Skip to main content

Research Repository

Advanced Search

Outputs (41)

Impact of feedstock dilution on the performance of urine-fed ceramic and membrane-less microbial fuel cell cascades designs (2023)
Journal Article
Walter, X. A., You, J., Gajda, I., Greenman, J., & Ieropoulos, I. (2023). Impact of feedstock dilution on the performance of urine-fed ceramic and membrane-less microbial fuel cell cascades designs. Journal of Power Sources, 561(30), 232708. https://doi.org/10.1016/j.jpowsour.2023.232708

Recent advancements in the microbial fuel cell (MFC) field have led to the deployment of pilot-scale autonomous sanitation systems converting the organic content of urine into electricity to power lights in decentralised areas. Two designs have been... Read More about Impact of feedstock dilution on the performance of urine-fed ceramic and membrane-less microbial fuel cell cascades designs.

Microbial fuel cell compared to a chemostat (2022)
Journal Article
Greenman, J., Mendis, B. A., Gajda, I., & Ieropoulos, I. A. (2022). Microbial fuel cell compared to a chemostat. Chemosphere, 296, Article 133967. https://doi.org/10.1016/j.chemosphere.2022.133967

Microbial Fuel Cells (MFCs) represent a green and sustainable energy conversion system that integrate bacterial biofilms within an electrochemical two-electrode set-up to produce electricity from organic waste. In this review, we focus on a novel exp... Read More about Microbial fuel cell compared to a chemostat.

Integration of cost-efficient carbon electrodes into the development of microbial fuel cells (2022)
Book Chapter
You, J., Gajda, I., Greenman, J., & Ieropoulos, I. A. (2022). Integration of cost-efficient carbon electrodes into the development of microbial fuel cells. In Nanoporous Carbons for Soft and Flexible Energy Devices (43-57). Springer. https://doi.org/10.1007/978-3-030-81827-2_3

Microbial fuel cells are a renewable energy technology that can generate electricity from organic fuel such as wastewater, whilst simultaneously treating it. In order to implement this technology at larger scale, a major challenge is the choice of su... Read More about Integration of cost-efficient carbon electrodes into the development of microbial fuel cells.

Microbial fuel cell scale-up options: Performance evaluation of membrane (c-MFC) and membrane-less (s-MFC) systems under different feeding regimes (2021)
Journal Article
Walter, X. A., Madrid, E., Gajda, I., Greenman, J., & Ieropoulos, I. (2022). Microbial fuel cell scale-up options: Performance evaluation of membrane (c-MFC) and membrane-less (s-MFC) systems under different feeding regimes. Journal of Power Sources, 520, 230875. https://doi.org/10.1016/j.jpowsour.2021.230875

In recent years, bioelectrochemical systems have advanced towards upscaling applications and tested during field trials, primarily for wastewater treatment. Amongst reported trials, two designs of urine-fed microbial fuel cells (MFCs) were tested suc... Read More about Microbial fuel cell scale-up options: Performance evaluation of membrane (c-MFC) and membrane-less (s-MFC) systems under different feeding regimes.

Microbial fuel cells and their electrified biofilms (2021)
Journal Article
Greenman, J., Gajda, I., You, J., Mendis, B. A., Obata, O., Pasternak, G., & Ieropoulos, I. (2021). Microbial fuel cells and their electrified biofilms. Biofilms, 3, Article 100057. https://doi.org/10.1016/j.bioflm.2021.100057

Bioelectrochemical systems (BES) represent a wide range of different biofilm-based bioreactors that includes microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial desalination cells (MDCs). The first described bioelectrical b... Read More about Microbial fuel cells and their electrified biofilms.

Electrosynthesis, modulation, and self-driven electroseparation in microbial fuel cells (2021)
Journal Article
Gajda, I., You, J., Mendis, B. A., Greenman, J., & Ieropoulos, I. A. (2021). Electrosynthesis, modulation, and self-driven electroseparation in microbial fuel cells. iScience, 24(8), Article 102805. https://doi.org/10.1016/j.isci.2021.102805

Microbial electrosynthesis (MES) represents a sustainable platform that converts waste into resources, using microorganisms within an electrochemical cell. Traditionally, MES refers to the oxidation/reduction of a reactant at the electrode surface wi... Read More about Electrosynthesis, modulation, and self-driven electroseparation in microbial fuel cells.

Effect of microbial fuel cell operation time on the disinfection efficacy of electrochemically synthesised catholyte from urine (2020)
Journal Article
Merino-Jimenez, I., Obata, O., Pasternak, G., Gajda, I., Greenman, J., & Ieropoulos, I. (2021). Effect of microbial fuel cell operation time on the disinfection efficacy of electrochemically synthesised catholyte from urine. Process Biochemistry, 101, 294-303. https://doi.org/10.1016/j.procbio.2020.10.014

Microbial fuel cells (MFCs) offer an excellent solution to tackle some of the major challenges currently faced by humankind: sustainable energy sources, waste management and water stress. Besides treating wastewater and producing useful electricity f... Read More about Effect of microbial fuel cell operation time on the disinfection efficacy of electrochemically synthesised catholyte from urine.

A new method for urine electrofiltration and long term power enhancement using surface modified anodes with activated carbon in ceramic microbial fuel cells (2020)
Journal Article
Gajda, I., You, J., Santoro, C., Greenman, J., & Ieropoulos, I. A. (2020). A new method for urine electrofiltration and long term power enhancement using surface modified anodes with activated carbon in ceramic microbial fuel cells. Electrochimica Acta, 353, Article 136388. https://doi.org/10.1016/j.electacta.2020.136388

This work is presenting for the first time the use of inexpensive and efficient anode material for boosting power production, as well as improving electrofiltration of human urine in tubular microbial fuel cells (MFCs). The MFCs were constructed usin... Read More about A new method for urine electrofiltration and long term power enhancement using surface modified anodes with activated carbon in ceramic microbial fuel cells.

Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species (2020)
Journal Article
Gajda, I., Obata, O., Greenman, J., & Ieropoulos, I. A. (2020). Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species. Scientific Reports, 10, Article 5533. https://doi.org/10.1038/s41598-020-60626-x

This work presents a small scale and low cost ceramic based microbial fuel cell, utilising human urine into electricity, while producing clean catholyte into an initially empty cathode chamber through the process of electro-osmostic drag. It is the f... Read More about Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species.

Urine in bioelectrochemical systems: An overall review (2020)
Journal Article
Santoro, C., Garcia, M. J. S., Walter, X. A., You, J., Theodosiou, P., Gajda, I., …Ieropoulos, I. (2020). Urine in bioelectrochemical systems: An overall review. ChemElectroChem, 7(6), 1312-1331. https://doi.org/10.1002/celc.201901995

In recent years, human urine has been successfully used as an electrolyte and organic substrate in bioelectrochemical systems (BESs) mainly due of its unique properties. Urine contains organic compounds that can be utilised as a fuel for energy recov... Read More about Urine in bioelectrochemical systems: An overall review.