Skip to main content

Research Repository

Advanced Search

Outputs (26)

Stimulating fungi Pleurotus ostreatus with hydrocortisone (2021)
Journal Article
Dehshibi, M. M., Chiolerio, A., Nikolaidou, A., Mayne, R., Gandia, A., Ashtari-Majlan, M., & Adamatzky, A. (2021). Stimulating fungi Pleurotus ostreatus with hydrocortisone. ACS Biomaterials Science and Engineering, 7(8), 3718-3726. https://doi.org/10.1021/acsbiomaterials.1c00752

Fungi cells can sense extracellular signals via reception, transduction, and response mechanisms, allowing them to communicate with their host and adapt to their environment. They feature effective regulatory protein expressions that enhance and regu... Read More about Stimulating fungi Pleurotus ostreatus with hydrocortisone.

Contactless sensing of liquid marbles for detection, characterisation & computing (2019)
Journal Article
Draper, T. C., Phillips, N., Weerasekera, R., Mayne, R., Fullarton, C., de Lacy Costello, B., & Adamatzky, A. (2020). Contactless sensing of liquid marbles for detection, characterisation & computing. Lab on a Chip, 20(1), 136-146. https://doi.org/10.1039/c9lc01001g

Liquid marbles (LMs) are of growing interest in many fields, including microfluidics, microreactors, sensors, and signal carriers. The generation of LMs is generally performed manually, although there has recently been a burst of publications involvi... Read More about Contactless sensing of liquid marbles for detection, characterisation & computing.

Neuromorphic liquid marbles with aqueous carbon nanotube cores (2019)
Journal Article
Mayne, R., Draper, T. C., Phillips, N., Whiting, J. G. H., Weerasekera, R., Fullarton, C., …Adamatzky, A. (2019). Neuromorphic liquid marbles with aqueous carbon nanotube cores. Langmuir, 35, 13182-13188. https://doi.org/10.1021/acs.langmuir.9b02552

Neuromorphic computing devices attempt to emulate features of biological nervous systems through mimicking the properties of synapses, towards implementing the emergent properties of their counterparts, such as learning. Inspired by recent advances i... Read More about Neuromorphic liquid marbles with aqueous carbon nanotube cores.

Marimo machines: Oscillators, biosensors and actuators (2019)
Journal Article
Phillips, N., Draper, T. C., Mayne, R., & Adamatzky, A. (2019). Marimo machines: Oscillators, biosensors and actuators. Journal of Biological Engineering, 13(1), Article 72. https://doi.org/10.1186/s13036-019-0200-5

Background The green algae balls (Aegagropila linnaei), known as Marimo, are large spherical colonies of live photosynthetic filaments, formed by rolling water currents in freshwater lakes. Photosynthesis therein produces gas bubbles that can attach... Read More about Marimo machines: Oscillators, biosensors and actuators.

Interspecies Urban Planning, Reimaging City Infrastructures with Slime Mould (2019)
Book Chapter
Dillon, T. (2019). Interspecies Urban Planning, Reimaging City Infrastructures with Slime Mould. . River Publishers

The slime mould Physarum polycephalum optimises its shape in a geometrically constrained space. We explore this property in order to reconsider how we could develop more inclusive, interspecies approaches to urban planning and infrastructure. Working... Read More about Interspecies Urban Planning, Reimaging City Infrastructures with Slime Mould.

Mapping outcomes of liquid marble collisions (2019)
Journal Article
Draper, T. C., Fullarton, C., Mayne, R., Phillips, N., Canciani, G. E., De Lacy Costello, B. P., & Adamatzky, A. (2019). Mapping outcomes of liquid marble collisions. Soft Matter, 15(17), 3541-3551. https://doi.org/10.1039/c9sm00328b

© 2019 The Royal Society of Chemistry. Liquid marbles (LMs) have many promising roles in the ongoing development of microfluidics, microreactors, bioreactors, and unconventional computing. In many of these applications, the coalescence of two LMs is... Read More about Mapping outcomes of liquid marble collisions.

Towards experimental P-systems using multivesicular liposomes (2019)
Journal Article
Mayne, R., Phillips, N., & Adamatzky, A. (2019). Towards experimental P-systems using multivesicular liposomes. Œconomia, 1(1), 20-28. https://doi.org/10.1007/s41965-018-00006-7

P-systems are abstract computational models inspired by the phospholipid bilayer membranes generated by biological cells. Illustrated here is a mechanism by which recursive liposome structures (multivesicular liposomes) may be experimentally produced... Read More about Towards experimental P-systems using multivesicular liposomes.

A Cilia-inspired Closed-loop Sensor-actuator Array (2018)
Journal Article
Whiting, J., Mayne, R., Melhuish, C., & Adamatzky, A. (2018). A Cilia-inspired Closed-loop Sensor-actuator Array. Journal of Bionic Engineering, 15(3), 526-532. https://doi.org/10.1007/s42235-018-0043-7

© 2018, Jilin University. Cilia are finger-like cell-surface organelles that are used by certain varieties of aquatic unicellular organisms for motility, sensing and object manipulation. Initiated by internal generators and external mechanical and ch... Read More about A Cilia-inspired Closed-loop Sensor-actuator Array.

A parallel modular biomimetic cilia sorting platform (2018)
Journal Article
Whiting, J. G., Mayne, R., & Adamatzky, A. (2018). A parallel modular biomimetic cilia sorting platform. Biomimetics, 3(2), 5. https://doi.org/10.3390/biomimetics3020005

The aquatic unicellular organism Paramecium caudatum uses cilia to swim around its environment and to graze on food particles and bacteria. Paramecia use waves of ciliary beating for locomotion, intake of food particles and sensing. There is some evi... Read More about A parallel modular biomimetic cilia sorting platform.

Slime mould: The fundamental mechanisms of biological cognition (2018)
Journal Article
Vallverdú, J., Castro, O., Mayne, R., Talanov, M., Levin, M., Baluška, F., …Adamatzky, A. (2018). Slime mould: The fundamental mechanisms of biological cognition. BioSystems, 165, 57-70. https://doi.org/10.1016/j.biosystems.2017.12.011

© 2018 Elsevier B.V. The slime mould Physarum polycephalum has been used in developing unconventional computing devices for in which the slime mould played a role of a sensing, actuating, and computing device. These devices treated the slime mould as... Read More about Slime mould: The fundamental mechanisms of biological cognition.