecture for a distributed, decentralised, robust and scalable, bidirectional, hetero-associative memory, that can adapt online to changes in the training data. The PPAM uses the... Read More about Hardware architecture of the protein processing associative memory and the effects of dimensionality and quantisation on performance.