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Abstract 

In this paper, a new neural network enhanced synchronized control approach is proposed for multiple robotic 

manipulators systems (MRMS) based on leader-follower network communication topology. The justification of 

introducing two adaptive Radial Basis Function Neural Networks (RBF NN), also called neuro agents, is to 

facilitate the whole control system design and analysis. Otherwise such design is impossible with classical 

analytical procedure. The first agent is the neuro-compensator to accommodate uncertainty associated with the 

follower manipulators, and the second agent is the neuro-estimator to obtain acceleration of the leader manipulator. 

Correspondingly the stability analysis of the designed control system is formulated with Lyapunov method. 

Finally numerical bench tests under various critical conditions are conducted to validate the effectiveness of the 

proposed approach. 

Keywords: Synchronized control, multiple robotic manipulators, leader-follower, neural networks, 

neuro-computing 

1 Introduction 

It has been increasingly important to employ multiple robotic manipulators to execute a commonly or 

interactively simultaneously shared task in modern manufacturing such as assembling, transporting, painting and 

welding, just to name a few [1-4]. Such multiple manipulators, if not yet, will have more functions in space and 

deep seas exploration. The aforementioned industrial applications require large maneuverability and 



manipulability, in which a single robotic manipulator cannot undertake easily or even impossibly. To effectively 

achieve these largely demanded task functionalities, an effective solution has been to use cooperative or 

coordinated MRMS [5, 6]. Conventional centralized and/or decentralized robot control algorithms have not 

addressed coordination/cooperation tasks [7, 8]. Note that most of existing coordinated control algorithms, such as 

cooperative control and master-slave control, require to measure internal force in implementation. It is known that 

internal force measurement is very difficult in practice. In the point of practical view, synchronization, 

coordination and cooperation are intimately linked subjects and have been used as synonyms to describe such 

system characteristics [9]. With the deepening of the research, it is found that position synchronized control can 

coordinate MRMS without measuring internal force [10-13]. It has been noticed that control of such systems still 

stands as one of the challenging issues in the field of robot control. 

Due to the good executable ability, much attention has been attracted by mechanical systems synchronized 

control. To justify the motivation and necessity of the proposed study, there must make a critical survey on the 

existing representative work, which scrutinizes the achievement and potential hard nut issues. In light of 

cross-coupling technology, an adaptive synchronized control algorithm has been designed for multi-robot 

assembly tasks [13]. A mutual synchronization control approach has been studied with velocity observer [14]. By 

removing some restrictive assumptions, an adaptive position synchronized control has been developed for 

multi-robots with flexible/rigid constraints [15]. Sliding mode position synchronized control algorithm has been 

developed for MRMS, which has strong robustness [16, 17]. Passivity framework has been used in 

synchronization bilateral teleoperators, which can deal with bounded time delay [18]. It should be mentioned that 

most of the existing synchronized control approaches of MRMS use undirected communication networked 

topology graphs which assumed that at least each two neighboring manipulators can communicate with each other. 

However, the directed communication networked topology graphs are more appropriate in practice due to 

communicating cost and/or networked failure [19]. In this paper, a leader-flower based directed graph is used to 

describe the communicating networked topology. Note that leader-follower directed graph can achieve MRMS 

tracking synchronization which is more useful than that of leaderless synchronized control in industrial 

applications [3, 4]. In light of graph theory, a novel synchronization error is initially defined and used to design 

the synchronized controller for MRMS. By using the weighted matrix and Laplacian matrix in the proposed 

synchronization error design, the new synchronization error is different from the existing ones in nature. 

System uncertainty of robotic manipulator may be induced by modeling error, backlash, friction, external 

disturbance and so forth, which deteriorates system control performance seriously. It should be accommodated in 

synchronized controller design. NN has strong learning ability and can approximate almost all of nonlinear 



function [20]. It has found that NN can estimate system uncertainty of robotic manipulator online effectively. 

Some NN based adaptive control algorithms are designed for single robotic manipulator [21-23]. Note that the 

mentioned NN based control algorithms are appropriate for the single robotic manipulators but cannot be used to 

the MRMS. Some indispensable extensions are required to design NN based synchronized controller according to 

the MRMS’s kinematics and dynamics properties. It is not trivial to design the new RBF NN based adaptive law 

for MRMS because the leader-follower based synchronization error and graph weighted adjacency matrices 

should be embedded into it. The motivations of using RBF NN in MRMS are two folds: (1) It can compensate 

follower manipulators’ system uncertainty online and then reduces the controller design complexity. (2) It can 

estimate the leader manipulator’s acceleration online which is very difficult to measure in practice. Most of the 

leader-follower control algorithms assume that the bound of the acceleration should be given before the controller 

design [24] or complex observer should be used for the estimation [25]. In summary, using RBF NN in 

synchronized control of MRMS is novel, efficient, and challenging in designing such class of control systems and 

can simplify the controller design.  

By using the leader-follower communicating topology and NN online learning technique, a new 

synchronized control algorithm with neuro-agents is developed for MRMS in this study. The proposed 

synchronized controller has the following characteristics: the leader-follower based synchronization error, RBF 

NN based follower manipulators’ modeling error compensator and RBF NN based leader acceleration estimator. 

The neural network weighting parameters can be updated by an adaptive law online. The closed loop control is 

guaranteed to be stable by Lyapunov method. The robotic manipulators can track the leader’s trajectory in a 

synchronous manner. In summary, the control algorithm is interesting and novel due to the use of new 

synchronization error, enhanced with the two neuro agents, RBF dynamic compensator and the estimator in 

MRMS. Especially, the RBF acceleration estimator of leader manipulator can relax the assumption that the leader 

acceleration bound should be known during the controller design. This assumption has been used in most of 

leader-follower multi-agent control systems. 

In general, from the study, such control law design procedure can be summarized with the following 5 steps: 

Step 1: Define a leader-follower type synchronization error which is more in line with industrial practice [18]. 

Step 2: Design RBF based online compensator to deal with system uncertainty and RBF based online 

estimator to deal with the leader’s acceleration. Note that RBF is a universal approximate function which can 

estimate almost all nonlinear function, which can simplify the controller design greatly [26-28].  

Step 3: Reform the MRMS dynamic model after the above two step operations. Note that this will be 

simplified as a second order system with small modeling errors. 



Step 4: Design an adaptive synchronized control law by using Lyapunov methods [29]. 

Step 5: Stability analysis should be given to lay a foundation for the safety use of the proposed approach. 

This study integrates several principles cross modeling, neuro computing, system and control domains for 

MRMS, such as leader-follower directed graph, RBF NN compensation and estimation, synchronized control and 

so on. Fairly speaking, there are many approaches enable to design the synchronized controllers for MRMS. 

However the proposed approach is more practical, simple and systematical. In the point view of the authors, this 

study may present an alternative but more effective solution for MRMS with new insight and application 

incentive. 

The rest of this study is organized as follows. In section 2, synchronization error is defined in the concept of 

directed graph and leader-follower topology. In section 3, RBF NN scheme is elaborated to compensate the 

modeling error of robotic manipulator and to estimate the joint acceleration of leader manipulator. In section 4, the 

new synchronized control algorithm is developed with stability analysis. In section 5, illustrative examples are 

presented to validate the performance of the designed scheme. Finally, in section 6, some concluding remarks are 

given to complete the study. 

2 Leader-follower based synchronization error 

In this section, some basic concepts on algebraic graph theory are introduced to lay a foundation for MRMS 

synchronized control. The leader-follower based synchronization error is defined in light of these concepts. 

A. Concepts on graph theory and leader-follower system 

Consider a leader-follower system consisting of one leader and 𝑛 followers. Let 𝒢 = {𝒱, ℰ} be a directed 

graph, in which 𝒱 = {0,1,2,⋯ , 𝑛} is the set of nodes. Node 𝑖 denotes the 𝑖th robotic manipulator. ℰ is the set 

of edges. An edge of 𝒢 is represented by an ordered pair(𝑖, 𝑗). (𝑖, 𝑗) ∈ ℰ if and only if the 𝑖th manipulator can 

send information to the 𝑗th manipulator directly, but not necessarily vice versa. Unlike the directed graph, the 

pairs of nodes on an undirected graph are unordered, in which the edge (𝑖, 𝑗) means that manipulator 𝑖 and 𝑗 

can obtain information from each other. Hence, the undirected graph is a special case of a directed graph. A 

directed tree is a directed graph, where every node has an exact parent except for the root, and the root has a 

directed path to every node. A directed spanning tree of 𝒢 is a directed tree that contains all nodes of 𝒢 [30]. 

Suppose the MRMS has 𝑛 + 1 𝑚-link full actuated robotic manipulator including one leader and 𝑛 

followers. Let 𝐴 = (𝑎𝑖𝑗) ∈ 𝑅(𝑛+1)𝑚×(𝑛+1)𝑚 be the weighted adjacency matrix of 𝒢 with nonnegative elements, 



where 𝑎𝑖𝑗 ∈ 𝑅𝑚×𝑚 ≥ 0  with 𝑎𝑖𝑗 > 0  if there is an edge between manipulator 𝑖  and manipulator 𝑗 . Let 

𝐷 = diag{𝑑0, 𝑑1,⋯ , 𝑑𝑛} ∈ 𝑅(𝑛+1)𝑚×(𝑛+1)𝑚 be a block diagonal matrix, where 𝑑𝑖 = ∑ 𝑎𝑖𝑗
𝑛
𝑗=0  for 𝑖 = 0,1,⋯ , 𝑛. 

Then, the Laplacian of the weighted graph can be defined as  

𝐿 = 𝐷 − 𝐴 ∈ 𝑅(𝑛+1)𝑚×(𝑛+1)𝑚                              (1) 

The connection weight between the follower manipulator and the leader manipulator is denoted by 

𝑏𝑖 ∈ 𝑅𝑚×𝑚 with 𝑏𝑖 > 0 if there is an edge between them. Two theorems summarize the existing results on 

Laplacian matrix and graph theory.  

Theorem 1. [31] The directed graph 𝒢 = {𝒱, ℰ} has a directed spanning tree if and only if {𝒱, ℰ} has at least 

one node with a directed path to all other nodes. 

Theorem 2. The Laplacian matrix 𝐿 of a directed graph 𝒢 = {𝒱, ℰ} has at least 𝑚 zero eigenvalue and all of 

the nonzero eigenvalues are in the open right-half plane. In addition,  𝐿 has exactly 𝑚 zero eigenvalue if and 

only if 𝒢 has a directed spanning tree. Furthermore, Rank(𝐿) = 𝑛𝑚 if and only if 𝐿 has 𝑚 simple zero 

eigenvalues. 

Proof: The theorem can be proved easily along the method in [32]. 

B. Dynamic equation of robotic manipulators 

Consider the 𝑚-link full actuated robotic manipulator. Its dynamic equation can be given as [33]: 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) = 𝜏                                (2) 

where 𝑞, �̇�, �̈� ∈ 𝑅𝑚 are the joint position, velocity and acceleration, respectively. 𝑀(𝑞) ∈ 𝑅𝑚×𝑚 is symmetric 

positive definite inertia matrix, 𝐶(𝑞, �̇�)�̇� ∈ 𝑅𝑚  is Coriolis and centripetal force vector, 𝐺(𝑞) ∈ 𝑅𝑚  is 

gravitational force vector, 𝜏 ∈ 𝑅𝑚 is joint torque vector.  

Suppose leader manipulator dynamic equation is expressed as: 

𝑀𝑙(𝑞𝑙)�̈�𝑙 + 𝐶𝑙(�̇�𝑙 , 𝑞𝑙)�̇�𝑙 + 𝐺𝑙(𝑞𝑙) = 𝜏𝑙                             (3) 

The dynamics of 𝑖th follower manipulator is expressed as: 

𝑀0𝑖(𝑞𝑖)�̈�𝑖 + 𝐶0𝑖(�̇�𝑖 , 𝑞𝑖)�̇�𝑖 + 𝐺0𝑖(𝑞𝑖) = 𝜏𝑖 + 𝑓𝑖(�̇�𝑖 , 𝑞𝑖)，𝑖 = 1,⋯ , 𝑛            (4) 

where 𝑀0𝑖(𝑞𝑖) , 𝐶0𝑖(�̇�𝑖 , 𝑞𝑖)  and 𝐺0𝑖(𝑞𝑖)  are nominal part of robotic manipulator dynamics, 𝑓𝑖(�̇�𝑖 , 𝑞𝑖) =

−Δ𝑀𝑖(𝑞𝑖)�̈�𝑖 − Δ𝐶𝑖(�̇�𝑖 , 𝑞𝑖)�̇�𝑖 − Δ𝐺𝑖(𝑞𝑖)  is the system uncertainty. 

C. Leader-follower based synchronization error 

The MRMS has 𝑛 + 1  robotic manipulators, in which leader manipulator indexed by 0 and follower 



manipulators indexed by 1,⋯ , 𝑛. The topology relationships among the leader and followers are expressed by a 

directed graph 𝒢 = {𝒱, ℰ} with 𝒱 = {0,1,2,⋯ , 𝑛} and the adjacent matrix: 

𝐴 = [

0𝑚 0𝑚 ⋯ 0𝑚

𝑎10 𝑎11 ⋯ 𝑎1𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

] ∈ 𝑅(𝑛+1)𝑚×(𝑛+1)𝑚                     (5) 

where 0𝑚 ∈ 𝑅𝑚×𝑚 is a zero matrix, 𝑎𝑖𝑗 ∈ 𝑅𝑚×𝑚 > 0. 

Let �̅� = {�̅�, ℰ̅} as the subgraph of 𝒢, which is formed by the follower manipulators and let: 

�̅� = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

] ∈ 𝑅𝑛𝑚×𝑛𝑚                        (6) 

Let �̅� = diag{�̅�1,⋯ , �̅�𝑛} ∈ 𝑅𝑛𝑚×𝑛𝑚 be a block diagonal matrix with �̅�𝑖 = ∑ 𝑎𝑖𝑗
𝑛
𝑗=1  for 𝑖 = 1,⋯ , 𝑛. It is 

obvious that the Laplacian of the subgraph �̅� can be defined as: 

�̅� = �̅� − �̅�                                      (7) 

For simplicity, assume that: 

𝑎𝑖𝑗 = {
𝐼𝑚,   if (𝑗, 𝑖) ∈ ℰ
0𝑚,   otherwise  

                                  (8) 

where 𝐼𝑚 ∈ 𝑅𝑚×𝑚 is an identity matrix. 

Let the connection weight between follower manipulator 𝑖 and the leader is defined as: 

�̅� = diag{𝑏1, 𝑏2, ⋯ , 𝑏𝑛}                                 (9) 

where 𝑏𝑖 is defined as: 

𝑏𝑖 = {
𝐼𝑚,   if manipulator 𝑖 is connected to the leader
0𝑚,   otherwise                                                             

              (10) 

Assumption 1. The joint position and velocity of the leader manipulator are available to its neighbors only. 

Definition 1. Suppose the communication topology of the MRMS is a directed spanning tree. The synchronization 

error is defined as 

{
𝑒𝑖

𝑝
≜ ∑ 𝑎𝑗𝑖(𝑞𝑖 − 𝑞𝑗) + 𝑏𝑖(𝑞𝑖 − 𝑞𝑙)

𝑛
𝑗=1

𝑒𝑖
𝑣 ≜ ∑ 𝑎𝑗𝑖(�̇�𝑖 − �̇�𝑗) + 𝑏𝑖(�̇�𝑖 − �̇�𝑙)

𝑛
𝑗=1

                       (11) 

Remark 1. Partly illumed by multi-agent consensus error [24], synchronization error is defined by (11). 

According to (11), the synchronization here means that each follower manipulator can track the leader 

manipulator’s position while synchronizes its motion with the neighbors. Though the leader’s position and 

velocity are only available to its neighbors its effects can be transferred to other followers indirectly due to the 

directed spanning tree. This synchronization error is fully different from the existing ones [13, 14, 16, 17]. The 

directed graph based synchronized error is more practical than the existing undirected graph based ones. 

The synchronization error dynamics can be written as: 



{
�̇�𝑖

𝑝
≜ 𝑒𝑖

𝑣                                                     

�̇�𝑖
𝑣 ≜ ∑ 𝑎𝑗𝑖(�̈�𝑖 − �̈�𝑗) + 𝑏𝑖(�̈�𝑖 − �̈�𝑙)

𝑛
𝑗=1

                            (12) 

Define some vectors and matrices as follows: 

𝑄𝐹 = [𝑞1
𝑇 ,⋯ , 𝑞𝑛

𝑇]𝑇 , �̇�𝐹 = [�̇�1
𝑇 ,⋯ , �̇�𝑛

𝑇]𝑇 , 𝑇𝐹 = [𝜏1
𝑇,⋯ , 𝜏𝑛

𝑇]𝑇 , 𝐹𝐹 = [𝑓1
𝑇,⋯ , 𝑓𝑛

𝑇]𝑇 , 𝐸𝑝 = [(𝑒1
𝑝
)
𝑇
,⋯ , (𝑒𝑛

𝑝
)
𝑇
]
𝑇

, 

𝐸𝑣 = [(𝑒1
𝑣)𝑇,⋯ , (𝑒𝑛

𝑣)𝑇]𝑇 , 𝑀𝐹 = [
𝑀01(𝑞1) 0

⋱
0 𝑀0𝑛(𝑞𝑛)

] , 𝐶𝐹 = [
𝐶01(�̇�1, 𝑞1) 0

⋱
0 𝐶0𝑛(�̇�𝑛, 𝑞𝑛)

] , 𝐺𝐹 =

[𝐺01
𝑇 (𝑞1),⋯ , 𝐺0𝑛

𝑇 (𝑞𝑛)]𝑇. 

Then, (12) can be written in the matrix form: 

{
�̇�𝑝 = 𝐸𝑣                                                                                                                                           

�̇�𝑣 = (�̅� + �̅�)𝑀𝐹
−1(−𝐶𝐹�̇�𝐹 − 𝐺𝐹 + 𝑇𝐹 + 𝐹𝐹) − �̅�𝑰𝑀𝑙

−1(−𝐶𝑙(�̇�𝑙 , 𝑞𝑙)�̇�𝑙 − 𝐺𝑙(𝑞𝑙) + 𝜏𝑙)
       (13) 

where 𝑰 = [𝐼𝑚,⋯ , 𝐼𝑚]𝑇 ∈ 𝑅𝑛𝑚×𝑚. 

Theorem 3. Consider MRMS (3) and (4) with a directed graph 𝒢 communication topology, if 𝒢 has a directed 

spanning tree and 𝐸𝑝 = 0 and 𝐸𝑣 = 0, then 

[𝑞1
𝑇,⋯ , 𝑞𝑛

𝑇]𝑇 = 𝑰𝑞𝑙                               (14) 

[�̇�1
𝑇,⋯ , �̇�𝑛

𝑇]𝑇 = 𝑰�̇�𝑙                               (15) 

Proof: By using the similar proof procedure in [24], the result can be proved easily.  

3 RBF neural network compensator and estimator for robotic manipulators 

In this section, some RBF NN concepts will be introduced. Then two neuro-agents, that is, RBF based dynamic 

compensator and the leader joint acceleration estimator will be designed for MRMS. 

A. Concepts on RBF neural networks 

RBF NN has some desirable features such as local adjustment of weights and mathematical tractability, which 

attracted larger numbers of attentions in researches and applications. RBF NN with adaptive weights is addressed 

in [26]. RBF NN can be used in adaptive control of nonlinear system, in which RBF NN can adaptively 

compensate for the nonlinear dynamics [27]. As feedforward networks, RBF NN can mapping an input vector 𝑥 

to an output vector 𝑦. A RBF NN can be expressed by [20]: 

𝜙𝑖 = 𝑔(‖𝑥 − 𝑐𝑖‖
2 𝜎𝑖

2⁄ ), i = 1,2,⋯ , 𝑛∗                            

𝑦 = 𝑊𝜙(𝑥)                                                  

where 𝑥 ∈ 𝑅𝑚𝑟 is the input, 𝜙 = [𝜙1, 𝜙2,⋯ , 𝜙𝑛∗1]
𝑇 ∈ 𝑅𝑛∗

 is the output of the hidden layer, 𝑦 ∈ 𝑅𝑛𝑟 is the 

output of the network., 𝑊 ∈ 𝑅𝑛𝑟×𝑛∗
 is the weight matrix, 𝑐𝑖 ∈ 𝑅𝑚𝑟 and 𝜎𝑖 > 0 are the center and width of the 



𝑖th kernel unit respectively. In RBF networks, ‖∙‖ usually denotes the Euclidean norm. The continuous function 

𝑔: [0,∞) → 𝑅 is the activation function which is often chosen to be the Gaussian function 𝑔(𝛼) = exp(−𝛼). It 

can be seen that each kernel node in the RBF NN computes an output that depends on a radially symmetric 

function, and usually the strongest output is obtained when the input is near the centroid of the node.  

Remark 2. Note that under some mild assumptions RBF NN has a universal approximate ability to approximate 

almost all continuous functions over a compact set to any degree of accuracy [27]. Accordingly the RBF networks 

can be used to approximate the follower robotic manipulators’ dynamic uncertainty 𝑓𝑖(�̇�𝑖 , 𝑞𝑖)，𝑖 = 1,⋯ ,𝑚 and 

the leader’s joint acceleration �̈�𝑙. 

Based on the existing results on the RBF neural networks, the following assumptions are made before the 

controller design [28]. 

Assumption 2. Given a positive number 𝜀0 and a continuous function 𝑓(𝑥):𝒷 → ℛ, 𝒷 ∈ 𝑅𝑚𝑟 is a compact set, 

there is a weight matrix 𝜃 and a positive integer 𝑛∗ such that the output 𝑓(𝑥, 𝜃) of the neural networks with 𝑛∗ 

nodes satisfies 

max
𝑥∈𝒷

‖𝑓(𝑥, 𝜃) − 𝑓(𝑥)‖ ≤ 𝜀0 

where 𝑛∗ depends on 𝜀0 and 𝑓(𝑥). 

Assumption 3. The output 𝑓(𝑥, 𝜃) of the neural networks is continuous with respect to its arguments for all 

finite (𝑥, 𝜃). 

B. RBF neural networks based dynamic compensator for follower manipulators 

Design feedforward compensating controller: 

𝜏0𝑖 = 𝐶0𝑖(�̇�𝑖 , 𝑞𝑖)�̇�𝑖 + 𝐺0𝑖(𝑞𝑖)                               (16) 

Let 𝜏𝑖 = 𝜏0𝑖 + 𝑀0𝑖𝜏1𝑖 and substitute 𝜏𝑖 into (3): 

�̈�𝑖 = 𝜏1𝑖 + 𝑀0𝑖
−1(𝑞𝑖)𝑓𝑖(𝑞𝑖 , �̇�𝑖), 𝑖 = 1,⋯ , 𝑛                     (17) 

Let ℎ𝑖(𝑞𝑖 , �̇�𝑖) = 𝑀0𝑖
−1(𝑞𝑖)𝑓𝑖(𝑞𝑖 , �̇�𝑖) and substitute it into (17): 

�̈�𝑖 = 𝜏1𝑖 + ℎ𝑖(𝑞𝑖 , �̇�𝑖), 𝑖 = 1,⋯ , 𝑛                       (18) 

Define 𝑥𝑖 = [(𝑒𝑖
𝑝
)
𝑇
, (𝑒𝑖

𝑣)𝑇]
𝑇
, it is obvious that ℎ𝑖(𝑞𝑖 , �̇�𝑖) is a function of 𝑥𝑖. According to the RBF neural 

networks results, the nonlinear function ℎ𝑖(𝑥𝑖) can be approximated by a static RBF neural network with output 

ℎ̂𝑖(𝑥𝑖 , 𝜃𝑖), in which 𝜃𝑖 ∈ 𝑅𝑛∗
. Suppose 𝜃𝑖

∗ is the optimal weight values to approximate ℎ𝑖(𝑥𝑖) for 𝑥𝑖 belong to 

a compact set 𝒷(𝑁𝑥𝑖
) ⊂ 𝑅2𝑚 which is defined as 𝒷(𝑁𝑥𝑖

) ≜ {𝑥𝑖: ‖𝑥𝑖‖ ≤ 𝑁𝑥𝑖
}.  

Notation 1. For a matrix 𝑅, Frobenius matrix norm is defined as ‖𝑅‖𝐹
2 ≜ ∑ |𝑟𝑖𝑗|

2
= tr(𝑅𝑇𝑅) = tr(𝑅𝑅𝑇)𝑖𝑗 . 



Assumption 4. All the weights belong to a large compact set ℬ(𝑀𝜃𝑖
) ≜ {𝜃𝑖: ‖𝜃𝑖‖𝐹 ≤ 𝑀𝜃𝑖

}, 𝑀𝜃𝑖
> 0 is a 

positive number. 

The optimal weight 𝜃𝑖
∗ is defined as the element in ℬ(𝑀𝜃𝑖

) that can minimize the function ‖ℎ̂𝑖(𝑥𝑖 , 𝜃𝑖) −

ℎ𝑖(𝑥𝑖)‖ for 𝑥𝑖 ∈ 𝒷(𝑁𝑥𝑖
), that is: 

𝜃𝑖
∗ ≜ argmin

𝜃𝑖∈ℬ(𝑀𝜃𝑖
)
{sup

𝑥𝑖∈𝒷(𝑁𝑥𝑖
)
‖ℎ̂𝑖(𝑥𝑖, 𝜃𝑖) − ℎ𝑖(𝑥𝑖)‖}               (19) 

Then (18) can be written as: 

�̈�𝑖 = 𝜏1𝑖 + ℎ̂𝑖(𝑥𝑖 , 𝜃𝑖
∗) + (ℎ𝑖(𝑥𝑖) − ℎ̂𝑖(𝑥𝑖 , 𝜃𝑖

∗)), 𝑖 = 1,⋯ , 𝑛              (20) 

Remark 3. In the adaptive law design, the estimation of 𝜃𝑖
∗ can be restricted in the compact set ℬ(𝑀𝜃𝑖

) by 

using projection approach, which will be specified in the next section. 

Define modeling error caused by RBF NN as: 

𝜂𝑖 ≜ ℎ𝑖(𝑥𝑖) − ℎ̂𝑖(𝑥𝑖, 𝜃𝑖
∗)                                (21) 

It is bounded by a finite positive constant: 

𝜂0𝑖 ≜ sup𝑡≥0‖ℎ𝑖(𝑥𝑖) − ℎ̂𝑖(𝑥𝑖 , 𝜃𝑖
∗)‖                          (22) 

By using the RBF NN properties, ℎ̂𝑖(𝑥𝑖 , 𝜃𝑖
∗) can be expressed in the following form: 

ℎ̂𝑖(𝑥𝑖, 𝜃𝑖
∗) = 𝜃𝑖

∗𝜙𝑖(𝑥𝑖)                               (23) 

where 𝜃𝑖
∗ ∈ 𝑅𝑚×𝑛∗

 is optimal weight values matrix and 𝜃𝑖
∗ ≤ 𝑀𝜃𝑖

, 𝜙𝑖(𝑥𝑖) ∈ 𝑅𝑛∗
 is output of the hidden layer of 

RBF NN, here it is the regressor.  

By using (21) and (23), (20) can be written as: 

�̈�𝑖 = 𝜏1𝑖 + 𝜃𝑖
∗𝜙𝑖(𝑥𝑖) + 𝜂𝑖, 𝑖 = 1,⋯ , 𝑛                   (24) 

Let 𝜃𝑖
∗ be the estimation of 𝜃𝑖

∗, then design a RBF neural networks based compensator as: 

𝜏2𝑖 = −𝜃𝑖
∗𝜙𝑖(𝑥𝑖)                                  (25) 

Let 𝜏1𝑖 = 𝜏3𝑖 + 𝜏2𝑖, substitute 𝜏1𝑖 into (24): 

�̈�𝑖 = 𝜏3𝑖 + 𝜃𝑖
∗𝜙𝑖(𝑥𝑖) − 𝜃𝑖

∗𝜙𝑖(𝑥𝑖) + 𝜂𝑖, 𝑖 = 1,⋯ , 𝑛           (26) 

Define the estimation error of 𝜃𝑖
∗ as: 

�̃�𝑖
∗ = 𝜃𝑖

∗ − 𝜃𝑖
∗                                 (27) 

Then (26) can be expressed as: 

�̈�𝑖 = 𝜏3𝑖 − �̃�𝑖
∗𝜙𝑖(𝑥𝑖) + 𝜂𝑖, 𝑖 = 1,⋯ , 𝑛                   (28) 

According to the expressions of 𝜏0𝑖, 𝜏1𝑖 and 𝜏2𝑖, the control input 𝜏𝑖 is written as: 

𝜏𝑖 = 𝐶0𝑖(�̇�𝑖 , 𝑞𝑖)�̇�𝑖 + 𝐺0𝑖(𝑞𝑖) − 𝑀0𝑖(𝑞𝑖)𝜃𝑖
∗𝜙𝑖(𝑥𝑖) + 𝑀0𝑖𝜏3𝑖, 𝑖 = 1,⋯ , 𝑛        (29) 

Remark 4. 𝜏0𝑖 and 𝜏2𝑖 are feedforward compensators. By using them, follower manipulator’s dynamic equation 



can be simplified as (28). The term 𝜃𝑖
∗ can be updated online by an adaptive law which will be designed in the 

next section. 

C. RBF neural networks based acceleration estimator for leader manipulator 

Substitute (29) into (12): 

{
�̇�𝑖

𝑝
= 𝑒𝑖

𝑣                                                                                                                                                    

�̇�𝑖
𝑣 = (∑ 𝑎𝑖𝑗

𝑚
𝑗=1 + 𝑏𝑖)[𝜏3𝑖 − �̃�𝑖

∗𝜙𝑖(𝑥𝑖) + 𝜂𝑖] − ∑ [𝑎𝑖𝑗𝜏3𝑗 − 𝑎𝑖𝑗�̃�𝑗
∗𝜙𝑗(𝑥𝑗) + 𝑎𝑖𝑗𝜂𝑗]

𝑚
𝑗=1 − 𝑏𝑖�̈�𝑙

    (30) 

Then, (30) can be expressed in the matrix form: 

{
�̇�𝑝 = 𝐸𝑣                                                                         

�̇�𝑣 ≜ (�̅� + �̅�)𝑇 + (�̅� + �̅�)𝛩 − (�̅� + �̅�)�̃� − �̅�𝑰�̈�𝑙

                      (31) 

where T = [𝜏31, ⋯ 𝜏3𝑛]T, Θ = [η1,⋯ηn]
T, �̃� = [𝜙1

𝑇(𝑥1)(�̃�1
∗)

𝑇
,⋯ , 𝜙𝑛

𝑇(𝑥𝑛)(�̃�𝑛
∗)

𝑇
]
𝑇
. 

Because 𝜏𝑙 is the function of 𝑞𝑙 and �̇�𝑙, �̈�𝑙, it is also the function of 𝑞𝑙 and �̇�𝑙. Define 𝑥𝑙 = [𝑞𝑙
𝑇 , �̇�𝑙

𝑇]𝑇, the 

nonlinear function �̈�𝑙(𝑥𝑙) can be approximated by a static RBF NN with output �̂̈�𝑙(𝑥𝑙, 𝜃𝑙), in which 𝜃𝑙 ∈ 𝑅𝑛∗∗
. 

�̂̈�𝑙(𝑥𝑙 , 𝜃𝑙) = 𝜃𝑙𝜙𝑙(𝑥𝑙)                                  (32) 

Suppose 𝜃𝑙
∗ is the optimal weight values to approximate �̈�𝑙(𝑥𝑙) for 𝑥𝑙 belong to a compact set 𝒷(𝑁𝑥𝑙

) ⊂

𝑅2𝑚 which is defined as 𝒷(𝑁𝑥𝑙
) ≜ {𝑥𝑙: ‖𝑥𝑙‖ ≤ 𝑁𝑥𝑙

}.  

Assumption 5. All the weights belong to a large compact set ℬ(𝑀𝜃𝑙
) ≜ {𝜃𝑙: ‖𝜃𝑙‖𝐹 ≤ 𝑀𝜃𝑙

}, 𝑀𝜃𝑙
> 0 is a 

positive number. 

The optimal weight 𝜃𝑙
∗ is defined as the element in ℬ(𝑀𝜃𝑙

) that can minimize the function ‖q̂̈𝑙(𝑥𝑙 , 𝜃𝑙) −

�̈�𝑙(𝑥𝑙)‖ for 𝑥𝑙 ∈ 𝒷(𝑁𝑥𝑙
), that is: 

𝜃𝑙
∗ ≜ argmin

𝜃𝑙∈ℬ(𝑀𝜃𝑙
)
{sup

𝑥𝑙∈𝒷(𝑀𝑥𝑙
)
‖ℎ̂𝑙(𝑥𝑙 , 𝜃𝑙) − ℎ𝑙(𝑥𝑙)‖}               (33) 

Define modeling error caused by RBF NN as: 

𝜂𝑙 ≜ �̈�𝑙(𝑥𝑙) − q̂̈𝑙(𝑥𝑙 , 𝜃𝑙
∗)                                (34) 

It is bounded by a finite positive constant: 

𝜂0𝑙 ≜ sup𝑡≥0‖�̈�𝑙(𝑥𝑙) − q̂̈𝑙(𝑥𝑙 , 𝜃𝑙
∗)‖                           (35) 

By using (34), (31) can be written as: 

{
�̇�𝑝 = 𝐸𝑣                                                                                                   

�̇�𝑣 ≜ (�̅� + �̅�)𝑇 + (�̅� + �̅�)𝛩 − (�̅� + �̅�)�̃� − �̅�𝑰(𝜃𝑙
∗𝜙𝑙(x𝑙) + 𝜂𝑙)

                (36) 

The RBF NN based leader manipulator joint acceleration estimator can be designed as follows: 

𝑇1 = (�̅� + �̅�)−1�̅�𝑰𝜃𝑙
∗𝜙𝑙(x𝑙)                              (37) 

Control law 𝑇 will be designed as: 

𝑇 = 𝑇1 + 𝑇2                                       (38) 



Remark 5. 𝑇1 is the leader joint acceleration estimator, its weight parameters 𝜃𝑙
∗ can be updated by an adaptive 

law online which will be specified in the next section. 

4 Leader-follower based synchronized controller design 

In this section the main results of this study will be summarized with stability analysis. For (36), in light of RBF 

neural network approximate ability, a leader-follower based adaptive synchronized control law can be designed 

for MRMS: 

𝑇2 = (�̅� + �̅�)−1(−𝐾𝑝𝐸𝑝 − 𝐾𝑣𝐸𝑣)                            (39) 

Substitute (38) into (36), it yields: 

{
�̇�𝑝 = 𝐸𝑣                                                                                                              

�̇�𝑣 ≜ −𝐾𝑝𝐸𝑝 − 𝐾𝑣𝐸𝑣 − (�̅� + �̅�)�̃� + �̅�𝑰�̃�𝑙
∗𝜙𝑙(𝑥𝑙) + (�̅� + �̅�)𝛩 − �̅�𝑰𝜂𝑙

       (40) 

Let 𝔼 = [𝐸𝑝
𝑇 , 𝐸𝑣

𝑇], 𝔸 = [
𝟎 𝕀

−𝐾𝑝 −𝐾𝑣
], 𝔹1 = [

𝟎
−(�̅� + �̅�)]

, 𝔹2 = [
𝟎
�̅�𝑰

], where 𝟎 and 𝕀 are zero matrix and 

identity matrix with appropriate dimensions. Then (40) can be rewritten as: 

�̇� = 𝔸𝔼 + 𝔹1(�̃� − 𝛩) + 𝔹2(𝜃𝑙
∗𝜙𝑙(𝑥𝑙) − 𝜂𝑙)                        (41) 

RBF neural networks based adaptive laws are designed as: 

Ξ̇̂ = −
1

Γ𝑓
𝔹1

𝑇𝑃𝔼[𝜙1
𝑇(𝑥1),⋯ ,𝜙𝑛

𝑇(𝑥𝑛)] −
𝑐𝑓

Γ𝑓

�̂�𝑇𝔹1
𝑇𝑃𝔼

𝑀𝜃𝐼
2 Ξ̂                    (42) 

𝑐𝑓 = {
1, if ‖Ξ̂‖ = 𝑀𝜃𝐼

 and �̂�𝑇𝔹1
𝑇𝑃𝔼 > 0

0, otherwise                                                
                      (43) 

�̇�𝑙
∗ = −

1

Γ𝑙
𝔹2

𝑇𝑃𝔼𝜙𝑙
𝑇(𝑥𝑙) −

𝑐𝑙

Γ𝑙

𝜙𝑙
𝑇(𝑥𝑙)(�̂�𝑙

∗)
𝑇
𝔹2

𝑇𝑃𝔼

𝑀𝜃𝑙
2 𝜃𝑙

∗                        (44) 

𝑐𝑙 = { 1, if ‖Ξ̂‖ = 𝑀𝜃𝑙
 and 𝜙𝑙

𝑇(𝑥𝑙)(𝜃𝑙
∗)

𝑇
𝔹2

𝑇𝑃𝔼 > 0

0, otherwise                                                            
                    (45) 

where 𝐾𝑝, 𝐾𝑣 ∈ 𝑅𝑚𝑛×𝑚𝑛  are positive definite diagonal matrices, Ξ̂ = diag{(𝜃1
∗),⋯ , 𝜃𝑛

∗} ∈ 𝑅𝑚𝑛×𝑛∗𝑛 , Ξ =

diag{𝜃1
∗,⋯ , 𝜃𝑛

∗} ∈ 𝑅𝑚𝑛×𝑛∗𝑛,  �̂� = [ℎ̂1
𝑇,⋯ , ℎ̂𝑛

𝑇]
𝑇
, Γ𝑓 , Γ𝑙 > 0 are positive constant, 𝑀𝜃𝐼

= max𝑖=1,⋯𝑛{𝑀𝜃𝑖
}, 𝑃 is 

symmetric and positive definite matrix and satisfies Lyapunov equation 𝑃𝔸 + 𝔸𝑇𝑃 = −𝑄, 𝑄 ≥ 0.  

Define the following equations: 

𝔹1 = [
𝕓11

1 ⋯ 𝕓1𝑛
1

⋮ ⋱ ⋮
𝕓2𝑛1

1 ⋯ 𝕓2𝑛𝑛
1

], 𝑃 = [

𝑝11 ⋯ 𝑝12𝑛

⋮ ⋱ ⋮
𝑝2𝑛1 ⋯ 𝑝2𝑛2𝑛

], 𝔼 = [

𝕖1

⋮
𝕖2𝑛

], 𝔹1 = [
𝕓1

2

⋮
𝕓2𝑛

2
] 

where 𝕓𝑖𝑘
1 ∈ 𝑅𝑚×𝑚, 𝑝𝑖𝑗 ∈ 𝑅𝑚×𝑚, 𝕖𝑖 ∈ 𝑅𝑚×𝑚, 𝕓𝑖

2 ∈ 𝑅𝑚×𝑚, 𝑖 = 1,⋯ ,2𝑛, 𝑘 = 1,⋯ , 𝑛 𝑗 = 1,⋯ ,2𝑛. 

The distributed form of (42)-(45) can be written as: 

𝜏3𝑖 = (∑ (𝑎𝑖𝑗 + 𝑏𝑖)
𝑛
𝑗=1 )

−1
(∑ 𝑎𝑖𝑗𝜏3𝑗 +𝑛

𝑗=1 𝑏𝑖𝜃𝑙
∗𝜙𝑙(𝑥𝑙) − 𝑘𝑝𝑖𝑒𝑖

𝑝
− 𝑘𝑣𝑖𝑒𝑖

𝑣)           (46) 



�̇�𝑖
∗ =

1

Γ𝑓
∑ ((𝕓𝑗𝑖

1 )
𝑇
𝑝𝑖𝑗𝕖𝑖)

2𝑛
𝑖=1 𝜙𝑗

𝑇(𝑥𝑗) −
𝑐𝑓

Γ𝑓

𝜙𝑖
𝑇(𝑥𝑖)((𝕓𝑗𝑖

1 )
𝑇
𝑝𝑖𝑗𝕖𝑖)𝜙𝑖(𝑥𝑖)

𝑀𝜃𝐼
2             (47) 

𝑐𝑓 = {
1, if ‖𝜃1

∗‖
𝐹

= 𝑀𝜃𝑖
 and 𝜙𝑖

𝑇(𝑥𝑖) ((𝕓𝑗𝑖
1 )

𝑇
𝑝𝑖𝑗𝕖𝑖)𝜙𝑖(𝑥𝑖) > 0                                 

0, otherwise                                                                                                         
  (48) 

�̇�𝑙
∗ = −

1

Γ𝑙
𝔹2

𝑇𝑃𝔼𝜙𝑙
𝑇(𝑥𝑙) −

𝑐𝑙

Γ𝑙

𝜙𝑙
𝑇(𝑥𝑙)(�̂�𝑙

∗)
𝑇
𝔹2

𝑇𝑃𝔼

𝑀𝜃𝑙
2 𝜃𝑙

∗                          (49) 

𝑐𝑙 = { 1, if ‖Ξ̂‖ = 𝑀𝜃𝑙
 and 𝜙𝑙

𝑇(𝑥𝑙)(𝜃𝑙
∗)

𝑇
𝔹2

𝑇𝑃𝔼 > 0

0, otherwise                                                            
                     (50) 

Remark 6. With the adaptive operation (42)-(45), the weight matrices can be updated online. Therefore training data 

sets are not required in the proposed approach. This is different from the conventional Off-Line RBF NN modeling 

approaches which need the data sets for training in advance. The converging property can be guaranteed by the 

Lyapunov method, the details can be found in the following context. 

Theorem 4. If the directed graph 𝒢  has a directed spanning tree, then leader-follower based adaptive 

synchronized control law (29), (38), (42)-(45) can make the closed loop (41) to be stable under the Assumptions 

1-5, that is, the synchronization error 𝐸𝑝 and 𝐸𝑣 converge to a small residual set. 

Proof: Chose a Lyapunov function candidate: 

𝑉 =
1

2
𝔼𝑇𝑃𝔼 +

1

2
Γ𝑓‖Ξ̃‖

𝐹

2
+

1

2
Γ𝑙‖�̃�𝑙

∗‖
𝐹

2
                    (51) 

where Ξ̃ and �̃�𝑙
∗ are defined as: 

Ξ̃ = Ξ̂ − Ξ, Ξ̇̃ = Ξ̇̂                                    (52) 

�̃�𝑙
∗ = 𝜃𝑙

∗ − 𝜃𝑙
∗, �̇̃�𝑙

∗ = �̇�𝑙
∗                                  (53) 

Differentiating 𝑉 with time along closed loop (41): 

�̇� =
1

2
𝔼𝑇(𝔸𝑇𝑃 + 𝑃𝔸)𝔼 + (�̃�𝑇 − 𝛩𝑇)𝔹1

𝑇𝑃𝔼 + (𝜙𝑙
𝑇(𝑥𝑙)(�̃�𝑙

∗)
𝑇

− 𝜂𝑙
𝑇)𝔹2

𝑇𝑃𝔼 + Γ𝑓tr (Ξ̇̃Ξ̃𝑇) + Γ𝑙tr (�̇̃�𝑙
∗(�̃�𝑙

∗)
𝑇
) (54) 

Note that,  𝔸𝑇𝑃 + 𝑃𝔸 = −𝑄, �̃�𝑇𝔹1
𝑇𝑃𝔼 = tr(𝔹1

𝑇𝑃𝔼�̃�𝑇), 𝜙𝑙
𝑇(𝑥𝑙)(�̃�𝑙

∗)
𝑇
𝔹2

𝑇𝑃𝔼 = tr (𝔹2
𝑇𝑃𝔼𝜙𝑙

𝑇(𝑥𝑙)(�̃�𝑙
∗)

𝑇
), then 

(54) can be written as: 

�̇� = −
1

2
𝔼𝑇𝑄𝔼 + Γ𝑓tr (Ξ̇̃Ξ̃𝑇 +

1

Γ𝑓
𝔹1

𝑇𝑃𝔼�̃�𝑇)                              

+Γ𝑙tr (�̇̃�𝑙
∗(�̃�𝑙

∗)
𝑇

+
1

Γ𝑙
𝔹2

𝑇𝑃𝔼𝜙𝑙
𝑇(𝑥𝑙)(�̃�𝑙

∗)
𝑇
) − 𝛩𝑇𝔹1

𝑇𝑃𝔼 − 𝜂𝑙
𝑇𝔹2

𝑇𝑃𝔼   (55) 

Note that �̃�𝑇 = [𝜙1
𝑇(𝑥1),⋯ ,𝜙𝑛

𝑇(𝑥𝑛)]Ξ̃𝑇, substitute adaptive law (42)-(45) into (55): 

�̇� = −
1

2
𝔼𝑇𝑄𝔼 − 𝛩𝑇𝔹1

𝑇𝑃𝔼 − 𝜂𝑙
𝑇𝔹2

𝑇𝑃𝔼                            

−tr (
𝑐𝑓

Γ𝑓

�̂�𝑇𝔹1
𝑇𝑃𝔼

𝑀𝜃𝐼
2 Ξ̂Ξ̃𝑇) − tr (

𝑐𝑙

Γ𝑙

𝜙𝑙
𝑇(𝑥𝑙)(�̂�𝑙

∗)
𝑇
𝔹2

𝑇𝑃𝔼

𝑀𝜃𝑙
2 𝜃𝑙

∗(�̃�𝑙
∗)

𝑇
)       (56) 

Note that, the following inequality is always satisfied: 

tr (𝑐𝑓
�̂�𝑇𝔹1

𝑇𝑃𝔼

𝑀𝜃𝐼
2 Ξ̂Ξ̃𝑇) = 𝑐𝑓

�̂�𝑇𝔹1
𝑇𝑃𝔼

𝑀𝜃𝐼
2 tr(Ξ̂Ξ̂𝑇 − Ξ̂Ξ) ≥ 0               (57) 



tr (𝑐𝑙
𝜙𝑙

𝑇(𝑥𝑙)(�̂�𝑙
∗)

𝑇
𝔹2

𝑇𝑃𝔼

𝑀𝜃𝑙
2 𝜃𝑙

∗(�̃�𝑙
∗)

𝑇
) = 𝑐𝑙

𝜙𝑙
𝑇(𝑥𝑙)(�̂�𝑙

∗)
𝑇
𝔹2

𝑇𝑃𝔼

𝑀𝜃𝑙
2 tr (𝜃𝑙

∗(𝜃𝑙
∗)

𝑇
− 𝜃𝑙

∗(𝜃𝑙
∗)𝑇) ≥ 0      (58) 

By using projections (43) and (45), it is very easy to obtain (57) and (58). Let 𝜒 = −𝛩𝑇𝔹1
𝑇 − 𝜂𝑙

𝑇𝔹2
𝑇, then (56) 

will be: 

�̇� ≤ −
1

2
𝔼𝑇𝑄𝔼 + 𝜒𝑃𝔼                                  (59) 

Let 𝜆min(𝑄) and 𝜆max(𝑃) denote minimum eigenvalue of matrix 𝑄 and maximum eigenvalue of matrix 𝑃, 

respectively. Then, the following inequality will be: 

�̇� ≤ −
1

2
𝜆min(𝑄)‖𝔼‖2 + ‖𝜒‖𝜆max(𝑃)‖𝔼‖                             

= −
1

2
‖𝔼‖(𝜆min(𝑄)‖𝔼‖ − 2‖𝜒‖𝜆max(𝑃))                       (60) 

Because ‖𝜂𝑖‖ ≤ 𝜂0𝑖 and ‖𝜂𝑙‖ ≤ 𝜂0𝑙, 𝜒 must be bounded and let: 

𝜒0 ≜ sup𝑡≥0‖𝜒‖                                     (61) 

�̇� ≤ −
1

2
‖𝔼‖(𝜆min(𝑄)‖𝔼‖ − 2𝜒0𝜆max(𝑃))                       (62) 

From (62), one can see that 𝔼 will converge to a residual set {𝔼: ‖𝔼‖ ≤ 2
𝜆max(𝑃)

𝜆min(𝑄)
𝜒0}. Hence 𝑥𝑖 and 𝑥𝑙 will 

be confined inside compacts 𝒷(𝑁𝑥𝑖
) and 𝒷(𝑁𝑥𝑙

), respectively. Then, all of the signals of the closed loop will be 

bounded. ∎ 

Remark 7. The residual set is determined by 𝜆max(𝑃) and 𝜆min(𝑄). Note that 𝑃 is a solution of Lyapunov 

equation 𝑃𝔸 + 𝔸𝑇𝑃 = −𝑄. 𝔸 is mainly composed by controller gain matrices 𝐾𝑝 and 𝐾𝑣. If 𝐾𝑝, 𝐾𝑣 and 𝑄 

are given, 𝑃 can be computed by using Matlab. The following example is used to show how 𝐾𝑝 and 𝐾𝑣 affect 

𝜆max(𝑃). 

Example 1. 

Choose 𝔸 = [
0 1

−𝐾𝑝 −𝐾𝑣
], 𝐾𝑝 = 0.1: 0.1: 10 , 𝐾𝑣 = 0.1: 0.1: 1 , 𝑄 = [

5 0
0 5

] . By using Matlab command 

𝑃 = lyap(𝔸,𝑄), 𝑃 can be resolved. The relationship of 𝜆max(𝑃)  with 𝐾𝑝 and 𝐾𝑣 is plotted in Figure 1.  



 

Figure 1. Relationship of 𝜆max(𝑃)  with 𝐾𝑝 and 𝐾𝑣 

Figure 1 shows that 𝜆𝑚𝑎𝑥(𝑃) decreases first and then increases as 𝐾𝑝 increases if 𝑄 and 𝐾𝑣 are fixed. The 

maximum eigenvalue of the matrix 𝑃 decreases as 𝐾𝑣 increases, however it should be noted that the change rate 

of the maximum eigenvalue of the matrix 𝑃 will not significantly increase as 𝐾𝑣 is large enough. 

Trial and error method can be used in controller parameters selection according to the relationship. First, select 

an appropriate 𝑄 according to the expected converging speed. Second, select a large enough 𝐾𝑣 and then use the 

trial and error method to look for the best 𝐾𝑝. Finally, the previously tuned gains may need to be changed slightly 

by using a trial and error method.  

The controller design procedure can be summarized as: 

Step 1: Design RBF NN based compensator 𝜏𝑖 = 𝐶0𝑖(�̇�𝑖 , 𝑞𝑖)�̇�𝑖 + 𝐺0𝑖(𝑞𝑖) − 𝑀0𝑖(𝑞𝑖)𝜃𝑖
∗𝜙𝑖(𝑥𝑖) + 𝑀0𝑖𝜏3𝑖 , 

𝑖 = 1,⋯ , 𝑛 for follower manipulator 𝑖. 

Step 2: Design RBF NN based acceleration estimator 𝑇1 = (�̅� + �̅�)−1�̅�𝑰𝜃𝑙
∗𝜙𝑙(x𝑙) for leader manipulator. 

Step 3: Design RBF NN adaptive synchronized controller as (39), (42)-(45), which can be written as distributed 

form (46)-(50). 

Step 4: Stability analysis (51)-(62). 

Remark 8. According to the design steps, the new synchronized control algorithm can be implemented with the 

enhanced functionality provided from the neuro-agents and leader-follower communicating topology. Its 

effectiveness can be validated by the stability analysis and the following illustrative examples. 



5 Illustrative examples 

In this section, 4 cases are presented to validate the performance of the proposed approach from various angles. 

Case 1 is the test of the proposed approach with 5 robotic manipulators. Case 2 is the test of the proposed 

approach with 9 robotic manipulators. Case 3 is the comparative test of a conventional feedback control method. 

Case 4 is the test of the proposed approach on the leader’s desired trajectory at different frequencies. 

Suppose that all of the leader and follower manipulators had same dynamics which was given as: 

𝑀0(𝑞)�̈� + 𝐶0(𝑞, �̇�)�̇� + 𝐺0(𝑞) = 𝜏 + 𝑓 

𝑀0(𝑞) = [
𝐽 + 𝑚1 + 2𝑚2 cos(𝑞2) 𝑚1 + 𝑚2 cos(𝑞2)

𝑚1 + 𝑞02 cos(𝑞2) 𝑚1
] 

𝐶0(𝑞, �̇�) = [
−𝑚2�̇�2 sin(𝑞2) −𝑚2(�̇�1 + �̇�2) sin(𝑞2)

𝑚2�̇�1 sin(𝑞2) 0
] 

𝐺0(𝑞) = [
𝑚3𝑔 cos(𝑞1) + 𝑚4𝑔 cos(𝑞1 + 𝑞2)

𝑚4𝑔 cos(𝑞1 + 𝑞2)
] 

𝑓 = 0.2(𝑀0(𝑞)�̈� + 𝐶0(𝑞, �̇�)�̇� + 𝐺0(𝑞)) 

where 𝐽 = 13.33, 𝑚1 = 8.98, 𝑚2 = 8.75, 𝑚3 = 15, 𝑚4 = 8.75, 𝑔 = 9.8. The leader manipulator’s desired 

trajectory and velocity were specified as: 

{
𝑞1

𝑑 = 1 + 0.2 sin(0.5𝜋𝑡)

𝑞2
𝑑 = 1 − 0.2 cos(0.5𝜋𝑡)

 

{
�̇�1

𝑑 = 0.1𝜋 cos(0.5𝜋𝑡)

�̇�2
𝑑 = 0.1𝜋 sin(0.5𝜋𝑡)

 

Case 1. The proposed approach for 5 robotic manipulators 

A leader-follower based MRMS composed of five manipulators was considered, where the leader was indexed 

by 0, and the four followers were indexed by 1,2,3,4, respectively. The communication topology graph is shown in 

Figure 2. Note that none of the rest followers could directly receive information from the leader, except follower 3 

and follower 4. In the topology, follower 4 had no directed path to the other followers and the leader had directed 

paths to the all followers. 

 



Figure 2. Directed graph of leader-follower system (5 robotic manipulators) 

Consequently the adjacent matrix of the graph was set up as: 

𝐴 =

[
 
 
 
 
02 02 02 02 02

02 02 𝐼2 𝐼2 𝐼2
02 02 02 𝐼2 02

𝐼2 02 𝐼2 02 02

𝐼2 02 02 02 02]
 
 
 
 

 

Laplacian of the followers was: 

�̅� = [

3𝐼2 −𝐼2 −𝐼2 −𝐼2
02 𝐼2 −𝐼2 02

02 −𝐼2 𝐼2 02

02 02 02 02

] 

Interconnection relationship that is the block diagonal matrix between the leader and its followers was given as: 

�̅� = diag{02, 02, 𝐼2, 𝐼2} 

The controller parameters were selected as: 𝐾𝑝 = diag(2,⋯ ,2) ∈ 𝑅8×8 , 𝐾𝑣 = diag(10,⋯ ,10) ∈ 𝑅8×8 , 

Γf = 20, Γl = 20. 

Figure 3 is the position synchronization performance of joint-1 of the MRMS, where dashed line is the joint-1 

position of leader manipulator, others are the joint-1 position of follower manipulators. Figure 4 is the position 

synchronization performance of joint-2 position of the MRMS. Figure 5 is the velocity synchronization 

performance of joint-1 of the MRMS, where dashed line is the joint-1 velocity of leader manipulator, others are 

the joint-1 velocity of follower manipulators. Figure 6 is the velocity synchronization performance of joint-2 of 

the MRMS. Simulation results of Figure 3-6 show that the followers’ joint position and velocity can converge to 

leader’s joint position and velocity with acceptable small residual errors. 

 



Figure 3 Joint-1 position (the proposed approach for 5 robotic manipulators) 

 

Figure 4 Joint-2 position (the proposed approach for 5 robotic manipulators) 

 

Figure 5 Joint-1 velocity (the proposed approach for 5 robotic manipulators) 



 

Figure 6 Joint-2 velocity (the proposed approach for 5 robotic manipulators) 

To show the relationship of synchronization errors with controller parameter matrices 𝐾𝑝  and 𝐾𝑣 , the 

performances of different 𝐾𝑝 of synchronization error of joint-1 are shown in Figure 7. The values of ‖𝔼‖ under 

different 𝐾𝑝 are given in Table 1. The simulation results show that the synchronization errors will decrease first 

and then increase as 𝐾𝑝 increases. These results are consistent with the conclusion drawn from Example 1. 

 

Figure 7 Residual synchronization errors of joint 1 with different 𝐾𝑝 (𝐾𝑣 = diag(10), 10 ≤ 𝑡 ≤ 20 𝑠𝑒𝑐) 

Remark 9. In classical theory, 𝐾𝑝 is the proportion gain. In general, the synchronization error will decrease as 

𝐾𝑝 increase. If 𝐾𝑝 is larger than critical value the system will be oscillated or event un-stable. Then, the 



synchronization error will increase after 𝐾𝑝 is larger than that value. 

Table 1 The norm of synchronization errors of all joints with respect to different 𝐾𝑝 

Feedback gain ‖𝔼‖ (𝐾𝑣 = diag(10), 10 ≤ 𝑡 ≤ 20 𝑠𝑒𝑐) 

𝐾𝑝 =  diag(0.5) 97.0807 

𝐾𝑝 = diag(1) 4.6594 

𝐾𝑝 = diag(1.5) 0.0936 

𝐾𝑝 = diag(2) 0.0314 

𝐾𝑝 = diag(2.5) 0.0287 

𝐾𝑝 = diag(3) 0.0283 

𝐾𝑝 = diag(3.5) 0.0292 

𝐾𝑝 = diag(4) 0.0305 

𝐾𝑝 = diag(4.5) 0.0318 

𝐾𝑝 = diag(5) 0.0333 

𝐾𝑝 = diag(5.5) 0.0344 

𝐾𝑝 = diag(6) 0.0354 

Case 2. The proposed approach for 9 robotic manipulators 

In this case, a leader-follower based MRMS composed of nine manipulators was tested, where the leader was 

indexed by 0, and the eight followers were indexed by 1,⋯ ,8 respectively. Figure 6 shows the communication 

topology graph with a directed spanning tree. 

 

Figure 8. Directed graph of leader-follower system (9 robotic manipulators) 

Consequently the adjacent matrix of the graph was set up as: 



𝐴 =

[
 
 
 
 
 
 
 
 
02 02 02 02 02 02 02 02 02

02 02 𝐼2 𝐼2 𝐼2 02 02 02 02

02 02 02 𝐼2 02 02 𝐼2 02 02

𝐼2 02 𝐼2 02 02 𝐼2 02 𝐼2 02

𝐼2 02 02 02 02 02 02 02 02

02 02 02 02 𝐼2 02 02 02 02

𝐼2 02 02 02 02 02 02 02 02

02 02 𝐼2 𝐼2 02 02 02 02 𝐼2
02 02 02 02 02 𝐼2 02 02 02]

 
 
 
 
 
 
 
 

 

Laplacian of the followers was: 

�̅� =

[
 
 
 
 
 
 
 
3𝐼2 −𝐼2 −𝐼2 −𝐼2 02 02 02 02

02 2𝐼2 −𝐼2 02 02 −𝐼2 02 02

02 −𝐼2 3𝐼2 02 −𝐼2 02 −𝐼2 02

02 02 02 02 02 02 02 02

02 02 02 −𝐼2 𝐼2 02 02 02

02 02 02 02 02 02 02 02

02 −𝐼2 −𝐼2 02 02 02 3𝐼2 −𝐼2
02 02 02 02 −𝐼2 02 02 𝐼2 ]

 
 
 
 
 
 
 

 

Interconnection relationship that is the block diagonal matrix between the leader and its followers was given as: 

�̅� = diag{02, 02, 𝐼2, 𝐼2, 02, 𝐼2, 02, 02} 

The controller parameters were selected as: 𝐾𝑝 = diag(2,⋯ ,2) ∈ 𝑅16×16, 𝐾𝑣 = diag(10,⋯ ,10) ∈ 𝑅16×16, 

Γf = 20, Γl = 20. 

Figures 9-12 show performance. It is obvious that the performances are satisfactory. In intuition the 

performance might be deteriorated greatly with the increase of robotic manipulators and/or the degree of freedom 

(DOF) of each robotic manipulator. However, the simulation results show the numbers of robotic manipulators 

almost do not affect the performances. This is because that the distributed control algorithm is used, in which each 

robotic manipulator computes the control law for itself. If the communication topology graph has a directed 

spanning tree, the proposed approach will make the closed loop to be stable. The numbers will not heavily 

influence the performance. In the case of increasing DOF, the performances will almost not be affected if each 

robotic manipulator has a controller with proper computing ability. Due to the space limitations, the simulation of 

high DOF case is omitted here. The readers can simulate it in MATLAB easily. 



 

Figure 9 Joint-1 position (the proposed approach for 9 robotic manipulators) 

 

Figure 10 Joint-2 position (the proposed approach for 9 robotic manipulators) 



 

Figure 11 Joint-1 velocity (the proposed approach for 9 robotic manipulators) 

 

Figure 12 Joint-2 velocity (the proposed approach for 9 robotic manipulators) 

Case 3. The conventional feedback control 

In this case, a conventional feedback consensus control law was used to control the 5 robotic manipulators. The 

communication topology graph is shown in Figure 2. The control law was designed as: 

𝜏𝑖 = 𝐶0𝑖(�̇�𝑖 , 𝑞𝑖)�̇�𝑖 + 𝐺0𝑖(𝑞𝑖) − 𝑀0𝑖(𝑞𝑖)ℎ̂𝑖 + 𝑀0𝑖𝜏3𝑖 

𝜏3𝑖 = (∑ (𝑎𝑖𝑗 + 𝑏𝑖)
𝑛
𝑗=1 )

−1
(∑ 𝑎𝑖𝑗𝜏3𝑗 +𝑛

𝑗=1 𝑏𝑖 �̂̈�𝑙 − 𝑘𝑝𝑖𝑒𝑖
𝑝

− 𝑘𝑣𝑖𝑒𝑖
𝑣)  



where 𝑘𝑝 = diag(2,2), 𝑘𝑣 = diag(10,10), ℎ̂𝑖 and �̂̈�𝑙 can be estimated by the designers’ experience.  

This control law is a common consensus algorithm. It could be designed according to many existing methods, 

such as [19, 24]. The dynamics uncertainty and leader’s acceleration were estimated offline. Assumed the dynamic 

uncertainty Δ𝑀𝑖(𝑞𝑖) = 0.1𝑀0𝑖 , Δ𝐶𝑖(�̇�𝑖 , 𝑞𝑖) = 0.1𝐶0𝑖(�̇�𝑖 , 𝑞𝑖) , Δ𝐺𝑖(𝑞𝑖) = 0.1𝐺0𝑖(𝑞𝑖) . The estimation of the 

system uncertainty ℎ̂𝑖 = 0.6ℎ𝑖 and the estimation of leader’s acceleration �̂̈�𝑙 = 0.8�̈�𝑙. 

 

Figure 13 Joint-1 position (the conventional approach for 5 robotic manipulators) 

 

Figure 14 Joint-2 position (The conventional approach for 5 robotic manipulators) 



 

Figure 15 Joint-1 velocity (the conventional approach for 5 robotic manipulators) 

 

Figure 16 Joint-2 velocity (the conventional approach for 5 robotic manipulators) 

Figures 13-16 are the performances obtained from the conventional consensus control. It is obvious that the 

performances are not good. There are residual consensus errors. This is because that the system uncertainty and 

leader’ acceleration cannot be obtained accurately. This case also validates the necessity and effective of the 

proposed neuro-agents in estimating the system modeling error and leader’s acceleration. 



Case 4. The proposed approach under different frequencies for the leader’s desired trajectory 

This further test was used to tracking different frequencies for the leader’s desired trajectory. The 

communication topology graph is shown in Figure 2. The controller parameters were selected as those in Case 1. 

The leaders’ trajectories used in Figures 15-18 were given as: 

{
𝑞1

𝑑 = 1 + 0.2 sin(0.1𝜋𝑡)

𝑞2
𝑑 = 1 − 0.2 cos(0.1𝜋𝑡)

 

{
�̇�1

𝑑 = 0.02𝜋 cos(0.1𝜋𝑡)

�̇�2
𝑑 = 0.02𝜋 sin(0.1𝜋𝑡)

 

The leaders’ trajectories used in Figures 19-22 were given as: 

{
𝑞1

𝑑 = 1 + 0.2 sin(3𝜋𝑡)

𝑞2
𝑑 = 1 − 0.2 cos(3𝜋𝑡)

 

{
�̇�1

𝑑 = 0.6𝜋 cos(3𝜋𝑡)

�̇�2
𝑑 = 0.6𝜋 sin(3𝜋𝑡)

 

From Figures 17-24, it can be seen that the performances of the proposed approach are good enough under 

different frequencies for the leader’s desired trajectory. Again, the simulation results validate the synchronized 

capability of the proposed approach.  

Remark 10. In this paper, different frequencies of the leader’s desired trajectory are tested. The performances of 

the proposed approach are good and accepted. It is more interesting to find the explicit relationship between the 

frequency of the leader’s desired trajectory with the synchronization performance. However, it is not an easy job. 

Because most of existing synchronized control approaches are designed and analyzed in the time domain, which 

cannot give the explicit relationship between the frequency and the performance. The main purposed of this paper 

is to give a stable synchronized control based on the neural networks. The authors will consider synchronized 

controller design in the frequency domain in their following works.  

 



 

Figure 17 Joint-1 position (the proposed approach for lower frequency, 𝑓 = 0.05Hz) 

 

Figure 18 Joint-2 position (the proposed approach for lower frequency, 𝑓 = 0.05Hz) 



 

Figure 19 Joint-1 velocity (the proposed approach for lower frequency, 𝑓 = 0.05Hz) 

 

Figure 20 Joint-2 velocity (the proposed approach for lower frequency, 𝑓 = 0.05Hz) 



 

Figure 21 Joint-1 position (the proposed approach for higher frequency, 𝑓 = 1.5Hz) 

 

Figure 22 Joint-2 position (the proposed approach for higher frequency, 𝑓 = 1.5Hz) 



 

Figure 23 Joint-1 velocity (the proposed approach for higher frequency, 𝑓 = 1.5Hz) 

 

Figure 24 Joint-2 velocity (the proposed approach for higher frequency, 𝑓 = 1.5Hz) 

Remark 10. In this paper, different frequencies of the leader’s desired trajectory are tested to show the acceptable 

performance. It is more interesting to find the explicit relationship between the frequency of the leader’s desired 

trajectory with the synchronization performance. However, it is not an easy job. Because most of existing 

synchronized control approaches are designed and analyzed in time domain, which cannot give the explicit 

formulation to link the frequency and the performance. The main purposed of this paper is to give a stable 

synchronized control based on the neural networks. The authors will consider synchronized controller design in 



the frequency domain in their following work. 

Remark 11. Although the inverse kinematics problem is very difficult such that the desired trajectory of most 

industrial serial robotic manipulators planned in their joint space, it is worthwhile pointing out that actually, this is 

not always the case. To plan trajectories in the joint space, usually, inverse kinematics problem needs to be 

resolved first, since most the time, the tasks carried out by the robotic manipulators are assigned in the task space 

except the robot manipulators are taught by operators via teach-pendants. 

Remark 12. The proposed synchronized strategy can be applied to the coordinated control problem of multiple 

transport robotic manipulators only when the strict conditions that all the robotic manipulators are exactly the 

same and their bases are set up with the same orientation are satisfied. Under these two conditions, the relative 

positions of the robotic manipulators can be guaranteed to be constant after they can be synchronized, which is 

known to be a precondition to transport a common object. However, these two conditions cannot be met 

sometimes in real environment, which means that the proposed approach should be wisely used in applications. 

6 Conclusions 

By theoretical analysis and simulation demonstrations, a novel leader-follower based synchronized control 

framework has been initially constructed for MRMS. A directed graph based synchronization error is defined by 

using the leader-follower topology. In light of fully taking advantage of using the RBF NN and adaptive control 

principles, the proposed approach has well claimed capacity to compensate follower manipulators’ uncertainty and 

estimate leader manipulator’s acceleration in terms of convergence and stability. It is worth noting that the study 

has provided a good example to develop new solutions to the challenging and practically highly demanded issues 

encountered in MRMS. In addition this study provides an exemplary showcase with effectively to integrate 

several cross boundary theoretical results in the fields of control, parameter estimation, and neuro-computing, 

which reflects the philosophy of interdisciplinary study having been the tendency in emerging research. The 

immediate future work will be applying this new scheme to resolve some ad hoc problems (such as time delay and 

time varying information topology) commonly encountered in MRMS. 

Acknowledgements 

This work is partially supported by the National Nature Science Foundation of China under Grant 61004080, 

61273188, Shandong Provincial Natural Science Foundation under Grant ZR2011FM003, China and the 



Fundamental Research Funds for the Central Universities of China, Development of key technologies project of 

Qingdao Economic and Technological Development Zone under Grant 2011-2-52, Taishan Scholar Construction 

Engineering Special funding. Finally the authors are grateful to the editor and the anonymous reviewers for their 

helpful comments and constructive suggestions with regard to the revision of the paper. 

Reference  

[1] W. Gueaieb, S. Al-Sharhan, B. Miodrag, Robust computationally efficient control of cooperative closed-chain 

manipulators with uncertain dynamics, Automatica, 43(5) (2007) 842-851 

[2] W. Gueaieb, F. Karray, A robust hybrid intelligent position/force control scheme for cooperative manipulators, 

IEEE Transactions on Mechatronics, 12(2) (2007) 109-125 

[3] H. Nijmeijer, A. Rodriguez-Angeles, Synchronization of mechanical systems, Singapore, World Scientific, 

2003 

[4] D. Sun, Synchronization and control of multiagent systems, CRC Press, Taylor & Francis Group, 2010 

[5] J. C. Martinez-Rosas, M. A. Arteaga, A. M. Castillo-Sanchez, Decentralized control of cooperative robots 

without velocity-force measurements, Automatica, 42(2) (2006) 329-336 

[6] J. Gudino-Lau, M. A. Artegag, Dynamic model and simulation of cooperative robots: a case study, Robotica, 

23(5) (2005) 615-624 

[7] Y.-H. Liu, Y. Xu, M. Bergerman, Cooperation control of multiple manipulators with passive joints, IEEE 

Transactions on Robotics and Automation, 15(2) (1999) 258-267 

[8] H. Kawasaki, S. Ueki, S. Ito, Decentralized adaptive coordinated control of multiple robot arms without using 

a force sensor, Automatica, 42(3) (2006) 481-488 

[9] R. Rocha, J. Dias, A. Carvalho, Cooperative multi-robot systems: A study of vision-based 3-D mapping using 

information theory, Robotics and Autonomous Systems, 53(3-4) (2005) 282-311 

[10] D. Zhang, L. Wang, J. Yu, Geometric topology based cooperation for multiple robots in adversarial 

environments, Control Engineering Practice, 16(9) (2008) 1092-1100 

[11] H.-K. Lee, M. J. Chung, Adaptive controller of a master-slave system for transparent teleoperation. Journal of 

Robotic Systems, 15(8) (1998) 465-475 

[12] D. Sun, J. K. Mills, Adaptive synchronized control for coordination of multirobot assembly tasks, IEEE 

Transactions on Robotics and Automation, 18(4) (2002) 498-510 

[13] D. Sun, Position synchronization of multiple motion axes with adaptive coupling control, Automatica, 39(6) 



(2003) 997-1005 

[14] A. Rodriguez-Angeles, H. Nijmeijer, Mutual synchronization of robots via estimated state feedback: a 

cooperative approach, IEEE Transactions on Control Systems Technology, 12(4) (2004) 542-554 

[15] W.-H. Zhu, On adaptive synchronization control of coordinated multirobots with flexible/rigid constraints, 

IEEE Transactions on Robotics, 21(3) (2005) 520-525 

[16] D. Zhao, S. Li, F. Gao, Q. Zhu, Robust adaptive terminal sliding mode-based synchronised position control 

for multiple motion axes systems, IET Control Theory and Applications, 3(1) (2009) 136-150 

[17] D. Zhao, C Liu, Q. Zhu, Low-pass-filter-based position synchronization sliding mode control for multiple 

robotic manipulator systems, IMechE Part I: Journal of Systems and Control Engineering, 225(8) (2011) 

1136-1148 

[18] N. Chopra, M. W. Spong, R. Lozano, Synchronization of bilateral teleoperators with time delay, Automatica, 

44(8) (2008) 2142-2148 

[19] R. Olfati-Saber, R. M. Murray, Consensus problems in networks of agent with switching topology and 

time-delay, IEEE Automatic Control, 49(9) 2004 1520-1533 

[20] L. P. J. Veelenturf, Analysis and Applications of Artificial Neural Networks, New York, Prentice Hall, 1995 

[21] R.-J. Wai, Tracking control based on neural network strategy for robot manipulator, Neurocomputing， 51 

(2003) 425-445. 

[22] O. Mohareri, R. Dhaouadi, A. B. Rad, Indirect adaptive tracking control of a nonholomic mobile robot via 

neural networks, Neurocomputing, 88 (2012) 54-66. 

[23] B. Daachi, T. Madani, A. Benallegue, Adaptive neural controller for redundant robot manipulators and 

collision avoidance with mobile obstacles, Neurocomputing, 79 (2012) 50-60. 

[24] S. Khoo, L, Xie, Z. Man, Robust finite-time consensus tracking algorithm for multirobot systems, IEEE 

Transactions on Mechatronics, 14(2) (2009) 219-228 

[25] Y. Hong, G. Chen, L. Bushnell, Distributed observers design for leader-following control of multi-agent 

networks, Automatica, 44(3) (2008) 846-850 

[26] D. S. Broomhead, D. Lowe, Multivariable functional interpolation and adaptive networks, Complex Systems, 

2, (1988) 321-355 

[27]Q. Zhu, S. Fei, T. Zhang, T. Li, Adaptive RBF neural-networks control for a class of time-delay nonlinear 

systems, Neurocomputing, 71(16-18) (2008) 3617-3624 

[28] G. Bugmann, Normalized Gaussian Radial Basis Function networks, Neurocomputing, 20(1-3), (1998), 

97-110 



[29] H. K. Khalil, Nonlinear Systems (3
rd

), New Jersey, Prentice Hall, 2002 

[30] W. Ren, Multi-vehicle consensus with a time-varying reference state, Systems & Control Letters, 56(7-8) 

(2007) 474-483 

[31] W. Ren, R. W. Beard, Distributed Consensus in Multi-vehicle Cooperative Control, Springer-Verlag, 

New-York, 2007 

[32] W. Ren, R. W. Beard, Consensus seeking in multiagent systems under dynamically changing interaction 

topologies consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE 

Transactions on Automatic Control, 50(5) (2005) 655-661 

[33] M. W. Spong, S. Hutchinson, M. Vidyasagar, Robot Modeling and Control, New York, John Wiley and Sons, 

2006 

 

Dongya Zhao received BEng from Shandong University, Jinan, China, in 1998, MSc from 

Tianhua Institute of Chemical Machinery & Automation, Lanzhou, China, in 2002 and 

PhD from Shanghai Jiao Tong University, Shanghai, China, in 2009. He was a research 

fellow in Nanyang Technological University during 7/2011 to 7/2012. Since 2002, he has 

been with College of Chemical Engineering, China University of Petroleum, where he is 

currently an Associate Professor. His research interests include robot control, sliding mode control, process 

modeling and control, nonlinear system control and analysis.  

 

Quanmin Zhu received his M.Sc. from Harbin Institute of Technology, China in 1983 

and Ph.D. from University of Warwick, UK, in 1989. He is currently a Professor in 

control systems at Department of Engineering, Design and mathematics, University of 

the West of England, Bristol, UK. His main research interest is in the area of nonlinear 

system modelling, identification, and control. His other research interest is in 

investigating electrodynamics of acupuncture points and sensory stimulation effects in human body, modelling of 

human meridian systems, and building up electro-acupuncture instruments. 

 

Ning Li was born in Shandong, China, in 1974. She received the B.S. and M.S. degrees 

from Qingdao University of Science and Technology, Qingdao, China, in 1996 and 1999, 

respectively, and the Ph.D. degree from Shanghai Jiao Tong University, Shanghai, in 2002. 

She is currently an associate professor of the Department of Automation, Shanghai Jiao 

 



Tong University, Shanghai, China. Her research interests include modeling and control of complex systems, 

predictive control, and fuzzy systems. 

 

Shaoyuan Li was born in Hebei, China, in 1965. He received the B.S. and M.S. 

degrees in automation from Hebei University of Technology, Tianjin, China, in 1987 

and 1992, respectively, and the Ph.D. degree from the Department of Computer and 

System Science, Nankai University, Tianjin, in 1997. He is currently a Professor with 

the Department of Automation, Shanghai Jiao Tong University, Shanghai, China. His 

research interests include fuzzy systems, model predictive control, dynamic system 

optimization, and system identification. 

 

 


