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The real-world building can be regarded as a comprehensive energy engineering system; its actual 

energy consumption depends on complex affecting factors, including various weather data and time 

signature. Accurate energy consumption forecasting and effective energy system management play an 

essential part in improving building energy efficiency. The multi-source weather profile and energy 

consumption data could enable integrating data-driven models and evolutionary algorithms to achieve 

higher forecasting accuracy and robustness. The proposed building energy consumption forecasting 

system consists of three layers: data acquisition and storage layer, data pre-processing layer and data 

analytics layer. The core part of the data analytics layer is a hybrid genetic algorithm (GA) and long-

short term memory (LSTM) neural network model for accurate and robust energy prediction. LSTM 

neural network is adopted to capture the interrelationship between energy consumption data and time. 

GA is adopted to select the optimal architecture for LSTM neural networks to improve its forecasting 

accuracy and robustness. The hyper-parameters for determining LSTM architecture include the number 

of LSTM layers, number of neurons in each LSTM layer, dropping rate of each LSTM layer and 

network learning rate. Meanwhile, the effects of historical weather profile and time horizon of past 

information are also investigated. Two real-life educational buildings are adopted to test the 

performance of the proposed building energy consumption forecasting system. Experiments reveal that 

the proposed adaptive LSTM neural network performs better than the existing feedforward neural 

network and LSTM-based prediction models in accuracy and robustness. It also outperforms those 

LSTM networks whose hyper-parameters are determined by grid search, Bayesian optimisation and 

PSO. Such accurate energy consumption prediction can play an essential role in various areas, including 

daily building energy management, decision making of facility managers, building information model 

designs, net-zero energy operation, climate change mitigation and circular economy. 

 

Keywords: Long-short term memory; Genetic algorithm; Building energy consumption; Energy 

forecast; Energy management system; Adaptive. 
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1. Introduction 

 

The rapid growth of population and fast development of the economy has substantial impacts on global 

energy consumption and environmental concerns. The majority of people spend 90% of their daily lives 

in buildings, which further increases the building energy consumption to satisfy indoor activities and 

thermal comfort [1]. The building sector contributes towards 39% of global energy consumption and 

38% of worldwide greenhouse gas emissions [2]. 

 

1.1 The importance of accurate building energy prediction 

 

Building energy demand management is critical in decreasing primary energy consumption and mitigate 

climate change challenges [3, 4]. One of the essential parts of the energy management system is accurate 

and robust energy consumption forecasting. Effective day-to-day management of electric utility and 

energy devices relies on energy demand forecasting. Furthermore, an accurate and robust building 

energy consumption forecasting model can inspire energy-efficiency policies for energy consumption 

reduction, environmental pollution alleviation, and sustainable economic development. Building energy 

consumption depends on various influential factors, including weather condition, building properties, 

time, and occupancy. It is challenging to develop an accurate and robust energy consumption 

forecasting model owing to the non-linear, nonstationary and multi-seasonality features of the energy 

consumption data, 

 

1.2 Existing approaches of building energy prediction 

 

Energy consumption prediction has become a research problem since the early 1990s [5]. In general, 

energy consumption forecast techniques can be classified into conventional statistical forecasting 

methods and machine learning-based load forecasting techniques. Traditional load forecasting 

techniques include regression, multivariate adaptive regression [6], exponential smoothing and iterative 

reweighted least-squares technique. However, conventional forecasting methods have limited capability 

in representing non-linear, nonstationary and multi-seasonality features of datasets. These techniques 

are usually more complex in computational operations, require higher computational time, and result in 

lower prediction accuracy than machine learning-based forecasting techniques. On the other hand, 

machine learning-based forecasting techniques are generally based on artificial intelligence techniques 

such as k-nearest neighbour [7], autoregressive integrated moving average [6], fuzzy logic, neural 

networks, component-based machine learning method [8] and support vector regression [6]. Through 

big-data transformation, transmission and processing, machine learning models can effectively 

recognise various random and comprehensive function forms.  
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Among various machine learning-based building energy prediction models, neural networks have been 

demonstrated to be the most effective and accurate. Neural networks have the ability to adequately 

approximate the comprehensive non-linear relationship among the input and output datasets of a 

complex energy system with arbitrary and precision. Feedforward neural network models generally try 

to construct a direct mapping among comprehensive input historical data (i.e. weather condition, time 

signature and indoor sensor measurement) and output energy consumption data to achieve the 

forecasting purpose. However, due to the lack of time correlation in the data sequence, feedforward 

neural network models cannot capture the inter-relationship between energy data and time. Therefore, 

its capability in time series forecasting is limited. On the other hand, long short-term memory (LSTM) 

neural network is proposed to overcome such disadvantages. Through implementing recurring 

connections to neurons, LSTM neural network is able to represent the sequence-to-sequence mapping 

between input and output data. Since each time step's output is influenced by the input of the previous 

time step, the ‘memory’ characteristic can be recognised [9]. 

 

1.3 Existing approaches for hyper-parameters tuning 

 

LSTM network has numerous hyper-parameters that must be modified by the developers, such as the 

number of layers, number of neurons in each layer, learning rate, dropping rate and activation function. 

Manual search and automatic search are two widely adopted methods for hyper-parameter optimisation. 

Manual search is largely dependent on the fundamental intuition and experience of users. Data science 

experts can identify the critical hyper-parameters which have superior impacts in determining the 

mathematical relationship between input and output datasets. However, it generally requires model 

developers to be equipped with background knowledge and practical experience. Thus it is challenging 

to be applied by non-expert users. Moreover, most of the hyper-parameter optimisation processes are 

not reproducible. Furthermore, with the increasing number and value range of hyper-parameters, it 

becomes increasingly challenging for manually data processing.  

 

To overcome the drawbacks of manual search, automatic search algorithms have been proposed. The 

objective function of the hyper-parameter optimisation problem is like a black-box function. Thus, 

conventional optimisation techniques such as the Newton method or gradient descent cannot be applied. 

The existing automatic search algorithms include grid search, Bayesian optimisation and evolutionary 

optimisation. Grid search [10], also named exhaustive search, tests the machine learning model with all 

the possible combination of hyper-parameter values. Although grid search can automatically optimise 

and theoretically obtain the optimal global value of hyper-parameters, its costs large computational time 

consumption with the large number and wide value range of hyper-parameters. 

 



4 

 

To solve the problem of expensive computational cost in grid search, Bayesian optimisation is proposed. 

Using Bayesian formula, Bayesian optimisation obtains posterior information of the function 

distribution through integrating prior information of the unknown function with sample information 

[11]. The optimal value of the optimisation function can be estimated through the obtained posterior 

information. However, Bayesian optimisation is generally based upon the assumption that its 

optimisation function obeys the Gaussian distribution. Evolutionary optimisation [12] is inspired by the 

neural plasticity of the human cortex. It can also be adopted to estimate the hyper-parameters of neural 

networks automatically.  

 

2. Related works 

 

To investigate the development status of building energy prediction technologies and LSTM techniques, 

the literature review consists of three parts. Firstly, the conventional artificial neural network-based 

energy prediction models are investigated. Secondly, an overview of LSTM neural network-based 

energy prediction models is conducted. Thirdly, the LSTM neural network in other engineering 

applications is also explored. Through the comprehensive literature review, the significant research 

gaps are identified while the major research objective of this study is outlined. 

 

2.1 Literature review on conventional artificial neural network 

 

Various types of neural network-based energy prediction model have been proposed. Chang et al. [13] 

proposed a backpropagation neural network for country-wide electricity consumption prediction using 

a small dataset. The proposed neural network consists of one hidden layer, while there are two neurons 

in the hidden layer. Luo et al. [14] developed a feedforward neural network-based prediction model for 

cooling and heating loads in buildings. The inputs to the prediction model included multiple real-time 

temperature sensor readings, forecasted weather data profile and historical energy consumption data. 

Different numbers of neurons were tested and selected for various building sub-zones. Later on, Luo et 

al. [15] developed a clustering-enhanced feedforward neural network prediction model for building 

cooling demand. Several neural network-based sub-models were adopted for the year-round prediction, 

while a trial-and-error process determines the number of neurons in each sub-model. Luo et al. [16] 

also developed a hybrid genetic algorithm (GA) and feedforward neural network-based prediction 

model, in which GA was adopted to choose the optimal network architecture. The input datasets to the 

prediction model were composed of historical weather data and time signatures, while the historical 

energy consumption profile was not considered. The feature of training data input, the structure of the 

neural network, and performance indicator of those previously developed neural network-based 

building energy consumption prediction models are summarised in Table 1. From the comprehensive 
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literature review, it is found that most of the ANN models are not able to reflect the inter-relationship 

between energy consumption and timeline. 

 

2.2 Literature review on LSTM neural network-based energy prediction model 

 

The selection of optimal LSTM neural network hyper-parameters varied largely in different pieces of 

literature.  The feature of training data input, the structure of the LSTM neural network, and the 

performance indicator of the previously developed LSTM neural network-enabled building energy 

consumption prediction models are summarised in Table 2. 

 

In most of the literature, the hyper-parameters were selected based on the authors’ own experience. Jian 

et al. [31] adopted the LSTM neural network for the long-term energy consumption prediction of a 

cooling system. It is found that the proposed LSTM method resulted in 19.7% lower at root mean square 

error than the reference feedforward neural network. Khafaf et al. [32] proposed an LSTM neuron 

network model to forecast a 3-day ahead energy consumption of clusters of energy users. Wang et al. 

[33] adopted the LSTM neural network for power consumption prediction and grid anomalies detection. 

Khan et al. [34] adopted the hybrid convolutional neural network with LSTM autoencoder for energy 

consumption prediction in residential and commercial buildings. Wei et al. [35] proposed a hybrid 

singular spectrum analysis and LSTM model for daily natural gas consumption prediction. Singaravel 

et al. [36] tested the performance of LSTM for building energy consumption at the design stage. 201 

design cases were evaluated with four different configurations of the LSTM model. It is found that 

LSTM models have higher accuracy and higher computation speed than ANN models. Zhou et al. [37] 

proposed an LSTM model to predict the energy consumption of air-conditioning systems. The constant 

experimentation was conducted to find the best hyper-parameters, including the number of training 

steps, the length of the time series entering the LSTM and the learning rate.  

 

Trial-and-error process and numerical experiment are also generally adopted to select the optimal 

hyper-parameters of the LSTM neural network. Xue et al. [38] proposed an attention LSTM neural 

network to predict the heat load for the district heating system. It is found that the LSTM model can 

effectively memorise characteristics of the long-term historical heating load. A trial-and-error process 

is conducted to select the number of neurons and type of activation function in the hidden layer. Somu 

et al. [39] proposed a hybrid k-means clustering, convolutional neural network and LSTM model for 

building energy consumption prediction. The number of neurons in the LSTM layer was fixed at 5100. 

Wang et al. [40] demonstrated a multi-energy load prediction model based on an encoder-decoder 

LSTM neural network. Markvoic et al. [41] presented an approach for predicting the day-ahead energy 

plug-in loads using LSTM neural networks. Rahman et al. [42] adopted an LSTM-based deep recurrent 

neural network to predict electricity consumption of commercial and residential buildings. Arranz et al. 
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[43] proposed an LSTM-based predictor to forecast the day-ahead of power consumption of a heating, 

ventilation and air-conditioning system. The number of LSTM layers was fixed at 2, while both LSTM 

layers were assumed to have the same number of neurons. The number of neurons and the learning rate 

was selected by a trial-and-error process. Julio et al. [44] proposed an LSTM method for predicting the 

energy consumption of an educational building. The hyper-parameters, such as the number of neurons 

in each LSTM layer, number of epochs, number of batches, activation function in the hidden and output 

layer, were selected by numerous experiments. Laib et al. [45] proposed a 2-layer LSTM neural network 

for national-wide natural gas consumption prediction. Different experimental set-ups were conducted 

to find out the optimal architecture for LSTM neural network. Lu et al. [46] proposed an LSTM network 

model for regional thermal load prediction. The LSTM was adopted to process the intrinsic temporal 

relationships among input and output variables. 

 

The Bayesian optimisation method is a recently adopted approach to select the appropriate hyper-

parameters to achieve optimal prediction performance. Jin et al. [47] proposed an encoder-decoder 

architecture with a gated recurrent units recurrent neural network prediction model for short-term 

electric power load forecasting. The hyper-parameters include the number of network layers, number 

of network units, batch size, model learning approach and number of training epochs. Yang et al. [48] 

proposed an LSTM-attention-embedding model based on Bayesian optimisation to predict the day-

ahead PV power output. The Bayesian optimisation is adopted to select the optimal values for the time 

window, number of statistical features and number of the combined features. Munem et al. [49] 

proposed a multivariate Bayesian optimisation based LSTM neural network to forecast the residential 

electric power load for the next hour. The Bayesian optimisation algorithm is conducted to select the 

best-fitted hyper-parameter values, including the number of LSTM cells, activation function, 

optimisation method, neurons in the hidden layer, dropout rate and batch size.   

 

Meanwhile, the hybrid evolutionary optimisation algorithm, such as GA and PSO is also integrated with 

LSTM to improve its prediction accuracy. Most of the GA and PSO is adopted to select the optimal 

weight matrix or part of the LSTM hyper-parameters. He et al. [50] proposed a hybrid short-load 

forecasting method with variational mode decomposition and LSTM networks, while the hyper-

parameters of the LSTM network is optimised using the Bayesian Optimisation algorithm. Kim et al. 

[51] proposed an LSTM network for residential energy consumption prediction. The PSO is adopted to 

find out the optimal hyper-parameters such as learning rate, layer size and dropout rate.  Yang et al. [52] 

proposed a hybrid prediction model using extreme learning machine, recurrent neural network, and 

support vector machines. PSO is adopted to select the optimal weight matrix among these three 

networks. Bouktif et al. [53] adopted the LSTM network to construct forecasting models for short to 

medium term aggregate load forecasting. The optimal time lags and the number of layers of the LSTM 

network were determined by GA, while the number of neurons, activation function and learning 
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approach was selected using a trial-and-error approach. Guo et al. [54] proposed a short-term 

forecasting model of LSTM neural network considering demand response. The improved GA is used 

to obtain the best weight matrix for LSTM. However, the structure of the LSTM network is fixed based 

on the developer’s experience. Su et al. [55] proposed a hybrid wavelet transform and LSTM model for 

hourly natural gas demand forecasting. The number of LSTM layers is determined through trial-and-

error, while the number of neurons in each LSTM layer is optimised through GA.  
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Table 1. Literature review of conventional artificial neural network-based energy prediction models. 

Ref Model 
Length of 

datasets 
Model input 

Time 

step 

Number 

of 

neurons 

in hidden 

layer 

Number 

of hidden 

layer(s) 

Learning 

approach 

Activation 

function 

Prediction 

objective 

Performance 

evaluation 
Year 

Time 

correlation 

in the data 

sequence 

13 

Back 

propagation 

neural 
network 

3 years 
Electricity 

consumption 

data 

Monthly 2 1 - - Electricity MAPE 2016  

14 
Feedforward 

neural 

network 

2 years 

Weather data, 

indoor sensor 

data, previous 
energy data 

Hourly 
Tested 

60-80 
1 LM ReLU 

Heating 

Cooling 
MAPE 2019  

15 

Feedforward 

neural 

network 

2 years 
Weather data 
Time index 

Hourly 
Tested 2-

20 
1 LM ReLU Cooling MAPE 2020  

16 
Deep neural 

network 

1 year and 

6 months 

Weather data 
Time 

signature 

Hourly 

Daily 

GA 
optimised 

 

GA 
optimised 

 

GA 
optimised 

  

Tanh, 
Sigmoid, 

ReLU, ELU 

Electrcity 
MAPE 
RMSE 

R2 

2020  

17 

Feedforward 

neural 

network 

1 year 

training 
1 year  

testing 

Weather data Daily 
Tested 4-

9 
1 LM 

Trial-and-

error on 
exponential, 

logistic, tanh 

Heating 
Cooling 

MAE 
MAPE 

2010  

18 ANN 

1 year for 

training & 
testing 

Previous 

energy data 
Daily 

20 (trial-

and- 
error) 

1 LM Sigmoid Cooling  R2  2016  

19 ANN 
1 year for 
training & 

testing 

Weather data Hourly 10, 15, 20 1 LM 
Gauss–
Newton 

function 

Cooling 
MAE 

R2 
2019  

20 ANN 

1 year for 

training & 
testing 

Weather data Hourly 2Nin+1 1 LM 
Logistic 

sigmoid 

Chiller electric 

demand 
MSE 2015  

21 
ANN and an 

ensemble 

1 month 
for 

training 

Weather data 
Previous 

energy data 

Hourly 

(Nin + 

Nout)+ 

sqrt(Nsampl

e) 

1 LM 
Hyperbolic 

tangent 
Cooling 

MAE 

R2 
2018  

22 ANN 

1 year 

training 

1 year 
testing 

Weather data 

Time index 

Previous 
energy data 

Half-

hourly 

Trial-and-

error 

Tested 

1-10 
LM 

LReLU,  
PReLU, 

ELU, SELU 

Electricity 
RMSE MAPE 

R2 
2019  

23 ANN 

130 days 

for 

training & 
21 days 

for testing 

Weather data 

Occupancy 
level 

Hourly - 1 LM - Electricity 
RMSE 

NMBE 
2020  

24 DNN 

1 year for 

training 

1 week 
for testing 

Time index 

Previous load 
Hourly 30, 20, 10 3 LM Sigmoid Electricity MAE MAPE 2019  

25 ANN 

4 months 

for 

training & 
testing 

Weather data 

Previous load 
Hourly 

sqrt(Nin + 

Nout)+1-10 
1 PSO Sigmoid Electricity MAPE 2015  

26 CNN 

5 years 

for 

training& 
testing 

Previous 

energy data 

Hourly 

Daily 
- 1 

PSO 

GA 
Sigmoid Electricity MSE 2018  

27 

Elman 

neural 

network 

1 year for 
training 

Weather data Daily 
Tested 2-

20 
1 GA - Electricity MSE 2017  

28 ANN 
4 months 
training & 

testing 

Weather data 

Time index 
Hourly 20 1 

Teaching-

learning 
- Electricity MAPE RMSE 2018  

29 DNN 

287 days 

training 
124 days 

testing 

Weather data 

Time 

signature 

Hourly 8 2 ADAM ReLU 
Heating 
Cooling 

MSE 

RMSE MAE 

R2 

2020  

30 ANN 

1 month 

training 

1 month 
testing 

Weather data 
Previous 

energy data 

Hourly 2 Nin +1 1 LM Sigmoid Cooling 
RMSE 

CV 
2006  
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Table 2. Literature review of LSTM neural network-enabled energy prediction models. 

Ref

. 
Model Model input 

Time 

step 

Length of 

historical 

data 

Number of 

neurons in 

hidden layer 

Number 

of hidden 

layer(s) 

Learning 

rate 

Activatio

n function 

Learning 

approach 

Prediction 

objective 

Accura

cy 
Year 

Hyperparame

ters selection 

31 
LSTM 
neural 

network 

Historical 

compressor and 
condenser 

energy 

consumption 

Hourly 

1 month 

for 
training, 4 

months for 

testing 

100 2 0.0006 sigmoid - Cooling 

MSE 

RMSE 

MAE 
MAPE 

2020 Experience 

32 LSTM 
Previous energy 

data 

Half-

Hourly 
1 year - 1 - - - 

Household 
energy 

consumption 

RMSE 2019 Experience 

33 LSTM 

Weather data, 

previous energy 
data 

- - 50 1 - 
Sigmoid 

Tanh 
Adam 

Electricity 

consumption 
MAE 2021 Experience 

34 

Hybrid 

CNN 

with a 
LSTM-

AE 

Weather data, 
time index, 

previous energy 

data 

Minutely 5 years - - - Sigmoid Adam 

Household 

electricity 
consumption 

MSE 
MAE 

RMSE 

MAPE 

2019 Experience 

35 LSTM 

Weather data, 

previous energy 

data 

Daily 1 year 20 1 0.004 Tanh Adam 

Citywide 

natural gas 

consumption 

MAPE 

MAE 
RMSE 

R2 

2019 Experience 

36 LSTM 

Building design 

and thermos 

property data 

Monthly 

Energy 
usage of 

different 

types of 
buildings 

60 1 

0.001 Relu Adam 

Energy 

consumption 
of the entire 

building 

R2 2018 Experience 
70 1 

50, 20 2 

50, 20, 20 3 

37 LSTM 
Previous energy 

data 
Hourly 1 year - - - 

Sigmoid 

Tanh 
 

Energy 
consumption 

of HVAC 

system 

RMSE 

MAPE 
MAE 

2020 Experience 

38 LSTM 

Weather data, 

indoor sensor 
data, previous 

load 

Hourly 1 year 
Tested (5, 8, 

10, 20, 30, 40) 
1 0.005 

Tested 

(sigmoid, 
relu, tanh, 

elu, selu) 

- 
District 

heating system 

MAPE 

MAE 
RMSE 

R2 

2019 Trial-and-error 

39 
CNN-

LSTM 

Weather data 

Various types 
of previous 

building energy 

data 

15 mins 1 year 5100 
Tested 

1-3 
- Tanh  

Building 

electricity 

MSE 

MAPE 

MAE 

MAPE 

2021 Trial-and-error 

40 RNN Weather data Hourly 1 year Tested 4-9 1 - Tanh - 
Electricity 
Cooling 

Or heating 

RMSE 

MAPE 
2020 

Numerous 

experiment 

41 LSTM 
Previous energy 

data 
Hourly 1.5 year Tested 10-100 3 0.01 Tanh Adam Plug-in loads 

MSE 

R2 
2021 

Numerous 

experiment 

42 

Deep 
RNN 

with 

LSTM 

Weather data, 
time signature, 

previous energy 

data 

Hourly 1 year Tested 10-100 5 - 

Tested 
between 

ReLu and 

sigmoid 

Adam HVAC RMSE 2018 
Numerous 

experiment 

43 LSTM 

Weather data, 

time index, 
previous energy 

data 

Hourly - Tested 5-50 2 

Tested 

0.0001-

0.05 

ReLU Adam 

Energy 

consumption 
of HVAC 

system 

MSE 
RMSE 

2020 
Numerous 
experiment 

44 LSTM 
Previous energy 

data 
0.5 min 2 days Tested 1-36 1 - Sigmoid - 

Building 

electricity 
RMSE 2019 

Numerous 

experiment 

45 
LSTM-

RNN 

Weather data, 
time signature, 

previous energy 

data 

Hourly 
1 year and 

10 months 

Tested 20-100 
in 1st layer, 

20-50 in 2nd 

layer 

2 
Tested 

0.1-0.01 

Sigmoid 

Tanh 
- 

National-wide 

natural gas 
consumption 

MAPE 2019 
Numerous 

experiment 

46 LSTM Weather data Hourly  Tested 2-20 1 
Tested 

0.001-0.01 
Sigmoid 

Tanh 

Tested 
SGD 

MBGD 

AdagradA
dam 

Thermal load 

in regional 

energy system 

MAPE 2021 
Numerous 
experiment 

47 LSTM 
Previous 

electric load 
Hourly 3 years 

8-128 at step 
of 8 

2 - 
Sigmoid 

Tanh 

ADAM 

NADAM 

SGD 

Regional 
electric load 

RMSE 

MAE 

R2 

2021 
Bayesian 

Optimization 

48 LSTM 
Weather data 
Previous PV 

output 

15 

minutes 
25 months 128-64-32 3 0.001 

Sigmoid 

Tanh 
ADAM PV power 

MSE 
MAE 

R2 

2019 
Bayesian 

Optimization 
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49 LSTM 
Time 

information 

Previous load 

Hourly 4 years 4-512 1 - 

ReLU 

Linear 
Sigmoid 

Tanh 

ELU 

SGD 

ADAM 

NADAM 

Adamax 

Adadelta 
Adagrad 

RMPSpro

p 

Residential 

house 

electricity 
consumption 

MSE 
MAE 

RMSE 

2020 
Bayesian 

Optimisation 

50 LSTM 

Weather data 

Day type 
Previous load 

Daily 1 year - 1 - 
Sigmoid 

Tanh 
ADMM 

Regional 

power load 

RMSE 
MAE 

MAPE 

R2 

2019 
Bayesian 

Optimisation 

51 LSTM 
Time 

information 

Previous load 

Hourly 1 year - - 10-5-10-1 
Sigmoid 

Tanh 
ADMM 

Household 
electric power 

consumption 

MSE 2019 Grid search 

52 

ELM 

RNN 

SVM 

Previous 
electric load 

Hourly 
Several 
months 

- 4 - 
Sigmoid 

Tanh 
- 

Regional 
electric load 

MAE 

MAPE 

RMSE 

2020 Experience 

53 LSTM 
Previous energy 

data 
Half-

hourly 
9 years 20-100 by GA 1 - 

Tested 

sigmoid, 
tanh and 

ReLU 

Tested 
SGD, 

RMSProp 

and 

ADAM 

Energy 
demand 

MAE 
RMSE 

2018 
Empirical and 

GA 

54 LSTM 
Weather data 
and electricity 

price 

Daily 

3 years 

training 1 

year 
testing 

- - - 
Sigmoid 

Tanh 
- 

Electricity 

price 
MAPE 2021 Empirical 

55 LSTM 
Previous energy 

data 
Hourly - 

[100,110,120,
130,140,150] 

2(trial and 
error) 

- 
Sigmoid 

Tanh 
- 

Natural gas 
demand 

MAE 
RMSE 

2020 

GA for 

number of 

neurons 

 

2.3 Literature review on LSTM approaches in other engineering applications 

 

On the other hand, LSTM based regression and classification approaches have been adopted in various 

other engineering applications. For example, Pandya et al. [56] adopted the LSTM model to develop 

the acoustic event assistive framework for identification, detection and recognition of unknown acoustic 

events of a residential building. Cai et al. [57] proposed a context-augmented LSTM method to predict 

a sequence of target positions from a sequence of observation. Both individual movement and 

workplace contextual information, including movements of neighbouring entities, working group 

information, and potential destination information, were integrated into the LSTM network with an 

encoder-decoder architecture. Zhao et al. [58] proposed a convolutional LSTM recognition model for 

recognising construction workers’ postures from motion data captured by wearable inertial 

measurement units. Yang et al. [59] proposed a bidirectional LSTM network to analyse masonry 

workers’ lower body movement and identify physical loading conditions. The training data for the 

LSTM network was collected from an ankle-worn inertial measurement units sensor. Based on the 

characteristics of the knowledge expression of procedural construction constraints in Chinese 

regulations, Zhong et al. [60] proposed a hybrid bidirectional LSTM and conditional random field 

model for the automatic extraction of the qualitative construction procedural constraints. Sun et al. [61] 

proposed a hybrid LSTM neural network and bagging ensemble learning strategy for obtaining accurate 

results of exchange rates forecasting and to improve the profitability of exchange rates trading. Chen et 

al. [62] proposed an LSTM model to train the Time-Between-Failure prediction model for predictive 

maintenance, thus reducing maintenance cost and achieve sustainable operational management. Lee et 
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al. [63] adopted the LSTM model for human activity recognition and daily activities classification. The 

activities such as personal hygiene, eating and mobility, can be categorised using the image data from 

various sensors.  Amer et al. [64] proposed a hybrid LSTM and recurrent neural networks model to 

automatically learn construction knowledge from historical project planning and scheduling records. 

Yin et al. [65] proposed a bidirectional LSTM model for timely and accurate prediction of key quality 

characteristics of separated coal during the coal preparation stage. Rashid et al. [66] proposed an LSTM 

model for automated, real-time, and reliable equipment activity recognition at the construction site. The 

synthetic training data is generated by time-series data augmentation techniques. Yan et al. [67] 

proposed a hybrid machine learning model integrating the LSTM and Bayesian optimisation approach 

to predict the time-weighted average pressure of shield supporting cycles. The optimised hyper-

parameters include the Adam optimiser parameter, dropout layer parameter, LSTM cell number and 

batch size. Lv et al. [68] presented an improved LSTM network to predict the price of the stock and 

price of nickel metal, respectively. The PSO algorithm is adopted to optimise the weight matrix of the 

LSTM network.  

 

2.4 Identification of research gaps 

 

With the extensive literature study on building energy forecasting, the identified research gaps are 

highlighted as follows: 

A. As summarised in Table 1, ANN [13-30] was the most commonly adopted predictions for building 

energy consumption. However, it lacks the time correlation in data sequence; thus, its effectiveness 

and accuracy in time series forecasting is limited. 

B. As illustrated in Table 2, most of the literature, like References [31-37], generally employed a pure 

LSTM neural network for building energy consumption prediction. There was no empirical 

equation for LSTM hyper-parameter selection. 

C. Moreover, trial-and-error process, numerous experiments, like grid search [38-46], were conducted 

to determine the optimal hyper-parameters of neural network models. However, time and 

computation limitations in real-time energy consumption prediction make it impossible to sweep 

through a parameter space and find the optimal set of parameters.  

D. In some of the previous works, Bayesian optimisation [47-49] is adopted to select the optimal hyper-

parameters of LSTM. However, Bayesian optimisation is generally based upon the assumption that 

its optimisation function obeys the Gaussian distribution.  

E. Although some of the literature mentioned the hybrid evolutionary algorithm and LSTM neural 

network [50-56], the main purpose of the adopted evolutionary algorithm optimisation is to select 

the optimal weight matrix of LSTM or only one or two hyper-parameters of the LSTM network. 

F. Furthermore, LSTM neural network has been adopted in various engineering fields, such as acoustic 

[56], workplace [57], construction [58-60, 64, 66], exchange rates trading [61], predictive 
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maintenance [62], human daily activities recognition [63], coal preparation [65], shield supporting 

[67], and economic stock [68]. It was generally integrated with other machine learning methods, 

such as the convolutional neural network. However, the approach for determining the optimal 

LSTM architecture has seldom been mentioned. 

G. Meanwhile, static data, simulation data or benchmark datasets were adopted in most of the research 

works to demonstrate the performance of LSTM prediction models. There is a lack of real-world 

testing of the prediction model on a practical operational building. 

 

2.5 Research objectives of this study 

 

The adaptive LSTM neural network, with its optimal architecture, can provide accurate and robust 

building energy forecast in a real-world application. The remarkable contributions of this paper lie in 

the following aspects: 

• To overcome the shortage of Research gap A, LSTM neural network is adopted for building 

electricity consumption. LSTM neural network can represent the sequence-to-sequence mapping 

between input and output data through recurring connections among neurons. LSTM can recognise 

the ‘memory’ characteristics; thus, the previous time step can influence the output of the current 

time step.  

• To overcome the disadvantage of Research gaps B, C, D, E and F, GA optimisation is adopted to 

determine the optimal architecture of LSTM networks, thus improving forecasting accuracy and 

robustness. The whole-set optimal hyper-parameters include the number of LSTM layers, number 

of neurons in each LSTM layer, dropping rate of each LSTM layer, and learning rate, are selected 

by GA. 

• To overcome the shortage of Research gap G, two real-world educational buildings are selected as 

case studies to test the performance of the proposed building energy forecasting system. The effects 

of historical weather profile and time horizon of past information are also investigated. 

 

3. Adaptive long short-term memory networks  

 

To improve forecasting accuracy and robustness, GA is adopted to select the optimal hyper-parameters 

for LSTM neural networks. Therefore, the LSTM neural network is adaptive to the different features of 

the energy consumption of various buildings. 

 

3.1 LSTM neural network 

 

LSTM neural network is a special and improved architecture of the recurrent neural network (RNN). It 

employs gate units and ‘self-connected memory cells’ to extract the underlying complex temporal 
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dependencies in time-series data. In the LSTM neural network, the memory block in the recurrent layer 

is adopted to overcome the vanishing and exploding gradient problems. Fig. 1 illustrates the structure 

of a memory block. The memory cells in the memory blocks are self-connected. Three gates are 

introduced to store temporal sequences, including the input gate, forget gate and output gate. The 

detailed description of LSTM neural network algorithm can be further found in [69]. The initial values 

of the weight matrices (i.e. 𝑾𝑖
𝑥, 𝑾𝑐

𝑥, 𝑾𝑓
𝑥, 𝑊𝑜

𝑥, 𝑾𝑖
ℎ, 𝑾𝑐

ℎ, 𝑾𝑓
ℎ and 𝑊𝑜

ℎ) and bias (i.e. 𝑏𝑖, 𝑏𝑐  𝑏𝑓 and 𝑏𝑜) 

are updated by standard gradient descent (SGD) method. However, the performance of the SGD 

depends on the architecture of the LSTM neural network.  

 

 
Fig. 1. The architecture of a memory block of LSTM. 

 

3.2 GA enabled adaptive LSTM neural network 

 

The architecture of the LSTM neural network has significant impacts on its prediction performance 

mainly due to the adoption of the backpropagation algorithm and SGD method in determining various 

weight matrices and bias. To automate the process and allow a multidimensional space of possible 

architectures, GA optimisation is adopted to determine the optimal values for the LSTM hyper-

parameters, including the number of LSTM layers, the number of neurons in each LSTM layer, 

dropping rate of each LSTM layer and learning rate. GA is a powerful evolutionary algorithm based on 

the theory of natural selection and genetic mechanism [70]. The advantages of GA optimisation include 

no restrictions on the form of problems, strong searching performance and a high convergence rate [71]. 

The type of decision variables, along with feasible values, are summarised in Table 3. There is a total 

of (10 × 9 + 102 × 92 + 103 × 93) × 4 = 2,948,760 types of LSTM architectures.   
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Table 3. Decision variables of PSO for LSTM neural network. 

Number of neurons in each hidden layer {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} 

Number of hidden layers {1, 2, 3} 

Dropping rate {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} 

Learning rate {0.001, 0.01, 0.05, 0.1} 

 

 

 
Fig. 2. Flowchart of the adaptive LSTM neural network. 

 

The procedure of the proposed adaptive LSTM neural network model is illustrated in Fig. 2. The LSTM 

neural network model, with its hyper-parameters, is treated as a chromosome in the GA optimisation. 

The population size of GA optimisation is chosen at 20 [16].  In the beginning, npop = 20 LSTM neural 

networks are randomly assigned with different hyper-parameters. These LSTM neural networks are 

trained and tested using the same training datasets from the historical database. Since dataset training 

is a random process, there exists a slight difference in the resulted mean absolute error (MAE) when 

the training process is repeated. Therefore, each LSTM neural network is trained and tested 5 times 

using different initial weighting matrices and bias, while the average MAE value is adopted as the GA 

objective function. Based upon the average MAE value, selection, crossover and mutation processes are 

conducted to update each particle (i.e. hyper-parameters of LSTM neural network). The iterative 

process between GA and LSTM neural network is repeated 50 times to achieve the convergent optimal 

LSTM neural network architecture.   

 

4. Energy consumption forecasting system 

 

The proposed energy consumption forecasting system consists of three layers, namely, data acquisition 

and storage layer, data pre-processing layer and data analytics layer. The structure of the proposed 

energy consumption forecasting system is illustrated in Fig. 3.  
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Fig.3. Structure of the proposed energy forecasting system. 

 

4.1 Data acquisition and storage layer 

 

The influential factors to energy consumption include weather conditions, occupancy behaviour and 

operating agendas of lighting and air conditioning. The occupancy behaviour and operating agendas is 

generally not available in a normal building. However, in the educational building, human behaviour 

and operating agendas of lighting and air conditioning is comparatively steady among working days 

and correlated with the hour of the day. As LSTM is time-correlated, the time signatures can be 

embedded in the LSTM network itself. On the other hand, historical weather profile from weather report 

websites and energy consumption data from energy management system formulates as input database 

for training and testing the adaptive LSTM neural network energy forecasting model. Meanwhile, 

forecasting data from weather forecast websites would be accessed to enable real-time energy prediction. 

Due to its comprehensive effect on building energy consumption, the historical weather data includes: 

• outdoor air dry-bulb temperature 𝑇𝑑𝑏,𝑖 

• outdoor air feel-like temperature 𝑇𝑓𝑙,𝑖 

• relative humidity 𝑅𝐻𝑖 

• wind speed 𝑉𝑖 

• cloud cover 𝜃𝑖 

• weather type 𝛽𝑖 

The weather type includes the sky is blue, few clouds, scattered clouds, broken clouds, overcast clouds, 

mist, fog, light rain, moderate rain, shower rain and drizzle.  

 

4.2 Data pre-processing layer 

 

Three data pre-processing steps are conducted to prepare the input dataset for the energy forecasting 

model, including data cleaning, data normalisation and data encoding. 
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4.2.1 Data cleaning 

 

The acquired and stored data in the first layer generally contains outliers and missing data due to sensor 

faults and transmission errors. The outlier values are replaced using the theory of three-sigma rule of 

thumb [72].  

 

𝑥𝑡 = {
𝑎𝑣𝑔(𝑋) + 2. 𝑠𝑡𝑑(𝑋) 𝑖𝑓 𝑥𝑖 > 𝑎𝑣𝑔(𝑋) + 2. 𝑠𝑡𝑑(𝑋) 

𝑥𝑡                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          (1) 

 

where 𝑋 is the vector that consists of 𝑥𝑡, 𝑎𝑣𝑔(𝑋) is the average value of 𝑋, while 𝑠𝑡𝑑(𝑋) is the standard 

deviation of 𝑋. 

 

The missing values in the energy consumption dataset are imputed using a data interpolation method. 

 

𝑥𝑡 = {

𝑥𝑡−1+𝑥𝑡+1

2
             𝑥𝑡 ∈ 𝑁𝑎𝑁; 𝑥𝑡−1, 𝑥𝑡+1 ∉ 𝑁𝑎𝑁

𝑥𝑡−1+𝑥𝑡−2

2
    𝑥𝑡 , 𝑥𝑡+1 ∈ 𝑁𝑎𝑁; 𝑥𝑡−1, 𝑥𝑡−2 ∉ 𝑁𝑎𝑁 

𝑥𝑡                                                              𝑥𝑡 ∉ 𝑁𝑎𝑁

          (2) 

 

4.2.2 Data normalisation 

 

Due to the different magnitude among various types of weather data, the meteorological data, including 

outdoor air dry-bulb temperature, outdoor feel-like temperature, relative humidity, cloud cover ratio, 

wind speed and energy consumption, are normalised into the range of [0-1] using the min-max scaling 

approach [73]: 

 

𝑥𝑡

′
=

𝑥𝑡 − min
1≤𝑡≤365×24 

𝑥𝑡 

max
1≤𝑡≤365×24 

𝑥𝑡 − min
1≤𝑡≤365×24 

𝑥𝑡 

                           (3) 

 

4.2.3. Data encoding 

 

The one-hot encoding approach is adopted to pre-process weather type. The one-hot encoding can 

transform a single variable with δ observations and β distinct values to β binary variables with δ 

observations individually [74]. Each observation indicates the presence (i.e. 1) or absence (i.e. 0) of the 

dichotomous binary variable. The encoding results are summarised in Table 4. 
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Table 4. One-hot encoding of weather type 

Weather type Results of one-hot encoding 

sky is blue 00000000001 

few clouds 00000000010 

scattered clouds 00000000100 

broken clouds 00000001000 

overcast clouds 00000010000 

mist 00000100000 

fog 00001000000 

light rain 00010000000 

moderate rain 00100000000 

shower rain 01000000000 

drizzle 10000000000 

 

4.3 Data analytics layer 

 

The input datasets X include six weather index and energy consumption over the past horizon h. 𝐗 =

{𝑋𝑡|𝑡 = ℎ, ℎ + 1, … ,8760} , and 𝑋𝑡 = {𝑥𝑡,𝑗|𝑗 = 1, 2, 3, 4, 5, 6, 7, 8, … ,7 + 𝐻 − 1} . 𝑥𝑡,1 = 𝑇𝑑𝑏,𝑡, 𝑥𝑡,2 =

𝑇𝑓𝑙,𝑡 , 𝑥𝑡,3 = 𝑅𝐻𝑡, 𝑥𝑡,4 = 𝑉𝑡 , 𝑥𝑡,5 = 𝜃𝑡, 𝑥𝑡,6 = 𝑊𝑡 , 𝑥𝑡,7 = 𝐸𝑡−1, 𝑥𝑡,8 = 𝐸𝑡−2, 𝑥𝑡,6+𝐻 = 𝐸𝑡−𝐻 . The well-

trained adaptive LSTM neural network, as described in Section 3 will be adopted in the data analytics 

layer to forecast building energy consumption.  H is the time horizon, representing the number of hours 

used for the past energy data as the input to the LSTM neural network.  

 

5. Case study on real-world buildings 

 

The proposed energy forecasting system is tested on two real-world campus buildings to evaluate its 

performance. The two buildings are Q block and S block of the Frenchay campus of University of the 

West of England, Bristol, respectively. These two blocks both contain classrooms for students and 

office rooms for university staff. The two different buildings at the same site are selected to further 

validate the effectiveness of the proposed adaptive LSTM neural network and energy consumption 

forecasting system. The building energy consumption profile E(t) for the past two years (Jan 2018- Dec 

2019) is collected from the energy management system at the time step of 1 h, as illustrated in Fig. 4. 

The electricity consumption is quite low during July and August for the S block and June to September 

for Q block. There also exist different features of energy consumption during other periods of the year. 
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Q block, 2017 

 
Q block, 2018 

 
S block, 2017 

 
S block, 2018 

Fig. 4. Energy consumption data 

 

 

The weather data during the year 2017 and 2018 are collected from the local Bristol weather station 

near the campus building. The weather profile mainly includes outdoor air dry-bulb temperature, 

outdoor air feel-like temperature, relative humidity, wind speed, cloud cover and weather type are 

summarised in Fig. 5. The highest outdoor air dry-bulb temperature and the feel-like temperature is 

found in June for both 2017 and 2018, while the lowest temperatures are seen in January and March for 

2017 and 2018, respectively.  The lowest relative humidity is found in March and June for 2017 and 

2018, respectively. Depending on the weather type, the range of cloud cover varies from 0 to 100% all 

over the year. The highest wind speed is about 35-40 m/s, respectively, found in September and January, 

respectively, in 2017 and 2018. During most of the time, the weather type is cloudy, while there are a 

few rainy and clear days. The various weather data, along with energy consumption data of 2017 and 

2018, are adopted for training and testing purposes, respectively.  
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(a) 𝑇𝑑𝑏,𝑖, 2017 

 
(b) 𝑇𝑑𝑏,𝑖, 2018 

 
(c) 𝑇𝑓𝑙,𝑖, 2017 

 
(d) 𝑇𝑓𝑙,𝑖, 2018 

 
(e) 𝑅𝐻𝑖, 2017 

 
(f) 𝑅𝐻𝑖, 2018 

 
(g) 𝜃𝑖, 2017 

 
(h) 𝜃𝑖, 2018 
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(i) 𝑉𝑖, 2017 

 
(j) 𝑉𝑖, 2018 

 
(k) 𝑊𝑖, 2017 

 
(l) 𝑊𝑖, 2018 

Fig. 5. Weather data 

 

6. Results and analysis 

 

The optimal parameters of GA are chosen based on the relevant prediction performance, including 

convergence performance and final MAE value. The effectiveness of weather profile as input dataset 

to the LSTM neural network and length of time horizon is also evaluated. The prediction performance 

from the selected optimal architecture of the LSTM neural network is evaluated with different reference 

parameters to verify the effectiveness of the adaptive LSTM neural network.  
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6.1 Performance evaluation of GA 

 

The GA parameters include population size, maximum generation, selection probability, crossover 

probability and mutation probability. The population size represents the number of individuals at each 

iteration. The maximum generation represents the maximum iteration steps. The selection, crossover 

and mutation probability represents the likelihood of a selection, crossover and mutation operating 

occurring, respectively. Based on the complexity of the LSTM architecture optimisation problem, the 

population size is fixed at 20 while the maximum generation is set at 50. The convergence performance 

of GA under different selection, crossover and mutation probability is tested on two buildings, as shown 

in Fig. 6. There exists a large number of fluctuations of MAE at the beginning of optimisation; however, 

it becomes relatively steady after approximately 36 iterations. The smallest MAE of the LSTM neural 

network for the two buildings is identified with the same set of GA parameters. Therefore, selection, 

crossover and mutation probability is chosen as 0.8, 0.2 and 0.2, respectively.  

 

  
Q Block S Block 

Fig. 6. The convergence of MAE under different GA parameters. 

 

The optimal architecture for the two LSTM neural networks is summarised in Table 5. The optimal 

number of layers and the learning rate is the same among the two LSTM neural network models. 

However, the number of neurons and the dropping rate in each LSTM layer is different among the two 

neural networks. It demonstrates that the architecture of the LSTM neural network needs to be optimised 

to make it adaptive and suitable for different features of building energy consumption.  
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Table 5. The optimal architecture of each LSTM neural network. 

LSTM 

neural 

network 

architecture 

Number of neurons in 

each LSTM layer 
Number of 

layers 

The dropping rate 

LSTM layer 
Learning 

rate 

1 2 1 

Q Block 60 60 2 0.3 0.01 

S Block 70 40 2 0.2 0.01 

 

6.2 Comparison between LSTM and feedforward neural network 

 

As summarised in Table 1, feedforward neural network models generally construct a direct mapping 

among comprehensive weather profile, time signature, indoor sensor measurement and energy 

consumption data. However, due to the lack of time correlation in the data sequence, feedforward neural 

network models cannot capture the inter-relationship between energy data and time. To investigate the 

capability of LSTM neural network in capturing the interrelationship between energy consumption data 

and time, the previously developed GA-optimised feedforward neural network [16] is adopted for 

comparison. The same sets of training and testing datasets are adopted for training and testing purposes, 

while the prediction performance is summarised in Table 6. It is found that the proposed adaptive LSTM 

neural network can achieve better accuracy and robustness than the reference GA-optimised 

feedforward neural network prediction model.  

• For Q Block, if historical and forecasted weather profile is not available, there would be 23.53% 

and 21.20% increase in MAE and RMSE and a 3.39% decrease in R2 for the training dataset. 

Meanwhile, there would be 21.74% and 20.36% increase in MAE and RMSE and 2.45% decrease 

in R2 for the testing dataset. 

• For S Block, if historical and forecasted weather profile is not available, there would be 22.58% 

and 20.99% increase in MAE and RMSE and 2.63% decrease in R2 for the training dataset. 

Meanwhile, there would be 23.87% and 22.29% increase in MAE and RMSE, as well as 2.73% 

decrease in R2 for the testing dataset. 

It is seen that the prediction performance can be enhanced by selecting its hyper-parameters through 

GA optimisation. This also indicates that the proposed GA-determined LSTM prediction model can 

outperform most of those feedforward neural network prediction models presented in Table 1. This is 

due to the capability of the LSTM neural network in the time correlation of data sequence and its 

effectiveness in time series forecasting. 
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Table 6. Summary of prediction performance using adaptive LSTM and feedforward neural network.  

Building and model 
MAE (kW) R2 (%) RMSE (kW) 

Training Testing Training Testing Training Testing 

Q 

Block 

GA-DNN 0.63 1.40 89.18 84.53 2.23 3.31 

Adaptive LSTM 0.51 1.15 92.31 86.65 1.84 2.75 

Change  ↑23.53% ↑21.74% ↓3.39% ↓2.45% ↑21.20% ↑20.36% 

S 

Block 

GA-DNN 1.52 3.01 93.13 84.22 3.92 5.87 

Adaptive LSTM 1.24 2.43 95.65 86.58 3.24 4.80 

Change  ↑22.58% ↑23.87% ↓2.63% ↓2.73% ↑20.99% ↑22.29% 

 

6.3 Effects of weather data as input 

 

To investigate the effects of weather condition as input training dataset, a reference model is adopted 

for the two buildings. In the reference model, the input dataset X only includes energy consumption at 

previous time steps. Namely,  𝑥𝑡,1 = 𝐸𝑡−1, 𝑥𝑡,2 = 𝐸𝑡−2, … , 𝑥𝑡,𝐻 = 𝐸𝑡−𝐻 . The prediction performance 

with and without weather profile is summarised in Table 7. 

• For Q Block, if historical and forecasted weather profile is not available, there would be 11.76% 

and 7.61% increase in MAE and RMSE, respectively, as well as 1.32% decrease in R2 for the 

training dataset. Meanwhile, there would be 11.30% and 6.55% increase in MAE and RMSE, 

respectively, as well as 1.75% decrease for the testing dataset. 

• For S Block, if historical and forecasted weather profile is not available, there would be 16.98% 

and 22.58% increase in MAE and RMSE, respectively, as well as 1.67% decrease in R2 for the 

training dataset. Meanwhile, there would be 14.38% and 18.11% increase in MAE and RMSE, 

respectively, as well as 1.58% decrease for testing dataset. 

 

Table 7. Summary of prediction performance with and without weather profile.  

Building and model 
MAE (kW) R2 (%)  RMSE (kW) 

Training Testing Training Testing Training Testing 

Q 

Block 

Without Weather 0.57 1.18 91.09 85.13 1.98 2.90 

With weather 0.51 1.15 92.31 86.65 1.84 2.75 

Change  ↑11.76% ↑11.30% ↓1.32% ↓1.75% ↑7.61% ↑6.55% 

S 

Block 

Without weather 1.52 2.87 94.05 85.21 3.79 5.49 

With weather 1.24 2.43 95.65 86.58 3.24 4.80 

Change  ↑22.58% ↑18.11% ↓1.67% ↓1.58% ↑16.98% ↑14.38% 

 

6.4 Effects of time horizon on past information 

 

The size of the input dataset to the LSTM forecasting model depends on the length of the time horizon. 

Short time horizon may result in inaccurate prediction while long time horizon could lead to large 

computational load. To identify the optimal length of time horizon, 4, 24, 48 and 72 hours are adopted 

for comparison. The MAE, R2 and RMSE of different time horizon are summarised in Fig. 7. When H 

= 4h, the average value of MAE, RMSE and R2 for training and testing datasets is 1.05 kW, 2.62kW 
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and 86%, respectively. When H = 24h, the average value of MAE and RMSE for training and testing 

datasets decreases to 0.82 kW, 2.30 kW, respectively, while the corresponding R2 increases to 89.5%. 

The MAE, RMSE and R2 value are similar when H is further increased to 48h and 72h. Considering the 

computational load, the optimal time horizon is chosen as 24 hours. 

 

      
Q Block S Block 

 
Fig. 7. MAE, RMSE and R2 with different time horizons. 

 

The energy consumption forecasting result at different time horizon is summarised in Fig. 8. Due to the 

lack of past information when the time horizon is 4 hours, there exists some discrepancy between the 

forecasted value and real measurement. However, there are also some fluctuations when the time 

horizon is 48 or 72 hours, owing to the possibility of over-convergence.   

 

  
Q Block S Block 

Fig. 8. Energy forecast using different time horizon. 

 

6.5 Effects of optimal LSTM architecture in prediction performance 

 

As illustrated in Table 2, the architecture of most of the previously developed LSTM models was 

generally based on experience, trial-and-error process or numerous experiments. The experienced-based 

LSTM hyper-parameters selection may result in low prediction accuracy, while the trial-and-error 

process and numerous experiments-based LSTM architecture selection required a large computational 

load. As the main LSTM hyper-parameters include the number of neurons in the LSTM layer, number 
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of LSTM layers, dropping rate of LSTM layers and network learning rate, it would be difficult for the 

trial-and-error process and numerous experiments to find out the optimal hyper-parameter set. To 

demonstrate the effects of GA in determining the LSTM architecture, reference LSTM architectures are 

formulated by setting the value of each type of hyper-parameter different from the GA-determined 

optimal one. The MAE, RMSE and R2 from these reference models are summarised in Table 8. 

• For Q Block, the smallest average MAE, the smallest average RMSE and the largest average R2 is 

identified when the number of neurons in both LSTM layers is 60. When the number of neurons in 

the first LSTM layer is 50 or 70, there would be a 0.18 kW or 0.20 kW increase in RMSE, 0.08 kW 

or 0.09 kW increase in MAE, and 0.9% or 1.1% decrease in R2, respectively for the testing case. 

For Q Block, the smallest average MAE, the smallest average RMSE and the largest average R2 is 

identified when the number of neurons in the first and section LSTM layer is 70 and 40, respectively. 

When the number of neurons in the first LSTM layer is 60 and 80, there would be a 0.25 kW and 

0.17 kW increase in RMSE, 0.07 kW and 0.05 kW increase in MAE, as well as 1.1% and 1.0% 

decrease in R2, respectively for the testing case. 

• For both Q and S Blocks, the smallest average MAE, the smallest average RMSE and the largest 

average R2 is identified when the number of LSTM layers is 2. When the number of LSTM layer is 

1, there is 0.36 kW and 0.51 kW increase in MAE, 0.43 kW and 0.72 kW increase in RMSE, as 

well as 3.8% and 3.0% decrease in R2 for Q Block and S Block, respectively. When the number of 

LSTM layer is 3, there is a 0.04 kW and 0.08 kW increase in MAE, 0.05 kW and 0.28 kW increase 

in RMSE, as well as 0.6% and 1% decrease in R2 for Q Block and S Block, respectively. If there is 

only 1 LSTM layer, it is not sufficient to indicate the comprehensive relationship between historical 

weather profile and energy consumption data. On the other hand, it may cause over-convergence if 

there are 3 LSTM layers.  

• For Q Block, the smallest average MAE, the smallest average RMSE and the largest average R2 is 

identified when the dropping rate of LSTM layers is 0.3. When the dropping rate is larger or smaller 

than 0.3, there would be around 0.03-0.09 kW increase in MAE, 0.04-0.11 kW increase in RMSE, 

as well as 0.5%-1.2% decrease in R2, respectively. For S Block, the smallest average MAE, the 

smallest average RMSE and the largest average R2 is identified when the dropping rate of LSTM 

layers is 0.2. When the dropping rate is larger or smaller than 0.2, there would be around 0.10-0.26 

kW increase in MAE, 0.25-0.37 kW increase in RMSE, as well as 0.9%-1.8% decrease in R2, 

respectively. 

• For both Q and S Block, the smallest average MAE, the smallest average RMSE and the largest 

average R2 is identified when the learning rate is 0.01. For Q block, when the learning rate is larger 

or smaller than 0.01, there would be around 0.10-0.22 kW increase in MAE, 0.07-0.39 kW increase 

in RMSE, as well as 1.1%-4.2% decrease in R2, respectively. For S Block, when the learning rate 
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is larger or smaller than 0.01, there would be around 0.20-0.92 kW increase in MAE, 0.35-1.12 kW 

increase in RMSE, as well as 1.9%-2.8% decrease in R2, respectively. 

It is seen that the prediction performance can be enhanced by selecting its hyper-parameters through 

GA optimisation. This also indicates that the proposed GA-determined LSTM prediction model can 

outperform those LSTM models presented in Table 2. It is also seen that learning rate and dropping rate 

has the largest and smallest effects on prediction performance, while number of neurons and number of 

neurons in LSTM layers have moderate effects. 

 

Table 8. Prediction performance at different LSTM hyper-parameters. 

Building 

Change of 

LSTM 

architecture 

Number 

of 

LSTM 

layers 

Number 

of 

neurons 

in each 

layer 

Dropping 

rate 

Learning 

rate 

R2 (%) 
RMSE 

(kW) 
MAE(kW) 

Train Test Train Test Train Test 

Q block 

Optimal 2 [60, 60] [0.3, 0.5] 0.01 92.3 86.7 1.83 2.75 0.51 1.15 

Number of 

layers 

3 [60,60,60] [0.3, 0.5] 0.01 91.1 86.1 1.97 2.80 0.58 1.19 

1 60 0.3 0.01 90.7 82.9 2.03 3.11 0.72 1.58 

Dropping 

rate 
2 [60, 60] 

[0.1, 0.5] 

0.01 

91.9 85.9 1.93 2.82 0.55 1.20 

[0.2, 0.5]   91.9 86.1 1.89 2.80 0.54 1.19 

[0.4, 0.5] 92.0 86.2 1.91 2.79 0.56 1.18 

[0.5, 0.5] 91.4 85.5 1.95 2.86 0.59 1.24 

Learning 

rate 
2 [60, 60] [0.3, 0.5] 

0.001 91.8 85.6 1.96 2.85 0.60 1.22 

0.1 85.1 82.5 2.56 2.97 0.94 1.54 

0.05 89.0 83.8 2.20 2.91 0.74 1.36 

Number of 

neurons 
2 

[50, 60] 
[0.3, 0.5] 0.01 

91.4 85.8 1.99 2.93 0.55 1.23 

[70, 60] 91.5 85.6 1.96 2.95 0.56 1.24 

S block 

Optimal 2 [70, 40] [0.2, 0.2] 0.01 95.6 86.6 3.24 4.80 1.24 2.43 

Number of 

layers 

3 [70,40,40] [0.2, 0.2] 0.01 94.8 85.6 3.54 5.08 1.43 2.51 

1 70 0.2 0.01 94.0 83.6 3.46 5.31 1.62 3.15 

Dropping 

rate 
2 [70, 40] 

[0.1, 0.1] 

0.01 

94.6 85.7 3.36 5.12 1.30 2.53 

[0.3, 0.3] 95.2 85.4 3.38 5.05 1.39 2.54 

[0.4, 0.4] 95.0 85.1 3.49 5.08 1.45 2.57 

[0.5, 0.5] 94.5 84.8 3.64 5.17 1.55 2.69 

Learning 

rate 
2 [70, 40] [0.2, 0.2] 

0.001 94.7 84.7 3.57 5.15 1.54 2.63 

0.1 89.4 83.8 5.04 5.92 2.53 3.35 

0.05 92.9 84.2 4.13 5.45 1.84 2.93 

Number of 

neurons 
2 

[60, 40] 
[0.2, 0.2] 0.01 

94.7 85.5 3.47 5.05 1.42 2.50 

[80, 40] 94.6 85.6 3.45 4.97 1.40 2.48 

 

6.6 Performance comparison with other hyper-parameter selection approaches 

 

To demonstrate the capability of GA in selecting optimal hyper-parameters of LSTM network, two 

reference prediction models are introduced for comparison. In other words, Bayesian optimisation and 

PSO is adopted to select the optimal hyper-parameters of the LSTM network. The search range of hyper-

parameters is set the same as that in Table 3. The grid search approach can guarantee the global optimal 

hyper-parameter set. However, according to Section 2.2, if grid search is adopted for hyper-parameter 

selection, there would be 2,948,760 types of LSTM architecture trained, with each architecture trained 
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and tested for 5 times. This costs too much computational time. Thus, it is not adopted as one of the 

reference models. The convergence of Bayesian optimisation and PSO is illustrated in Fig. 9, while the 

assessment of prediction performance is summarised in Table 9. The GA optimisation can reach 

convergent within 40 iterations, while it takes 60 and 90 iterations for PSO and Bayesian optimisation 

to get convergent. Although the same number of LSTM layers is identified by Bayesian optimisation 

and PSO as that from the proposed GA, the number of neurons in each LSTM layer, dropping rate of 

each layer and learning rate is different.  As a result, the corresponding performance from Bayesian 

optimisation and PSO is also slightly worse than that from the proposed GA-LSTM prediction model. 

In other words, the LSTM network determined by Bayesian optimisation and PSO results in 0.42-2.50% 

decrease in R2 value, 0.36-14.7% increase in RMSE and 2.47-31.4% increase in MAE. It is because that 

Bayesian optimisation is based upon the assumption that its optimisation function obeys Gaussian 

distribution, which might not be the truth for LSTM hyper-parameters optimisation. Moreover, PSO 

has better performance at continuous optimisation, while GA is better at discrete optimisation. 

According to Table 3, the searching range of the LSTM hyper-parameter is discrete. Therefore, the 

proposed GA-determined LSTM outperforms Bayesian optimisation and PSO.  

 

 
(a) Q Block 

 
(b) S Block 

Fig. 9. The convergence of MAE under Bayesian optimisation, PSO and GA. 
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Table 9. Prediction performance using different optimisation methods for hyper-parameter selection. 

Building 

Change of 

LSTM 

architecture 

Number 

of 

LSTM 

layers 

Number 

of 

neurons 

in each 

layer 

Dropping 

rate 

Learning 

rate 

R2 (%) RMSE (kW) MAE(kW) 

Train Test Train Test Train Test 

Q block 

Optimal 2 [60, 60] [0.3, 0.5] 0.01 92.3 86.7 1.83 2.75 0.51 1.15 

BO 2 [40, 50] [0.3, 0.7] 0.03 
90.0 86.3 2.10 2.78 0.67 1.18 

↓2.50 ↓0.46 ↑14.7 ↑1.09 ↑31.4 ↑2.61 

PSO 2 [70, 70] [0.4, 0.5] 0.01 
91.4 86.4 1.94 2.76 0.58 1.17 

↓0.98 ↓0.35 ↑6.01 ↑0.36 ↑13.7 ↑1.74 

S block 

Optimal 2 [70, 40] [0.2, 0.2] 0.01 95.6 86.6 3.24 4.80 1.24 2.43 

BO 2 [60, 40] [0.1, 0.1] 0.001 
94.9 85.1 3.52 4.92 1.53 2.51 

↓0.73 ↓1.73 ↑8.64 ↑2.50 ↑23.4 ↑3.29 

PSO 2 [60, 30] [0.2, 0.5] 0.01 
95.2 85.8 3.32 4.87 1.32 2.49 

↓0.42 ↓2.47 ↑2.47 ↑1.46 ↑6.45 ↑2.47 

 

 

7. Implication of practical application in building energy performance prediction 

 

Two years’ historical outdoor weather profile and energy consumption data is collected from the local 

weather station and building energy management system to generate the database for the proposed 

energy consumption forecasting system. After the proposed energy forecasting model is well trained 

and tested using the historical database, it is expected to be adopted in the digital building management 

system for accurate energy consumption prediction using the latest weather forecast from weather 

reporting websites [74-76]. Such accurate energy consumption prediction plays a dominant role in 

various areas, including daily building energy management, decision making from facility managers, 

building information model designs, net-zero energy operation, climate change mitigation and circular 

economy. 

 

First of all, accurate energy demand prediction plays a critical role in daily building energy management. 

The precise forecast of peak demand and hourly demand is important for efficient energy device 

scheduling and management, which can promote the building energy utilisation rate. An accurate 

building energy forecast can also assist building managers in making better decisions so as to reasonably 

control all types of energy devices [77]. 

 

Secondly, smart energy management and building energy efficiency retrofitting could be achieved on 

the basis of accurate energy consumption prediction. Building facility managers can gain an insight into 

future energy consumption, which allows them to calculate future energy costs and to determine 

whether to move to a more efficient pricing plan or modify future usage as appropriate [78].   
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Moreover, performance-based building requirements have become more predominant since it gives 

freedom in building design while maintain or even exceed the energy performance required by 

prescriptive-based requirements. However, in order to determine if building information model designs 

can reach targeted energy efficiency improvements, it is necessary to estimate the energy performance 

of a building using accurate building energy prediction models and different weather conditions. 

 

Furthermore, accurate energy prediction also plays an important role in achieving net-zero energy 

operation of different types of buildings. With the transformation of the global energy industry, 

renewable energy is gradually replacing traditional fossil energy. With the accurate forecast of energy 

demand and various renewable energy generation, the desired output of other active energy devices can 

be determined. As such, the overall supply and demand of the building can be optimally coordinated in 

an effort to achieve its net-zero energy operation. The reduction of energy consumption also helps 

mitigate various climate-change related issues. 

 

Last but not least, accurate electricity load forecasting at the power grid serves as a significant process 

in achieving a circular economy. Precise electricity forecast can help decrease energy consumption, 

reduce power generation costs, as well as improve social and economic benefits. With the development 

of power reform and the deepening of power marketisation, it is essential to improve power demand 

forecasting accuracy to enable stable and efficient operation of the power system. The strategy to reduce 

energy consumption can be regarded as a prominent factor that could influence economic growth since 

the energy demand from series of buildings remains at a high level [79].  

 

8. Conclusion  

 

In this study, an accurate and robust building energy forecasting system is proposed with the core of an 

adaptive LSTM neural network. The proposed energy forecasting approach has three distinct innovation 

over previous deep learning models in that: 

• The LSTM neural network has recurring connections among neurons. Thus it can reveal the 

comprehensive time correlation in the data sequence.  

• GA is good at discrete optimisation, and it’s adopted to select the whole-set hyper-parameters of 

the LSTM network. The optimal hyper-parameters of the LSTM network include its number of 

neurons in each LSTM layer, the number of LSTM layers, dropping rate of each LSTM layer and 

learning rate of weighting matrices and bias. 

• As the hyper-parameters of the LSTM network is selected according to the unique features of the 

energy dataset, it is adaptive to different types of energy data. 
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• The proposed building energy forecasting system is tested on two educational buildings using one-

year historical weather and energy data for training the other year’s profile for testing.  

It is demonstrated that the proposed adaptive LSTM neural network is not only effective at reflecting 

the time correlation in data sequence but also powerful at investigating the complex relationship among 

various weather data and actual energy consumption. The major findings are listed as follows:  

• The GA parameters, such as selection probability, crossover probability and mutation probability, 

are the same for the two testing buildings. It indicates that the GA algorithm is effective and robust 

in searching for the optimal LSTM neural network architecture. 

• For both Q Block and S Block buildings, the optimal number of LSTM layers is 2, while the optimal 

learning rate is 0.01. However, the optimal number of neurons and dropping rate in each LSTM 

layer is different for Q Block and S Block buildings, indicating that the optimal LSTM neural 

network architecture would be different according to unique features of energy consumption data. 

• The effect of available weather profile on energy consumption forecasting performance is assessed. 

When historical and forecasted weather profile is not available, there would be around 11.30-18.11% 

increase in MAE, 1.58-1.75% decrease in R2, as well as 6.55-14.38% increase in RMSE for testing 

data. 

• The effects of time horizon for past information is investigated while the optimal time horizon for 

past information is found to be 24 hours. When time horizon is 4 hours, the discrepancy between 

the forecasted value and real measurement is caused by insufficient past information. When time 

horizon is 48 or 72 hours, there exist some fluctuations in forecasted energy consumption owing to 

the over-convergence.   

• The effectiveness of optimal architecture of the LSTM neural network is demonstrated by 

comparing its performance with different reference architectures. With the optimal architecture, Q 

Block results in 0.51 kW, 1.84 kW and 92.31% in MAE, RMSE and R2 in the training dataset, 

respectively. It also results in 1.14 kW, 2.75 kW and 86.65% in MAE, RMSE and R2 in the testing 

dataset. With the optimal architecture, S Block results in 1.24 kW, 3.24 kW and 95.65% in MAE, 

RMSE and R2 in the training dataset, respectively; It also results in 2.43 kW, 4.80 kW and 86.58% 

in MAE, RMSE and R2 in testing dataset. 

• The proposed adaptive LSTM neural network outperforms the previously developed GA-optimised 

DNN model. Compared to the proposed adaptive LSTM neural network, the previously developed 

GA-optimised feedforward neural network prediction model has about 21.74%-23.87% increase in 

MAE, 2.45%-3.39% decrease in R2, as well as 20.36%-22.29% increase in RMSE, respectively.  

• GA is demonstrated to be the best optimisation approach in selecting LSTM hyper-parameters 

owing to its advantages of discrete optimisation. The GA-determined LSTM network has faster 

convergence with better optimisation results. The LSTM network determined by Bayesian 
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optimisation and PSO results in 0.42-2.50% decrease in R2 value, 0.36-14.7% increase in RMSE and 

2.47-31.4% increase in MAE. 

 

9. New insights of the proposed computational method and future study 

 

In this study, an adaptive LSTM neural network is proposed for an accurate and robust building energy 

forecasting system, which follows the long-standing research stream of using machine learning-based 

methods to predict the energy behaviour of buildings. Innovatively, the LSTM neural network is 

adaptive to different features of training data while GA is adopted to select the optimal hyper-parameters 

of the LSTM neural network, including its number of neurons in each LSTM layer, the number of 

LSTM layers, dropping rate of each LSTM layer and learning rate of weighting matrices and bias. Such 

innovation and adaptive LSTM neural network can also be adopted in other engineering fields for 

corresponding prediction tasks, such as construction, acoustic, workplace, exchange rates trading, 

predictive maintenance, human daily activities recognition and coal preparation.  

 

This study can also provide new insights into how computational methods can be optimally and 

effectively adopted. In other words, the architecture of various machine learning models (i.e. artificial 

neural network, deep neural network, convolutional neural network and support vector machine) can 

be optimised by different optimisation approaches (i.e. Bayesian optimisation, PSO, GA and etc.) to 

enhance its accuracy and robustness. To better improve the performance of machine learning based 

prediction models, new evolutionary optimisation algorithms should also be proposed based on the 

unique characteristics of its application fields.  
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Nomenclature 

b  bias 

f  forget gate 

h  output of the same memory unit 

i  input gate 

o  output gate 

R2  coefficient of determination 

RH  relative humidity 



32 

 

T  Temperature 

V  wind speed 

W  weight matrix 

 

x  dataset 

𝛼  coefficients of cubic interpolation 

𝜎  sigmoid activation 

𝜃  cloud cover 

Tanh tangent activation 

 

Superscripts 

t  time step 

 

Subscripts 

db  dry-bulb 

f  forget gate 

fl  feel-like       

i  input gate 

o  output gate 

 

Abbreviations 

GA  genetic algorithm 

LSTM long-short term memory 

MAE  Mean absolute error 

RMSE  Root mean square error 

SGD Standard gradient descent 
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