Skip to main content

Research Repository

Advanced Search

Outputs (39)

A robotic test rig for performance assessment of prosthetic joints (2022)
Journal Article
Etoundi, A. C., Dobner, A., Agrawal, S., Semasinghe, C. L., Georgilas, I., & Jafari, A. (2022). A robotic test rig for performance assessment of prosthetic joints. Frontiers in Robotics and AI, 8, Article 613579. https://doi.org/10.3389/frobt.2021.613579

Movement within the human body is made possible by joints connecting two or more elements of the musculoskeletal system. Losing one or more of these connections can seriously limit mobility, which in turn can lead to depression and other mental issue... Read More about A robotic test rig for performance assessment of prosthetic joints.

Physiological data measurement in digital manufacturing (2022)
Conference Proceeding
Agrawal, S., Chong, J., Yacoub, A. A., Giuliani, M., Jafari, A., & Etoundi, A. (2022). Physiological data measurement in digital manufacturing. In 2021 24th International Conference on Mechatronics Technology (ICMT). https://doi.org/10.1109/ICMT53429.2021.9687200

As industry is moving towards a new digital rev-olution, identifying workers' mental and physical status is key to improved productivity in a digital manufacturing scenario. The main objective here is to provide an overview of sensing technologies in... Read More about Physiological data measurement in digital manufacturing.

Mimicking condylar knee to design bio-inspired robotic knee joint based on magnetic resonance imaging (2022)
Conference Proceeding
Hung, C. H., Etoundi, A., Jafari, A., Matthews, J., Chang, W. C., & Chong, J. J. (2022). Mimicking condylar knee to design bio-inspired robotic knee joint based on magnetic resonance imaging. In 2021 24th International Conference on Mechatronics Technology (ICMT)https://doi.org/10.1109/icmt53429.2021.9687202

The process of designing bio-inspired knee joint has been a challenging issue due to the complicated kinematics and dynamics of the human knee joint. This paper addresses this issue by presenting a design methodology that has been used to model the h... Read More about Mimicking condylar knee to design bio-inspired robotic knee joint based on magnetic resonance imaging.

Therapy Easy: A co-designed hand rehabilitation system using Leap motion controller (2022)
Conference Proceeding
Jena, A., Chong, J., Jafari, A., & Etoundi, A. (2022). Therapy Easy: A co-designed hand rehabilitation system using Leap motion controller. In 2021 24th International Conference on Mechatronics Technology (ICMT)https://doi.org/10.1109/icmt53429.2021.9687286

Disability affects over 1 billion people across the globe [1]. About 190 million people in this demographic aged 15 or older require healthcare services due to having significant difficulties in functioning [1]. Upper limb disability is one such issu... Read More about Therapy Easy: A co-designed hand rehabilitation system using Leap motion controller.

Integration of computer vision in a testing facility for prosthetic joint inspection and performance assessment (2022)
Conference Proceeding
Glanville, S., Chong, J. J., Jafari, A., & Etoundi, A. (2022). Integration of computer vision in a testing facility for prosthetic joint inspection and performance assessment. In 2021 24th International Conference on Mechatronics Technology (ICMT)https://doi.org/10.1109/icmt53429.2021.9687237

This paper presents a computer vision system within a test facility for prosthetic joint inspection and performance by analysing range of motion data. Testing with individuals rather than using a testing facility can cause issues, such as irritation,... Read More about Integration of computer vision in a testing facility for prosthetic joint inspection and performance assessment.

Virtual inertia as an energy dissipation element for haptic interfaces (2022)
Journal Article
Choi, H., Kim, N. G., Jafari, A., Singh, H., & Ryu, J. H. (2022). Virtual inertia as an energy dissipation element for haptic interfaces. IEEE Robotics and Automation Letters, 7(2), 2708-2715. https://doi.org/10.1109/LRA.2022.3144492

Adding virtual damping to dissipate energy has been a major tool for designing stable haptic interfaces in most passivity-based approaches. However, virtual damping is known to dissipate a limited amount of energy. It even generates energy during hig... Read More about Virtual inertia as an energy dissipation element for haptic interfaces.

Bio-inspired knee joint: Trends in the hardware systems development (2021)
Journal Article
Etoundi, A. C., Semasinghe, C. L., Agrawal, S., Dobner, A., & Jafari, A. (2021). Bio-inspired knee joint: Trends in the hardware systems development. Frontiers in Robotics and AI, 8, https://doi.org/10.3389/frobt.2021.613574

The knee joint is a complex structure that plays a significant role in the human lower limb for locomotion activities in daily living. However, we are still not quite there yet where we can replicate the functions of the knee bones and the attached l... Read More about Bio-inspired knee joint: Trends in the hardware systems development.

Application of machine learning towards design optimisation of bio-inspired transfemoral prosthetic socket for robotic leg test rig (2020)
Conference Proceeding
Sabau, P., Chong, J. J., Jafari, A., Agrawal, S., Semasinghe, C., & Etoundi, A. (2020). Application of machine learning towards design optimisation of bio-inspired transfemoral prosthetic socket for robotic leg test rig. https://doi.org/10.23919/iccas50221.2020.9268404

In the past century many medical advancements in prosthetics have been achieved, however, discomfort in prosthetic socket remains one of the toughest challenges faced by both amputees and prosthetists. Wearing an uncomfortable socket can lead to user... Read More about Application of machine learning towards design optimisation of bio-inspired transfemoral prosthetic socket for robotic leg test rig.

A de-risked bio-inspired condylar prosthetic knee joint for a robotic leg test rig (2020)
Conference Proceeding
Agrawal, S., Simasinghe, C., Jafari, A., Etoundi, A., & Jie Chong, J. (in press). A de-risked bio-inspired condylar prosthetic knee joint for a robotic leg test rig

The design of the human knee joint has been a challenging task due to the presence of intricate parts, complex mechanisms and their interdependence which joins them together. A bio-inspired design for the condylar knee joint has been proposed in earl... Read More about A de-risked bio-inspired condylar prosthetic knee joint for a robotic leg test rig.

Application of machine learning towards design optimisation of bio-inspired transfemoral prosthetic socket for robotic leg test rig (2020)
Conference Proceeding
Sabau, P., Jie Chong, J., Jafari, A., Agrawal, S., Semasinghe, C., & Etoundi, A. (in press). Application of machine learning towards design optimisation of bio-inspired transfemoral prosthetic socket for robotic leg test rig

In the past century many medical advancements in prosthetics have been achieved, however, discomfort in prosthetic socket remains one of the toughest challenges faced by both amputees and prosthetists. Wearing an uncomfortable socket can lead to user... Read More about Application of machine learning towards design optimisation of bio-inspired transfemoral prosthetic socket for robotic leg test rig.