Skip to main content

Research Repository

Advanced Search

Outputs (3)

Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication (2015)
Journal Article
Philamore, H., Philamorea, H., Rossiter, J., Walters, P., Winfield, J., & Ieropoulos, I. (2015). Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication. Journal of Power Sources, 289, 91-99. https://doi.org/10.1016/j.jpowsour.2015.04.113

© 2015 Elsevier B.V. All rights reserved. We present novel solutions to a key challenge in microbial fuel cell (MFC) technology; greater power density through increased relative surface area of the ion exchange membrane that separates the anode and c... Read More about Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication.

Artificial heartbeat: Design and fabrication of a biologically inspired pump (2013)
Journal Article
Walters, P., Lewis, A., Stinchcombe, A., Stephenson, R., & Ieropoulos, I. (2013). Artificial heartbeat: Design and fabrication of a biologically inspired pump. Bioinspiration and Biomimetics, 8(4), 1-14. https://doi.org/10.1088/1748-3182/8/4/046012

We present a biologically inspired actuator exhibiting a novel pumping action. The design of the 'artificial heartbeat' actuator is inspired by physical principles derived from the structure and function of the human heart. The actuator employs NiTi... Read More about Artificial heartbeat: Design and fabrication of a biologically inspired pump.

Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells (2013)
Journal Article
Winfield, J., Greenman, J., Huson, D., & Ieropoulos, I. (2013). Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells. Bioprocess and Biosystems Engineering, 36(12), 1913-1921. https://doi.org/10.1007/s00449-013-0967-6

The properties of earthenware and terracotta were investigated in terms of structural integrity and ion conductivity, in two microbial fuel cell (MFC) designs. Parameters such as wall thickness (4, 8, 18 mm), porosity and cathode hydration were analy... Read More about Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells.