Skip to main content

Research Repository

Advanced Search

Estimating occupancy levels in enclosed spaces using environmental variables: A fitness gym and living room as evaluation scenarios (2020)
Journal Article
Vela, A., Alvarado-Uribe, J., Davila Delgado, M., Hernandez-Gress, N., & Ceballos, H. G. (2020). Estimating occupancy levels in enclosed spaces using environmental variables: A fitness gym and living room as evaluation scenarios. Sensors, 20(22), 6579. https://doi.org/10.3390/s20226579

The understanding of occupancy patterns has been identified as a key contributor to achieve improvements in energy efficiency in buildings since occupancy information can benefit different systems, such as HVAC (Heating, Ventilation, and Air Conditio... Read More about Estimating occupancy levels in enclosed spaces using environmental variables: A fitness gym and living room as evaluation scenarios.

Cloud computing in construction industry: Use cases, benefits and challenges (2020)
Journal Article
Bello, S., Oyedele, L., Akinade, O., Davila Delgado, M., Bilal, M., Akanbi, L., …Owolabi, H. (in press). Cloud computing in construction industry: Use cases, benefits and challenges. Automation in Construction,

Cloud computing technologies have revolutionised several industries (such as aerospace, manufacturing, automobile, retail, etc.) for several years. Although the construction industry is well placed to also leverage these technologies for competitive... Read More about Cloud computing in construction industry: Use cases, benefits and challenges.

Big data for design option repository: Towards a DFMA approach for offsite construction (2020)
Journal Article
Gbadamosi, A., Oyedele, L., Mahamadu, A., Kusimo, H., Bilal, M., Davila Delgado, J. M., & Muhammed-Yakubu, N. (2020). Big data for design option repository: Towards a DFMA approach for offsite construction. Automation in Construction, 120, https://doi.org/10.1016/j.autcon.2020.103388

A persistent barrier to the adoption of offsite construction is the lack of information for assessing prefabrication alternatives and the choices of suppliers. This study integrates three aspects of offsite construction, including BIM, DFMA and big d... Read More about Big data for design option repository: Towards a DFMA approach for offsite construction.

Deep learning in the construction industry: A review of present status and future innovations (2020)
Journal Article
Akinosho, T. D., Oyedele, L. O., Bilal, M., Ajayi, A. O., Delgado, M. D., Akinade, O. O., & Ahmed, A. A. (2020). Deep learning in the construction industry: A review of present status and future innovations. Journal of Building Engineering, 32, https://doi.org/10.1016/j.jobe.2020.101827

The construction industry is known to be overwhelmed with resource planning, risk management and logistic challenges which often result in design defects, project delivery delays, cost overruns and contractual disputes. These challenges have instigat... Read More about Deep learning in the construction industry: A review of present status and future innovations.

Genetic algorithm-determined deep feedforward neural network architecture for predicting electricity consumption in real buildings (2020)
Journal Article
Luo, X., Oyedele, L. O., Ajayi, A. O., Akinade, O. O., Delgado, J. M. D., Owolabi, H. A., & Ahmed, A. (2020). Genetic algorithm-determined deep feedforward neural network architecture for predicting electricity consumption in real buildings. Energy and AI, 2, https://doi.org/10.1016/j.egyai.2020.100015

A genetic algorithm-determined deep feedforward neural network architecture (GA-DFNN) is proposed for both day-ahead hourly and week-ahead daily electricity consumption of a real-world campus building in the United Kingdom. Due to the comprehensive r... Read More about Genetic algorithm-determined deep feedforward neural network architecture for predicting electricity consumption in real buildings.

A research agenda for augmented and virtual reality in architecture, engineering and construction (2020)
Journal Article
Davila Delgado, M., Oyedele, L., Demian, P., & Beach, T. (2020). A research agenda for augmented and virtual reality in architecture, engineering and construction. Advanced Engineering Informatics, 45, https://doi.org/10.1016/j.aei.2020.101122

This paper presents a study on the usage landscape of augmented reality (AR) and virtual reality (VR) in the architecture, engineering and construction sectors, and proposes a research agenda to address the existing gaps in required capabilities. A s... Read More about A research agenda for augmented and virtual reality in architecture, engineering and construction.

Augmented and virtual reality in construction: Drivers and limitations for industry adoption (2020)
Journal Article
Davila Delgado, J. M., Oyedele, L., Beach, T., & Demian, P. (2020). Augmented and virtual reality in construction: Drivers and limitations for industry adoption. Journal of Construction Engineering and Management, 146(7), https://doi.org/10.1061...%29CO.1943-7862.0001844

Augmented and virtual reality have the potential to provide a step-change in productivity in the construction sector; however, the level of adoption is very low. This paper presents a systematic study of the factors that limit and drive adoption in a... Read More about Augmented and virtual reality in construction: Drivers and limitations for industry adoption.

BIM data model requirements for asset monitoring and the circular economy (2020)
Journal Article
Davila Delgado, J. M., & Oyedele, L. O. (in press). BIM data model requirements for asset monitoring and the circular economy. Journal of Engineering, Design and Technology, 18(5), 1269-1285. https://doi.org/10.1108/JEDT-10-2019-0284

© 2020, Emerald Publishing Limited. Purpose: The purpose of this paper is to review and provide recommendations to extend the current open standard data models for describing monitoring systems and circular economy precepts for built assets. Open sta... Read More about BIM data model requirements for asset monitoring and the circular economy.

Optimised Big Data analytics for health and safety hazards prediction in power infrastructure operations (2020)
Journal Article
Ajayi, A., Oyedele, L., Akinade, O., Bilal, M., Akanbi, L., Delgado, J. M. D., & Owolabi, H. (2020). Optimised Big Data analytics for health and safety hazards prediction in power infrastructure operations. Safety Science, 125, https://doi.org/10.1016/j.ssci.2020.104656

© 2020 Elsevier Ltd Forecasting imminent accidents in power infrastructure projects require a robust and accurate prediction model to trigger a proactive strategy for risk mitigation. Unfortunately, getting ready-made machine learning algorithms to e... Read More about Optimised Big Data analytics for health and safety hazards prediction in power infrastructure operations.

Deep learning models for health and safety risk prediction in power infrastructure projects (2019)
Journal Article
Ajayi, A., Oyedele, L., Owolabi, H., Akinade, O., Bilal, M., Davila Delgado, J. M., & Akanbi, L. (2020). Deep learning models for health and safety risk prediction in power infrastructure projects. Risk Analysis, 40(10), 2019-2039. https://doi.org/10.1111/risa.13425

Inappropriate management of Health and safety (H&S) risk in power infrastructure projects can result in occupational accidents and equipment damage. Accidents at work have detrimental effects on workers, company, and the general public. Despite the a... Read More about Deep learning models for health and safety risk prediction in power infrastructure projects.

Big data analytics system for costing power transmission projects (2019)
Journal Article
Delgado, J. M. D., Oyedele, L., Bilal, M., Ajayi, A., Akanbi, L., & Akinade, O. (2020). Big data analytics system for costing power transmission projects. Journal of Construction Engineering and Management, 146(1), https://doi.org/10.1061...%29CO.1943-7862.0001745

© 2019 American Society of Civil Engineers. Inaccurate cost estimates have significant impacts on the final cost of power transmission projects and erode profits. Methods for cost estimation have been investigated thoroughly, but they are not used wi... Read More about Big data analytics system for costing power transmission projects.

Robotics and automated systems in construction: Understanding industry-specific challenges for adoption (2019)
Journal Article
Davila Delgado, J. M., Oyedele, L., Ajayi, A., Akanbi, L., Akinade, L., Bilal, M., & Owolabi, H. (2019). Robotics and automated systems in construction: Understanding industry-specific challenges for adoption. Journal of Building Engineering, 26, https://doi.org/10.1016/j.jobe.2019.100868

© 2019 The Authors The construction industry is a major economic sector, but it is plagued with inefficiencies and low productivity. Robotics and automated systems have the potential to address these shortcomings; however, the level of adoption in th... Read More about Robotics and automated systems in construction: Understanding industry-specific challenges for adoption.

Vision network: Augmented reality and virtual reality for digital built Britain (2019)
Report
Davila Delgado, J. M. (2019). Vision network: Augmented reality and virtual reality for digital built Britain

The Vision Network, a mix of academics and industry experts, conducted a study into the levels of adoption of Augmented Reality (AR) and Virtual Reality (VR) technologies in the UK’s Architecture, Engineering, and Construction (AEC) sectors. A mixed... Read More about Vision network: Augmented reality and virtual reality for digital built Britain.

Disassembly and deconstruction analytics system (D-DAS) for construction in a circular economy (2019)
Journal Article
Akanbi, L. A., Oyedele, L. O., Omoteso, K., Bilal, M., Akinade, O. O., Ajayi, A. O., …Owolabi, H. A. (2019). Disassembly and deconstruction analytics system (D-DAS) for construction in a circular economy. Journal of Cleaner Production, 223, 386-396. https://doi.org/10.1016/j.jclepro.2019.03.172

© 2019 Despite the relevance of building information modelling for simulating building performance at various life cycle stages, Its use for assessing the end-of-life impacts is not a common practice. Even though the global sustainability and circula... Read More about Disassembly and deconstruction analytics system (D-DAS) for construction in a circular economy.

Design optimisation using convex programming: Towards waste-efficient building designs (2019)
Journal Article
Bilal, M., Oyedele, L. O., Akinade, O. O., Delgado, J. M. D., Akanbi, L. A., Ajayi, A. O., & Younis, M. S. (2019). Design optimisation using convex programming: Towards waste-efficient building designs. Journal of Building Engineering, 23, 231-240. https://doi.org/10.1016/j.jobe.2019.01.022

© 2019 The Authors A non-modular building layout is amongst the leading sources of offcut waste, resulting from a substantial amount of onsite cutting and fitting of bricks, blocks, plasterboard, and tiles. The field of design for dimensional coordin... Read More about Design optimisation using convex programming: Towards waste-efficient building designs.

Reusability analytics tool for end-of-life assessment of building materials in a circular economy (2018)
Journal Article
Akanbi, L., Oyedele, L., Davila Delgado, J. M., Bilal, M., Akinade, O., Ajayi, A., & Mohammed-Yakub, N. (2019). Reusability analytics tool for end-of-life assessment of building materials in a circular economy. World Journal of Science, Technology and Sustainable Development, 16(1), 40-55. https://doi.org/10.1108/WJSTSD-05-2018-0041

Purpose – In a circular economy, the goal is to keep materials values in the economy for as long as possible. For the construction industry to support the goal of the circular economy, there is the need for materials reuse. However, there is little o... Read More about Reusability analytics tool for end-of-life assessment of building materials in a circular economy.

Big data platform for health and safety accident prediction (2018)
Journal Article
Ajayi, A., Oyedele, L., Davila Delgado, J. M., Akanbi, L., Bilal, M., Akinade, O., & Olawale, O. (2019). Big data platform for health and safety accident prediction. World Journal of Science, Technology and Sustainable Development, 16(1), 2-21. https://doi.org/10.1108/WJSTSD-05-2018-0042

Purpose – The purpose of this paper is to highlight the use of the Big data technologies for health and safety risks analytics in the power infrastructure domain with large data sets of health and safety risks, which are usually sparse and noisy.... Read More about Big data platform for health and safety accident prediction.

Structural performance monitoring using a dynamic data-driven BIM environment (2018)
Journal Article
Davila Delgado, J. M., Butler, L., Brilakis, I., Elshafie, M., & Middleton, C. (2018). Structural performance monitoring using a dynamic data-driven BIM environment. Journal of Computing in Civil Engineering, 32(3), https://doi.org/10.1061...%29CP.1943-5487.0000749

Structural health monitoring data has not been fully leveraged to support asset management due to a lack of effective integration with other datasets. A Building Information Modelling (BIM) approach is presented to leverage structural monitoring data... Read More about Structural performance monitoring using a dynamic data-driven BIM environment.

Salvaging building materials in a circular economy: A BIM-based whole-life performance estimator (2017)
Journal Article
Akanbi, L. A., Oyedele, L., Akinade, O., Ajayi, A. O., Davila Delgado, M., Bilal, M., & Bello, S. A. (2018). Salvaging building materials in a circular economy: A BIM-based whole-life performance estimator. Resources, Conservation and Recycling, 129, 175-186. https://doi.org/10.1016/j.resconrec.2017.10.026

© 2017 The Author(s) The aim of this study is to develop a BIM-based Whole-life Performance Estimator (BWPE) for appraising the salvage performance of structural components of buildings right from the design stage. A review of the extant literature w... Read More about Salvaging building materials in a circular economy: A BIM-based whole-life performance estimator.