Skip to main content

Research Repository

Advanced Search

All Outputs (11)

EvoBot: Towards a robot-chemostat for culturing and maintaining Microbial Fuel Cells (MFCs) (2017)
Conference Proceeding
Theodosiou, P., Faina, A., Nejatimoharrami, F., Stoy, K., Greenman, J., Melhuish, C., & Ieropoulos, I. (2017). EvoBot: Towards a robot-chemostat for culturing and maintaining Microbial Fuel Cells (MFCs). In N. Lepora, T. Prescott, P. F. Verschure, A. Mura, M. Cutkosky, & M. Mangan (Eds.), Biomimetic and Biohybrid Systems. , (453-464). https://doi.org/10.1007/978-3-319-63537-8_38

In this paper we present EvoBot, a RepRap open-source 3D-printer modified to operate like a robot for culturing and maintaining Microbial Fuel Cells (MFCs). EvoBot is a modular liquid handling robot that has been adapted to host MFCs in its experimen... Read More about EvoBot: Towards a robot-chemostat for culturing and maintaining Microbial Fuel Cells (MFCs).

Electricity and catholyte production from ceramic MFCS treating urine (2015)
Conference Proceeding
Merino-Jimenez, I., Greenman, J., & Ieropoulos, I. (2015). Electricity and catholyte production from ceramic MFCS treating urine. In V. Cigolotti, M. Chianella, & C. Barchiesi (Eds.), Proceedings of the 6th European Fuel Cell - Piero Lunghi Conference, EFC 2015. , (311-312)

Microbial fuel cells (MFCs) offer a promising technology for electricity production. In the anodic chamber, an anaerobic biofilm breaks down the organic compounds present in the urine to generate electricity. In the cathodic chamber, the oxygen reduc... Read More about Electricity and catholyte production from ceramic MFCS treating urine.

A new design of membraneless microbial fuel cell: Anode and cathode share the same self-stratified electrolyte of urine (2015)
Conference Proceeding
Walter, X., Gajda, I., Forbes, S., Greenman, J., & Ieropoulos, I. (2015). A new design of membraneless microbial fuel cell: Anode and cathode share the same self-stratified electrolyte of urine. In M. Chianella, C. Barchiesi, & V. Cigolotti (Eds.), Proceedings of the 6th European Fuel Cell - Piero Lunghi Conference, EFC 2015. , (315-316)

Regardless of architecture, microbial fuel cell technology requires a plurality of units to achieve exploitable electrical power. This implies that each unit needs a simple design allowing the production of the needed multiplicity. Here, we present a... Read More about A new design of membraneless microbial fuel cell: Anode and cathode share the same self-stratified electrolyte of urine.

Smart miniature microbial fuel cell design for increased electricity generation and waste water treatment (2013)
Conference Proceeding
Papaharalabos, G., Greenman, J., Melhuish, C., & Ieropoulos, I. (2013). Smart miniature microbial fuel cell design for increased electricity generation and waste water treatment. In C. Barchiesi, V. Cigolotti, & M. Chianella (Eds.), Proceedings of the 5th European Fuel Cell Piero Lunghi Conference. , (243-244)

Copyright © 2013 Delta Energy and Environment. Microbial Fuel Cells (MFCs) are a green sustainable energy with minimal carbon footprint, suitable for wastewater remediation and generation of useful amounts of electricity. This study focuses on the ar... Read More about Smart miniature microbial fuel cell design for increased electricity generation and waste water treatment.

Algal "lagoon" effect for oxygenating MFC cathodes (2013)
Conference Proceeding
Gajda, I., Greenman, J., Melhuish, C., & Ieropoulos, I. (2013). Algal "lagoon" effect for oxygenating MFC cathodes. In V. Cigolotti, C. Barchiesi, & M. Chianella (Eds.), Proceedings of the 5th European Fuel Cell Piero Lunghi Conference. , (193-194)

Copyright © 2013 Delta Energy and Environment. This paper describes the active oxygenation performed by the photosynthetic organisms in the cathode of a two-chamber Microbial Fuel Cell system. The algal growth provided dissolved oxygen to the cathode... Read More about Algal "lagoon" effect for oxygenating MFC cathodes.

Optimized activated carbon cathode in membraneless single chamber microbial fuel cell treating acetate (2013)
Conference Proceeding
Santoro, C., Babanova, S., Atanassov, P., Li, B., Ieropoulos, I., Greenman, J., …Trasatti, S. (2013). Optimized activated carbon cathode in membraneless single chamber microbial fuel cell treating acetate. In V. Cigolotti, C. Barchiesi, & M. Chianella (Eds.), Proceedings of the 5th European Fuel Cell Piero Lunghi Conference. , (149-150)

Copyright © 2013 Delta Energy and Environment. Activated Carbon (AC) have been used as cheap alternative cathode for microbial fuel cell (MFC) applications. Different parameters (applied pressure and temperature treatment) have been changed and the c... Read More about Optimized activated carbon cathode in membraneless single chamber microbial fuel cell treating acetate.

MPL based anode for improved performance in microbial fuel cells (2013)
Conference Proceeding
You, J., Santoro, C., Greenman, J., Melhuish, C., Cristiani, P., Li, B., & Ieropoulos, I. (2013). MPL based anode for improved performance in microbial fuel cells

Copyright © 2013 Delta Energy and Environment. Two different anode materials, carbon veil and carbon cloth, were modified with a micro-porous layer for microbial fuel cells. 2.2 and 1.8 times higher power was achieved as a result of this modification... Read More about MPL based anode for improved performance in microbial fuel cells.

Urine as a suitable fuel for microbial fuel cells (2011)
Conference Proceeding
Ieropoulos, I. A., Greenman, J., & Melhuish, C. (2011). Urine as a suitable fuel for microbial fuel cells. In P. Lunghi, S. Ubertini, & V. Cigolotti (Eds.), Proceedings of EFC11. , (325-326)

MFCs show promise in utilising a wide variety of organic sources. This paper describes the utilisation of neat urine as the main feedstock, with conversion efficiencies of >50%. Power densities of 4.93mW/m2 were recorded when 48 small-scale MFCs were... Read More about Urine as a suitable fuel for microbial fuel cells.

Microbial fuel cell driven behavioral dynamics in robot simulations (2010)
Conference Proceeding
Montebelli, A., Lowe, R., Ieropoulos, I., Melhuish, C., Greenman, J., & Ziemke, T. (2010). Microbial fuel cell driven behavioral dynamics in robot simulations. In M. Hanczyc, M. Dorr, & H. Fellermann (Eds.), Artificial Life XII: Proceedings of the 12th International Conference on the Synthesis and Simulation of Living Systems. , (749-756)

With the present study we report the first application of a recently proposed model for realistic microbial fuel cells (MFCs) energy generation dynamics, suitable for robotic simulations with minimal and extremely limited computational overhead. A si... Read More about Microbial fuel cell driven behavioral dynamics in robot simulations.

Grounding motivation in energy autonomy: A study of artificial metabolism constrained robot dynamics (2010)
Conference Proceeding
Lowe, R., Montebelli, A., Ieropoulos, I., Greenman, J., Melhuish, C., & Ziemke, T. (2010). Grounding motivation in energy autonomy: A study of artificial metabolism constrained robot dynamics. In H. Fellermann, M. Hanczyc, & M. Dorr (Eds.), Artificial Life XII: Proceedings of the 12th International Conference on the Synthesis and Simulation of Living Systems. , (725-732)

We present an evolutionary robotics investigation into the metabolism constrained homeostatic dynamics of a simulated robot. Unlike existing research that has focused on either energy or motivation autonomy the robot described here is considered in t... Read More about Grounding motivation in energy autonomy: A study of artificial metabolism constrained robot dynamics.

EcoBot-III: A robot with guts (2010)
Conference Proceeding
Ieropoulos, I., Greenman, J., Melhuish, C., & Horsfield, I. (2010). EcoBot-III: A robot with guts. In H. Fellermann, M. Dörr, M. M. Hanczyc, L. L. Laursen, S. Maurer, D. Merkle, …S. Rasmussen (Eds.), Artificial Life XII: Proceedings of the 12th International Conference on the Synthesis and Simulation of Living Systems, ALIFE 2010. , (733-740)

This paper describes the work carried out to develop EcoBot- III, which is a robot with an artificial digestion system. The robot is powered by Microbial Fuel Cells (MFCs) and it is designed to collect food and water from the environment, digest the... Read More about EcoBot-III: A robot with guts.