Skip to main content

Research Repository

Advanced Search

All Outputs (4)

Feather-inspired sensor for stabilizing unmanned aerial vehicles in turbulent conditions (2017)
Book Chapter
Kouppas, C., Pearson, M. J., Dean, P., & Anderson, S. (2017). Feather-inspired sensor for stabilizing unmanned aerial vehicles in turbulent conditions. In M. Mangan, M. Cutkosky, A. Mura, P. Verschure, T. Prescott, & N. Lepora (Eds.), Biomimetic and Biohybrid Systems (230-241). Springer link

Stabilizing unmanned aerial vehicles (UAVs) in turbulent conditions is a challenging problem. Typical methods of stabilization do not use feedforward information about the airflow disturbances but only UAV attitude feedback signals, e.g. from an iner... Read More about Feather-inspired sensor for stabilizing unmanned aerial vehicles in turbulent conditions.

Self-adaptive context aware audio localization (2017)
Book Chapter
Baxendale, M., Pearson, M. J., Nibouche, M., Secco, M., & Pipe, A. G. (2017). Self-adaptive context aware audio localization. In C. Lekakou, Y. Jin, S. Fallah, & G. Yang (Eds.), Towards Autonomous Robotic Systems (66-78). LNCS 10454: Springer link

An audio sensor system is presented that uses multiple cere- bellar models to determine the acoustic environment in which a robot is operating, allowing the robot to select appropriate models to calibrate its audio-motor map for the detected environ... Read More about Self-adaptive context aware audio localization.

The robot vibrissal system: Understanding mammalian sensorimotor co-ordination through biomimetics (2015)
Book Chapter
Prescott, T. J., Mitchinson, B., Lepora, N. F., Wilson, S. P., Anderson, S. R., Porrill, J., …Pipe, A. G. (2015). The robot vibrissal system: Understanding mammalian sensorimotor co-ordination through biomimetics. In A. Groh, & P. Krieger (Eds.), Sensorimotor Integration in the Whisker System (213-240). Springer. https://doi.org/10.1007/978-1-4939-2975-7_10

© Springer Science+Business Media, LLC 2015. We consider the problem of sensorimotor co-ordination in mammals through the lens of vibrissal touch, and via the methodology of embodied computational neuroscience-using biomimetic robots to synthesize an... Read More about The robot vibrissal system: Understanding mammalian sensorimotor co-ordination through biomimetics.