Skip to main content

Research Repository

Advanced Search

A quantitative evaluation of aerosol generation during cardiopulmonary resuscitation

Shrimpton, A. J.; Brown, V.; Vassallo, J.; Nolan, J. P.; Soar, J.; Hamilton, F.; Cook, T. M.; Bzdek, B. R.; Reid, J. P.; Makepeace, C. H.; Deutsch, J.; Ascione, R.; Brown, J. M.; Benger, Jonathan; Pickering, A. E.

A quantitative evaluation of aerosol generation during cardiopulmonary resuscitation Thumbnail


A. J. Shrimpton

V. Brown

J. Vassallo

J. P. Nolan

J. Soar

F. Hamilton

T. M. Cook

B. R. Bzdek

J. P. Reid

C. H. Makepeace

J. Deutsch

R. Ascione

J. M. Brown

Jonathan Benger

A. E. Pickering


It is unclear if cardiopulmonary resuscitation is an aerosol-generating procedure and whether this poses a risk of airborne disease transmission to healthcare workers and bystanders. Use of airborne transmission precautions during cardiopulmonary resuscitation may confer rescuer protection but risks patient harm due to delays in commencing treatment. To quantify the risk of respiratory aerosol generation during cardiopulmonary resuscitation in humans, we conducted an aerosol monitoring study during out-of-hospital cardiac arrests. Exhaled aerosol was recorded using an optical particle sizer spectrometer connected to the breathing system. Aerosol produced during resuscitation was compared with that produced by control participants under general anaesthesia ventilated with an equivalent respiratory pattern tocardiopulmonary resuscitation. A porcine cardiac arrest model was used to determine the independent contributions of ventilatory breaths, chest compressions and external cardiac defibrillation to aerosol generation. Time-series analysis of participants with cardiac arrest (n = 18) demonstrated a repeating waveform of respiratory aerosol that mapped to specific components of resuscitation. Very high peak aerosol concentrations were generated during ventilation of participants with cardiac arrest with median (IQR [range]) 17,926 (5546–59,209 [1523–242,648]) particles.l-1, which were 24-fold greater than in control participants under general anaesthesia (744 (309–2106 [23–9099]) particles.l-1, p < 0.001, n = 16). A substantial rise in aerosol also occurred with cardiac defibrillation and chest compressions. In a complimentary porcine model of cardiac arrest, aerosol recordings showed a strikingly similar profile to the human data. Time-averaged aerosol concentrations during ventilation were approximately 270-fold higher than before cardiac arrest (19,410 (2307–41,017 [104–136,025]) vs. 72 (41–136 [23–268]) particles.l-1, p = 0.008). The porcine model also confirmed that both defibrillation and chest compressions generate high concentrations of aerosol independent of, but synergistic with, ventilation. In conclusion, multiple components of cardiopulmonary resuscitation generate high concentrations of respiratory aerosol. We recommend that airborne transmission precautions are warranted in the setting of high-risk pathogens, until the airway is secured with an airway device and breathing system with a filter.


Shrimpton, A. J., Brown, V., Vassallo, J., Nolan, J. P., Soar, J., Hamilton, F., …Pickering, A. E. (2024). A quantitative evaluation of aerosol generation during cardiopulmonary resuscitation. Anaesthesia, 79(2), 156-167.

Journal Article Type Article
Acceptance Date Sep 27, 2023
Online Publication Date Nov 3, 2023
Publication Date Feb 29, 2024
Deposit Date Nov 10, 2023
Publicly Available Date Jan 11, 2024
Journal Anaesthesia
Print ISSN 0003-2409
Electronic ISSN 1365-2044
Publisher Wiley
Peer Reviewed Peer Reviewed
Volume 79
Issue 2
Pages 156-167
Keywords cardiopulmonary resuscitation, aerosol‐generating procedure, CPR, out‐of‐hospital cardiac arrest
Public URL


You might also like

Downloadable Citations