Skip to main content

Research Repository

Advanced Search

Neuromorphic liquid marbles with aqueous carbon nanotube cores (2019)
Journal Article
Whiting, J. G., De Lacy Costello, B. P., Draper, T. C., Mayne, R., Adamatzky, A., Draper, T. C., …Fullarton, C. (2019). Neuromorphic liquid marbles with aqueous carbon nanotube cores. Langmuir, 35, 13182-13188. https://doi.org/10.1021/acs.langmuir.9b02552

Neuromorphic computing devices attempt to emulate features of biological nervous systems through mimicking the properties of synapses, towards implementing the emergent properties of their counterparts, such as learning. Inspired by recent advances i... Read More about Neuromorphic liquid marbles with aqueous carbon nanotube cores.

On the simulation (and energy costs) of human intelligence, the singularity and simulationism (2019)
Book Chapter
Winfield, A. F. T. (2019). On the simulation (and energy costs) of human intelligence, the singularity and simulationism. In A. Adamatzky, & V. Kendon (Eds.), From Astrophysics to Unconventional Computation, 397-407. Springer Nature Publishing AG. https://doi.org/10.1007/978-3-030-15792-0_16

For many the Holy Grail of robotics and AI is the creation of artificial persons: artefacts with equivalent general competencies as humans. Such artefacts would literally be simulations of humans. With the theme of simulation this essay reflects on b... Read More about On the simulation (and energy costs) of human intelligence, the singularity and simulationism.

Slime Mould Controller for Microbial Fuel Cells (2016)
Journal Article
Taylor, B., Adamatzky, A., Greenman, J., & Ieropoulos, I. (2016). Slime Mould Controller for Microbial Fuel Cells. https://doi.org/10.1007/978-3-319-26662-6_14

Microbial fuels cells (MFCs) are bio-electrochemical transducers that generate energy from the metabolism of electro-active microorganisms. The organism Physarum polycephalum is a species of slime mould, which has demonstrated many novel and interest... Read More about Slime Mould Controller for Microbial Fuel Cells.

Biomimicry of crowd evacuation with a slime mould cellular automaton model (2015)
Journal Article
Adamatzky, A. I., Sirakoulis, G. C., Georgilas, I. P., Papadopoulos, D. P., Kalogeiton, V. S., Kalogeiton, V., …Adamatzky, A. (2015). Biomimicry of crowd evacuation with a slime mould cellular automaton model. Studies in Computational Intelligence, 600, 123-151. https://doi.org/10.1007/978-3-319-16844-9_7

© Springer International Publishing Switzerland 2015. Evacuation is an imminent movement of people away from sources of danger. Evacuation in highly structured environments, e.g. building, requires advance planning and large-scale control. Finding a... Read More about Biomimicry of crowd evacuation with a slime mould cellular automaton model.

Physarum polycephalum: Towards a biological controller (2015)
Journal Article
Taylor, B., Adamatzky, A., Greenman, J., & Ieropoulos, I. (2015). Physarum polycephalum: Towards a biological controller. BioSystems, 127, 42-46. https://doi.org/10.1016/j.biosystems.2014.10.005

Microbial fuels cells (MFCs) are bio-electrochemical transducers that generate energy from the metabolism of electro-active microorganisms. The organism Physarum polycephalum is a slime mould, which has demonstrated many novel and interesting propert... Read More about Physarum polycephalum: Towards a biological controller.

Artificial symbiosis in EcoBots (2009)
Book Chapter
Ieropoulos, I. A., Greenman, J., Melhuish, C., & Horsfield, I. (2009). Artificial symbiosis in EcoBots. In A. Adamatzky, & M. Komosinski (Eds.), Artificial Life Models in Hardware (185-211). London: Springer. https://doi.org/10.1007/978-1-84882-530-7_9

Truly autonomous robotic systems will be required to abstract energy from the environment in order to function. Energetic autonomy refers to the ability of an agent, to maintain itself in a viable state for long periods of time. Its behaviour must be... Read More about Artificial symbiosis in EcoBots.

Artificial life models in hardware (2009)
Book
Komosinski, M., Adamatzky, A., Ieropoulos, I., Greenman, J., Melhuish, C., & Horsfield, I. (2009). A. Adamatzky, & M. Komosinski (Eds.), Artificial life models in hardware. London: Spinger-Verlag. https://doi.org/10.1007/978-1-84882-530-7

Hopping, climbing and swimming robots, nano-size neural networks, motorless walkers, slime mould and chemical brains - 'Artificial Life Models in Hardware' offers unique designs and prototypes of life-like creatures in conventional hardware and hybri... Read More about Artificial life models in hardware.