Skip to main content

Research Repository

Advanced Search

Targeting the ERG oncogene with splice-switching oligonucleotides as a novel therapeutic strategy in prostate cancer

Li, Ling; Hobson, Lisa; Perry, Laura; Clark, Bethany; Heavey, Susan; Haider, Aiman; Sridhar, Ashwin; Shaw, Greg; Kelly, John; Freeman, Alex; Wilson, Ian; Whitaker, Hayley; Nurmemmedov, Elmar; Oltean, Sebastian; Porazinski, Sean; Ladomery, Michael

Targeting the ERG oncogene with splice-switching oligonucleotides as a novel therapeutic strategy in prostate cancer Thumbnail


Authors

Ling Li

Lisa Hobson

Laura Perry

Bethany Clark

Susan Heavey

Aiman Haider

Ashwin Sridhar

Greg Shaw

John Kelly

Alex Freeman

Hayley Whitaker

Elmar Nurmemmedov

Sebastian Oltean

Sean Porazinski



Abstract

Background: The ERG oncogene, a member of the ETS family of transcription factor encoding genes, is a genetic driver of prostate cancer. It is activated through a fusion with the androgen-responsive TMPRSS2 promoter in 50% of cases. There is therefore significant interest in developing novel therapeutic agents that target ERG. We have taken an antisense approach and designed morpholino-based oligonucleotides that target ERG by inducing skipping of its constitutive exon 4.

Methods: We designed antisense morpholino oligonucleotides (splice-switching oligonucleotides, SSOs) that target both the 5′ and 3′ splice sites of ERG’s exon 4. We tested their efficacy in terms of inducing exon 4 skipping in two ERG-positive cell lines, VCaP prostate cancer cells and MG63 osteosarcoma cells. We measured their effect on cell proliferation, migration and apoptosis. We also tested their effect on xenograft tumour growth in mice and on ERG protein expression in a human prostate cancer radical prostatectomy sample ex vivo.

Results: In VCaP cells, both SSOs were effective at inducing exon 4 skipping, which resulted in a reduction of overall ERG protein levels up to 96 h following a single transfection. SSO-induced ERG reduction decreased cell proliferation, cell migration and significantly increased apoptosis. We observed a concomitant reduction in protein levels for cyclin D1, c-Myc and the Wnt signalling pathway member β-catenin as well as a marker of activated Wnt signalling, p-LRP6. We tested the 3′ splice site SSO in MG63 xenografts in mice and observed a reduction in tumour growth. We also demonstrated that the 3′ splice site SSO caused a reduction in ERG expression in a patient-derived prostate tumour tissue cultured ex vivo.

Conclusions: We have successfully designed and tested morpholino-based SSOs that cause a marked reduction in ERG expression, resulting in decreased cell proliferation, a reduced migratory phenotype and increased apoptosis. Our initial tests on mouse xenografts and a human prostate cancer radical prostatectomy specimen indicate that SSOs can be effective for oncogene targeting in vivo. As such, this study encourages further in vivo therapeutic studies using SSOs targeting the ERG oncogene.

Citation

Li, L., Hobson, L., Perry, L., Clark, B., Heavey, S., Haider, A., …Ladomery, M. (2020). Targeting the ERG oncogene with splice-switching oligonucleotides as a novel therapeutic strategy in prostate cancer. British Journal of Cancer, 123, 1024-1032. https://doi.org/10.1038/s41416-020-0951-2

Journal Article Type Article
Acceptance Date Jun 4, 2020
Online Publication Date Jun 25, 2020
Publication Date Jun 25, 2020
Deposit Date Jun 25, 2020
Publicly Available Date Mar 28, 2024
Journal British Journal of Cancer
Print ISSN 0007-0920
Electronic ISSN 1532-1827
Publisher Springer Nature [academic journals on nature.com]
Peer Reviewed Peer Reviewed
Volume 123
Pages 1024-1032
DOI https://doi.org/10.1038/s41416-020-0951-2
Keywords Antisense oligonucleotide therapy, Prostate cancer
Public URL https://uwe-repository.worktribe.com/output/6053439
Publisher URL https://www.nature.com/articles/s41416-020-0951-2
Additional Information Funded by Prostate Cancer UK

Files






You might also like



Downloadable Citations