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Abstract:  16 

Water management in the Caatinga/Atlantic forest ecotone in Brazil is critically dependent on 17 

better understanding of potential future changes in streamflow and sediment dynamics. This 18 

paper evaluates both the future impacts of land use and land cover (LULC) changes and the 19 

impacts of climate change on the streamflow and sediment yield in the Tapacurá River basin 20 

in northeastern Brazil, using a novel combination of approaches. Projected climate data 21 

derived using global circulation model HadGEM2-ES were coupled to regional circulation 22 

model ETA-CPTEC/HadCM3 for two representative concentration pathways (RCP 4.5 and 23 

8.5), with bias correction. Two future LULC scenarios were generated: (a) optimistic (current 24 

LULC), and (b) pessimistic (land use change trends continue), using the multilayer perceptron 25 

algorithm (MP). The Soil and Water Assessment Tool (SWAT) model was used to estimate 26 



future streamflow and erosion for different periods (2011−2040, 2041−2070 and 2071−2099). 27 

The SWAT model was calibrated for period 1995-2003 and validated for 2004-2013. The 28 

results showed good accuracy in relation to R², NSE and PBIAS for the calibration and 29 

validation of the runoff, as well as for the verification of the sediment yield. Simulations 30 

indicated significant increases in erosion for the pessimistic scenario under RCP 8.5, followed 31 

by the pessimistic scenario and RCP 4.5. Lower sediment yields occurred for the optimistic 32 

and RCP 8.5, with lower still for the optimistic and RCP 4.5. However, the latter estimates are 33 

still considerably higher than baseline conditions. Although higher flows are found for some 34 

scenarios, the increases in sediment yield have serious implications for reservoir siltation and 35 

storage reduction. Despite modeling uncertainty, the results demonstrate that the proposed 36 

methodology has promising scope to contextualize potentially significant regional 37 

hydrological changes which have implications for land and biodiversity management and the 38 

sustainability of water resources in the Caatinga/Atlantic forest ecotone. 39 

Keywords: Streamflow; erosion; future scenarios; degradation; hydrologic modeling. 40 

 41 

1. Introduction 42 

Climate variation and climate change over the longer term, together with human activities, are 43 

the main factors that influence streamflow and erosion in catchments (Shi et al. 2013; Petelet-44 

Giraud et al., 2017; Dai et al., 2020). Global climate change is widely acknowledged (de 45 

Oliveira et al., 2018), and many studies address the increasing concentration of greenhouse 46 

gases and associated changes in climate drivers and patterns (Liu et al., 2020; Marin et al., 47 

2020; An et al., 2020). The increase in extreme hydrological events, for example, has caused 48 

environmental problems worldwide (Kusangaya et al., 2018; Zhao et al., 2020; Zhang et al., 49 

2020; Wang et al., 2020; Santos et al., 2021; Brito et al., 2021), with direct impacts to the 50 

global economy and the lives of much of the population (Eamen et al., 2020). These include 51 



increased floods and droughts, pollution of water resources, soil erosion, silting, and a 52 

reduction in the productive capacity of soils. This study represents the first application of 53 

modeling to assess the impacts of future LULC and climate change on runoff and sediment 54 

yield at a monthly scale in the ecologically important Caatinga/Atlantic forest ecotone of 55 

northeastern Brazil.  Investigating the relative significance of LULC and climate change as 56 

drivers is of fundamental importance in understanding runoff and sediment yield behavior. 57 

Understanding the effects of LULC and climate change on sediment yield and streamflow in 58 

basins is a major challenge in contemporary water resource management (Cunha et al., 2020). 59 

The Caatinga/Atlantic forest ecotone area in northeastern Brazil, also known as “Agreste”, is 60 

an internationally significant biodiversity hotspot, and critical in the regional water supply. 61 

The region is under-studied and a better understanding of future hydrological conditions is an 62 

urgent need (Da Silva et al., 2012).  63 

Natural changes usually occur on scales of decades, whereas anthropogenic influences 64 

have the power to change hydrological dynamics in a short time (Bhatta et al., 2019). In 65 

particular, two human actions that result in LULC changes can be highlighted, deforestation, 66 

and the replacement of other native vegetation by agriculture, urban areas or other forms of 67 

occupation, which do not always provide as good protection of the soil against rainfall effects 68 

(Ursulino et al., 2019). 69 

These changes are felt more strongly in transition regions such as the Caatinga/Atlantic 70 

ecotone forest. The Caatinga biome, also known as Dry Forest (Souza et al., 2019) is 71 

ecologically fragile and particularly sensitive to climate change, due to recurrent droughts 72 

(Correia et al., 2020). The adjacent Atlantic forest biome, home to a large part of the Brazilian 73 

population, has also been impacted by droughts and floods (Alvalá et al., 2019). 74 

Consequently, areas such as the Caatinga/Atlantic forest ecotone, require special efforts to 75 

preserve their important water resources and unique environment. The area is an international 76 



biodiversity hotspot, and much of its biological heritage cannot be found elsewhere on the 77 

planet (Da Rocha et al., 2020). The population and the economic activities within this biome 78 

depend on its water resources, which are used mainly for irrigation and public supply, making 79 

the population susceptible to climate variability as extreme events of flood and droughts 80 

(Silva et al., 2020).  81 

Hydrological models have previously been used to predict water resources under 82 

projected warming in northeastern Brazil (Dos Santos et al., 2014; Silva et al., 2018; de 83 

Andrade et al., 2019; de Medeiros et al., 2019). Recently, SWAT applications have been used 84 

to analyze hydrologic behavior in basins of different scales (e.g., Čerkasova et al., 2018; Chen 85 

et al., 2019; Marin et al., 2020), based on the coupling of hydrological and global circulation 86 

models (GCM) (Braga et al., 2013). However, no studies have assessed runoff-erosion 87 

dynamics using distributed hydrological models and LULC change estimation algorithms 88 

coupled with bias corrected global and regional models for the Caatinga/Atlantic Forest 89 

ecotone region. This study aims to address this need by providing an analysis of the combined 90 

impacts of both potential climate and LULC changes, in support of developing urgent 91 

strategic land, biodiversity and water management plans, including control approaches 92 

(Montenegro and Ragab, 2012). In this study, the SWAT hydrological model driven by 93 

climate simulations, estimated streamflow and annual sediment yield in a strategic basin of 94 

northeastern Brazil (Tapacurá River basin), in response to climate change across three periods 95 

(2011–2040, 2041–2070 and 2071–2099) using GCM data for two different gas emission 96 

scenarios. 97 

 98 

2. Material and methods 99 

2.1. Study area and methodological overview 100 



The Tapacurá River basin (470 km²) is situated in a transition area between the Caatinga and 101 

Atlantic forest biomes, in Pernambuco State, northeastern Brazil (Figure 1). The rainy season 102 

is from March to August and the annual rainfall ranges from 800 to 1,800 mm. The basin is 103 

classified as type As (equatorial, hot, and summer dry) in the Köppen-Geiger climate 104 

classification, with an annual average temperature of 27°C (da Silva et al. 2012). 105 

 The Tapacurá River basin is a significant water resource supply unit for the Recife 106 

Metropolitan Region (RMR), one of the largest population centers in Brazil, with 107 

approximately 3.7 million inhabitants (IBGE, 2020). The region has faced dry periods such as 108 

the drought of 1998, as well as periods of flooding, which were frequent until the 1970s. 109 

These extreme events have had numerous social, economic and environmental impacts and 110 

structural interventions have been required to minimize the effects of flooding in Recife city, 111 

the capital of the State.   112 

 113 

 114 

Figure 1. Location map of the Tapacurá River basin in Pernambuco state (Brazil). 115 

 116 



The main reservoir is the Tapacurá Reservoir, was built in 1973 to supply about 40% of 117 

the RMR with water, and to control the periodic floods referred to above. The reservoir has a 118 

storage capacity of 95×106 m³, a maximum water surface of 9.7 km² (da Silva et al., 2012), 119 

and supplies water to approximately 1 million inhabitants of the RMR (Gunkel et al., 2003). 120 

The Tapacurá River basin is consequently a critical strategic water supply area for 121 

Pernambuco State, and hydrological processes in the basin have far-reaching implications for 122 

the RMR. This study therefore focuses specifically on the combined effects of projected 123 

climate change and LULC change on the runoff and sediment yield within the Tapacurá River 124 

basin.  125 

Figure 2 provides a schematic of the research methodology. The SWAT model was 126 

calibrated and validated for the baseline period (1995-2012) using 2007 LULC. Landsat 5 127 

imagery and an ANN algorithm was used to classify and map LULC change over time (1987-128 

2015), generating a transition probability matrix. Following testing of the transition 129 

probabilities against observed LULC, LULC scenarios were generated for several future 130 

periods based on two sets of assumption (optimistic, pessimistic). A GCM was downscaled 131 

and corrected for two RCPs (4.5, 8.5), and used together with the LULC scenarios to estimate 132 

future streamflow and sediment yields.   133 

 134 



 135 

Figure 2. Schematic of the research methodology. 136 

 137 

2.2. Data description 138 

2.2.1. Rainfall and streamflow datasets 139 

The observed daily rainfall and streamflow data were acquired from the Agência Nacional de 140 

Águas e Saneamento Básico (National Water and Sanitation Agency - NWSA), for five rain 141 

gauges, one weather station and a streamflow gauge within the study area (Figure 1). The 142 

observed daily streamflow data were acquired from Vitória de Santo Antão streamflow gauge 143 

for January 1995 to December 2012 (baseline), which were utilized for calibration (1995–144 

2003) and validation (2004-2013) of the SWAT model. 145 

 146 

2.2.2. DEM, soil type and LULC datasets 147 

The digital elevation model (DEM) underpinning this work (Figure 3a) was derived from the 148 

30m SRTM product (available at https://earthexplorer.usgs.gov). Three Landsat 5 images 149 

were utilized in mapping current LULC and developing future LULC scenario maps. These 150 

were from orbit 214 and point 66 for time periods t1 (July 1987), t2 (August 2007), and t3 151 



(July 2015). These images were chosen because they represent an interval considered suitable 152 

for analyzing changes in the LULC. The LULC map (Figure 3b), used as an input for the 153 

baseline SWAT modeling was generated through the classification of the t2 image (2007). 154 

Seven LULC classes were identified, namely, agriculture, livestock, sugarcane, rain forest, 155 

urban areas, water and Caatinga vegetation. According Ragab et al. (2012), the Tapacurá 156 

River basin is characterized by deforestation, with most of the original rain forest having been 157 

cleared during the last decades (1980-2010). Caatinga, a vegetation type similar to Savanna 158 

and typical of northeastern Brazil, remains, but a large area of the basin is now occupied by 159 

farmlands and sugar cane production (Montenegro and Ragab, 2012). The soil map was 160 

derived from the EMBRAPA (1999) at a scale of 1:100,000. The soil types within the basin 161 

are acrisols, gleysols, ferralsols, chromic luvisols, fluvisols, leptosols, regosols and planosols 162 

(Figure 3c). Figure 3d shows slopes of the basin. 163 

 164 

 165 

Figure 3. (a) DEM and sub-basins, (b) LULC in 2007, (c) soil types, and (d) slopes of Tapacurá River basin. 166 

 167 

2.3 Evaluation of classification 168 



In order to determine the accuracy of the classification process, classified images with land 169 

use data that were derived from ground-truth data, were used. These data are assumed to be a 170 

‘true’ representation of land use. In this study, evaluating the accuracy of the classification 171 

was accomplished by applying thresholding and accuracy assessment methods, such as kappa 172 

statistics, omission and commission errors. Omission error estimates the probability of a pixel 173 

being accurately classified. This is the result from dividing the number of correctly classified 174 

pixels in each LULC class by the number of training pixels determined from the ground-175 

truthed data. This reveals how well training set pixels of the given LULC type are classified. 176 

Commission error shows the probability that a pixel represents the class for which it has been 177 

assigned. This is computed by dividing the number of correctly classified pixels in each 178 

category by the total number of pixels in that category. The relationship between these two 179 

sets of information (classified pixels and commission error) is usually summarized in an error 180 

matrix, also named a confusion matrix. The number of rows and columns in the error matrix 181 

should be equal to the number of categories whose classification accuracy is being assessed 182 

(Lillesand and Kiefer, 2000). In the error matrix, the pixels located along the diagonal (from 183 

the upper left to the lower right) represent the pixels classified into the proper category. The 184 

non-diagonal values in the columns represent the omission error, while the non-diagonal 185 

values in the rows represent the commission error. The kappa statistic is used to measure the 186 

agreement between variables (McHugh, 2012). This index is a discrete multivariate measure 187 

of the actual concordance minus the concordance per chance (Cunha et al., 2021); i.e., it is a 188 

measure of the consistency between the classification and the reference data. The kappa 189 

statistic is calculated as: 190 

 (1) 191 

where xi+ is the sum of row i and x+i is the sum of column i of the confusion matrix. 192 
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 193 

2.4 LULC scenarios and validation of LULC prediction 194 

To quantify and map the changes of each LULC class, we used the land change modeler 195 

(LCM) integrated into TerrSet software (Clark Labs, 2020) package. Two predicted LULC 196 

scenarios were used to analyze the influence of future climate on streamflow and sediment 197 

yield: (a) optimistic: current (2007) LULC conditions are maintained in the longer term 198 

(Figure 3b), and (b) pessimistic: future changes in LULC (2050) considering intensification of 199 

sugar cane monoculture, growth of urban areas and loss of rain forest and Caatinga 200 

vegetation. For the creation of the pessimistic LULC map for 2050 (t4), three Landsat 5 201 

images from 1989 (t1), 2007 (t2), and 2015 (t3) were analyzed using the multilayer perceptron 202 

(MP) algorithm.  203 

In this study, we overlay t1, t2, and a simulation map of t3. LCM produces three types of 204 

results (pixels): misses, hits, and false alarms. Predicting hits (changed) means the t3 map 205 

shows change and the simulation shows change. Predicting hits (not changed) or misses show 206 

change, but the simulation shows persistence. False alarm means the t3 map show persistence, 207 

but the simulation shows change.  208 

An estimate of LULC for 2015 was obtained by assessing the changes in area based on 209 

t1 and t2 using the MP algorithm. The validation of LULC prediction was analyzed using the 210 

kappa statistics. Then, this estimate of LULC for 2015 was compared with the observed 211 

LULC (t3) with kappa statistics of about 87%. The learning algorithm is considered to have 212 

satisfactorily simulated the transition potential of LULC when the MP accuracy is greater 213 

than or equal to 80%. Based on this result, the time t3 (2015) was specified, and the ANN was 214 

employed to determine the transition probability matrix from t2 (2007) for t3 (2015). See 215 

Section 3.3 for how this was applied to estimate 2050 LULC.  216 



The MP algorithm referred to above performed image classification by means of an 217 

artificial neural network (ANN) classifier using the back-propagation approach (Silva et al., 218 

2020). As recommended by Ahmadlou et al. (2016), a configuration where 60% of the 219 

modified cells were used for MP training, with the remaining 40% retained for validation, was 220 

used. In this study, we used 15,000 iterations, because it was noted that the error curve 221 

decreased and stabilized at this number. In addition, the kappa statistics (Landis & Koch, 222 

1977) were used to assess classification validity.  223 

In order to validate the estimated LULC, and assess the performance of the LULC 224 

change probability, the total operating characteristics (TOC) approach (Pontius Jr. and Si, 225 

2014) was used to evaluate the accuracy of the simulation. AUC is an area under a curve 226 

obtained using TOC method. An AUC value greater than the baseline value of equal to 0.5 227 

indicates that the quality of the modeling results is satisfactory, whereas a value equal to 1 228 

corresponds to a perfect fit (Chen et al., 2019). Additionally, the area under the curve (AUC) 229 

method was used to assess the result accuracy (Silva et al., 2020). These methods contemplate 230 

multiple thresholds and creates contingency tables that compare the performance of the 231 

probability of LULC changing. This approach is commonly used in studies of LULC change, 232 

urban growth and climate forecasting (Li and Chen, 2020).  233 

 234 

2.5 Simulation accuracy and SWAT performance evaluation 235 

The Soil and Water Assessment Tool (SWAT) model (Arnold et al. 1998) is a comprehensive, 236 

semi-distributed multi-parameter hydrologic model and is one of the most used models for 237 

modeling runoff and sediment yield (Silva et al., 2018). The Sequential Uncertainty Fitting 238 

procedure (SUFI-2) (Abbaspour et al., 2007) within the SWAT Calibration Uncertainty 239 

Procedures (SWAT-CUP) tool, was used to calibrate monthly streamflow based on data from 240 

the Vitória de Santo Antão streamflow gauge. A Split Sample Test was applied, i.e. three 241 



years were considered for warm-up (1992–1994), nine years for calibration (1995–2003) and 242 

nine years for validation (2004–2012).  243 

Tapacurá River basin is an ungauged basin for sediment data, which are measured only 244 

during random campaigns. The SWAT model was calibrated for estimation of sediment yield 245 

using a sediment-discharge rating curve. The sediment load is given by the rating curve 246 

(Equation 2 and Figure 4) for the Vitória de Santo Antão streamflow gauge, based on field 247 

measurements.  248 

Sy = 6.1496Q1.6399  (2) 249 

where Sy is the sediment yield (mg/day) and Q is the streamflow (m³/s). 250 

The mean daily in-situ suspended sediment curve equals the ratio between the sediment 251 

load and the river discharge. The sampling of suspended sediments is performed by the 252 

Geological Survey of Brazil using isokinetic samplers by vertical integration and the sampling 253 

method by equal width increment (EWI), as described in Carvalho (2008). This station falls 254 

within the responsibility of NWSA and has observed sediment data from 1995 to 2012 255 

obtained on an irregular basis over a period of years by the Geological Survey of Brazil.  256 

 Over the simulation period, sediment data were obtained on 8 days. The small number 257 

of measurements is due to the fact that the Geological Survey of Brazil schedules visits to 258 

monitoring cross-sections annually (three visits) and is not always able to carry out the 259 

scheduled collections due to river conditions. The sediment station is located in a river that is 260 

within an urban area, and after intense rainfall events, runoff produces very strong currents 261 

which prevent measurement. 262 

This approach has been used because sediment-discharge rating curves have been 263 

successfully applied in other basins with limited sediment data (dos Santos et al., 2015). The 264 

results of the streamflow and sediment yield simulations were calibrated to maximize the R², 265 

Nash–Sutcliffe efficiency (NSE) and relative bias (PBIAS), based on Moriasi et al. (2007). 266 



Moreover, two tests have been applied for evaluation of model performance and uncertainty, 267 

i.e., p-factor (observations bracketed by the prediction uncertainty) and the r-factor 268 

(achievement of small uncertainty band). 269 

 270 

Figure 4. Sediment rating curve for the Vitória de Santo Antão sediment gauge. 271 

 272 

2.6 Future climate projections and bias correction 273 

To provide long-term simulations of future climate at a suitable spatial resolution, a regional 274 

climate circulation ETA-CPTEC/HadCM3 model (Chou et al., 2014a; Chou et al., 2014b) was 275 

coupled with a GCM (Hadley Centre Global Environmental Model version 2 - HadGEM2-276 

ES) (Collins et al., 2011). Within the Coupled Model Intercomparison Project (Van Vuuren et 277 

al., 2011; Nilawar and Waikar, 2019), the IPCC defines several scenarios for future climate 278 

projection named representative concentration pathways (RCPs). For example, RCP 2.6 279 

means the radiative forcing level reaches 3.1 W/m2 by mid-century but returns to 2.6 W/m2 by 280 

2100, with low driving levels of greenhouse gas emissions. RCP 4.5 considers carbon 281 

emissions to reach around 650 ppm, and RCP 8.5 has high greenhouse gas emissions (around 282 

1370 ppm). 283 

 In this study, RCP 4.5 and RCP 8.5 were used for the periods of 2011–2040, 2041–284 

2070 and 2071–2099. Currently GCMs data have excellent results on medium and large 285 



basins, however they may contain systematic error so cannot be downscaled and used as 286 

model inputs without bias correction (Tapiador et al. 2020). In our work, a linear scaling 287 

approach is applied to improve the GCMs rainfall data.  288 

The ETA-CPTEC/HadCM3 data showed bias for the rainfall and air temperature 289 

variables, which are generally underestimated when compared with the observed values. 290 

Corrections for systematic errors (bias correction) in the ETA-CPTEC/HadCM3 modeled 291 

future precipitation were made using cumulative distribution functions (CDFs) for both 292 

variables, as proposed by Bárdossy and Pegram (2011), and used by Berg et al. (2012) and 293 

Ribeiro Neto et al. (2014).  In this study, we used observed data from 1961 to 1990. The mean 294 

bias was inserted into the model data after calculating the bias for each month of the 295 

climatological year.  296 

 297 

3. Results  298 

3.1 Sensitivity of SWAT parameters  299 

The first step in the model calibration and validation process is the determination of the most 300 

sensitive parameters in the modeling. In this study, 19 parameters that influence the 301 

streamflow were identified and a sensitivity analysis of all SWAT model parameters was 302 

obtained after 500 iterations using the SWAT-CUP calibration procedure.  Ten of these were 303 

identified as the most sensitive, and were used for calibration across the 1995–2003 period. 304 

Table 1 shows the description of these, including, initial value, minimum, maximum and 305 

calibrated value ranges of the hydrologic modeling for the Tapacurá River basin. The rank 306 

order parameter sensitivity was defined based on the results presented in Figure 5. During the 307 

validation process, the adjusted parameter values in the calibration phase were inserted in 308 

SWAT, and new simulations were achieved with these calibrated parameters.  309 

 310 



Table 1. Selected parameters after the sensitivity analysis of the SWAT model 311 

Parameter Description Process Initial 
value 

Adjustment variation Adjustment 
value*** Method** Minimum Maximum 

Sol_AWC 
(mm/mm) 

Soil available 
water capacity 
(mm H2O/mm soil) 

Soils (.sol) V* % ± 25% +11,13% 

Sol_Z  
(mm) 

Depth from soil 
surface to bottom 
of layer (mm) 

Soils (.sol) V % ± 25% +3,53% 

Sol_K  
(mm/h) 

Saturated 
hydraulic 
conductivity 
(mm/h) 

Soils (.sol) V % ± 25% −22,68% 

Gw_Revap 
(dimensionless) 

Groundwater 
“revap” coefficient 
(dimensionless) 

Ground  
water (.gw) 0.02 = 0.02 0.2 0.1643 

Slsubbsn  
(m) 

Average slope 
length (m) 

Concentration 
time (.hru) V % ± 25% +3,53% 

Canmx  
(mm) 

Maximum canopy 
storage (mm) 

Evapotranspiration 
(.hru) 0 = 0 10 8.785 

Gw_Delay 
(days) 

Aquifer recharge 
time (days) 

Ground  
water (.gw) 31 + −30 60 42.945 

Gwqmn  
(mm) 

Threshold depth of 
water in the 
shallow aquifer 
required for return 
flow to occur 
(mm) 

Ground  
water (.gw) 0 = 0 1.000 776.5 

CN2 
(dimensionless) 

Curve Number for 
normal antecedent 
moisture 
conditions 
(dimensionless) 

Surface  
runoff (.mgt) V % ± 10% −8,31% 

Alpha_BF 
(days) 

The baseflow 
recession constant 
(days) 

Ground  
water (.gw) 0.048 = 0 1 0.2025 

*V: varies spatially. Its value is related to each use, type of soil and slope. **The methods are (a) percentage 312 

variation (%), when the adjustment value varies in percentage in relation to the initial values of the parameters 313 

that have spatial variability (V), (b) equality method (=), when the initial value of the parameter (only parameters 314 

that are spatially unvaried) is replaced by the adjustment value obtained after the calibration phase, and (c) 315 

addition method (+), when the value obtained after the calibration phase is added to the initial value of the 316 

parameter. ***These are the variations obtained for each parameter after the calibration phase, which are applied 317 

to the initial values of each parameter. 318 

 319 



 320 
Figure 5. Result of the sensitivity analysis of the SWAT model parameters for the Tapacurá River 321 
basin 322 

 323 

The t-stat (Figure 5) indicates the degree of sensitivity, and the higher its absolute value, 324 

the more sensitive the parameter is. The p-value, on the other hand, determines the 325 

significance of the sensitivity of the parameters, with values close to zero showing greater 326 

significance in the specific modeling (Abbaspour, 2012). Thus, the 10 parameters that had a 327 

p-value less than 0.1 were considered more sensitive. 328 

From the 10 parameters considered most sensitive for the streamflow calibration (Table 329 

1), four are related to groundwater (Gw_Revap, Gw_Delay, Gwqmn, Alpha_BF), three are 330 

related to the physical characteristics of the soil (Sol_AWC, Sol_K and Sol_Z), Slsubbsn 331 

related to the time of concentration, Canmx related to the evapotranspiration process and CN2 332 

related to the runoff. Sol_AWC, CN2, Sol_K, Sol_Z and Slsubbsn parameters influence the 333 

generation of surface runoff. Gw_Revap, Gw_Delay, Gwqmn and Alpha_BF parameters 334 

influence the baseflow, and Canmx influences the evapotranspiration. The parameters 335 

identified in this study as the most sensitive for the streamflow calibration have also been 336 

identified in previous studies in Brazilian river basins, as shown in Table 2. It is observed that 337 

the most sensitive parameters for the streamflow calibration in river basins do not vary much, 338 

differing little from one basin to another, regardless of the studied region. It was detected in 339 

this brief review of the literature, that the parameters identified as the most sensitive for the 340 

flow calibration by the SWAT model, for the Tapacurá River basin, correspond to at least five 341 

parameters of the studies by Strauch et al. (2012) and Andrade et al. (2013), and to seven in 342 

the studies by Melo Neto et al. (2014), Castro (2013) and Ferrigo (2014).  343 

 344 



Table 2. More sensitive parameters for the calibration of the SWAT model, identified in other 345 
studies in Brazil 346 

Parameters 
Quantity of 

correspondent 
parameters 

Source Region of 
Brazil 

Alpha_BF , Canmx, CH_K2, CH_N2, Esco, 
Gw_Delay, Gw_Revap, Gwqmn, Revapmn, 

Sol_Z, Surlag 
6 Aragão et al. 

(2013) Northeast 

Surlag, Alpha_BF, Sol_K, Gwqmn, CN2, 
Slsubbsn, CH_K2, Rchrg_DP, Esco, 

Sol_AWC, Sol_Z 
7 Castro 

(2013) 

West CH_N2, CN2, Alpha_BF, Canmx, CH_K2, 
Epco, Esco, Gw_Delay, Gwqmn, Surlag 5 Strauch et 

al. (2012) 
CN2, Alpha_BF, Gw_Delay, Gwqmn, 

Gw_Revap, Esco, Sol_AWC, Sol_K, Sol_BD, 
Shallst, Gwht, Deepst, Revapmn, Anion_Excl 

7 Ferrigo 
(2014) 

CN2, Sol_K, Sol_AWC, Canmx, Surlag, 
Gwqmn, Gw_Revap, Gw_Delay, Alpha_BF, 

Esco, CH_K2, CH_N2 
6 Fukunaga 

(2012) 

Southeast 
Esco, Alpha_BF, Epco, Sol_Z, Canmx, 

CH_K2, Sol_AWC, Sol_K, CN2 6 Lelis et al. 
(2012) 

CN2, Alpha_BF, Rchrg_DP, Esco, Sol_Z, 
Sol_AWC, Sol_K 5 Andrade et 

al. (2013) 
Alpha_BF, CN2, Gwqmn, Esco, Sol_Z, 

Sol_AWC, CH_N2, Blai, Canmx, Gw_Revap 7 Melo Neto et 
al. (2014) 

Esco, Alpha_BF, CH_K2, Canmx, Sol_Awc, 
Sol_K, CN2, Slope, Blai, Gwqmn 6 Bonumá et 

al. (2010) 

South CH_K2, Slope, Esco, Alpha_BF, Sol_Z, Sol_K, 
Sol_AWC, Surlag, CN2, CH_N2 6 Baltokoski 

et al. (2010) 
Esco, Alpha_BF, Sol_Z, Sol_AWC, Blai, 

Gwqmn, Revapmn, CH_K2, CN2, GW_Revap 6 Malutta 
(2012) 

 347 

3.2 Set-up and validation of the SWAT model 348 

3.2.1 Baseline streamflow (1995-2013)  349 

Table 3 shows the statistical analysis and performance of the model after the calibration and 350 

validation for observed and simulated streamflow. Based on the R² and NSE criteria of 351 

Moriasi et al. (2007), the calibration of streamflow showed good performance, and 352 

satisfactory performance in relation to the PBIAS. The validation, on the other hand, 353 

surpassed the indices obtained during the calibration, showing a better adjustment of the 354 

observed and simulated hydrographs, and a better representation of peak flows, base flow and 355 

median flows (Figures 6a-6b). The R² and NSE values obtained during validation can be 356 

classified as very good, and the PBIAS value as good (Figures 6c-6d). These results are 357 



similar to those obtained by Montenegro and Ragab (2012) and Ribeiro Neto et al. (2014), 358 

who performed hydrological simulations with the DiCaSM and MODHAC models, 359 

respectively, for the Tapacurá River basin. 360 

 361 

Table 3. Results of hydrologic modeling using SWAT model for Tapacurá River basin 362 

Statistics 
Streamflow (m³/s) 

Calibration Validation 
Simulated Observed Simulated Observed 

Mean 1.59 1.29 2.09 2.34 
Maxima 12.29 16.34 33.93 29.17 
Minima 0.00 0.00 0.00 0.00 

Standard deviation 2.45 2.68 5.11 4.45 
R² 0.72 0.86 

NSE 0.71 0.85 
PBIAS −23.73 −11.94 

  363 

 364 

Figure 6. (a) Observed and simulated monthly streamflows for calibration period, (b) 365 
observed and simulated scatter plot for calibration period, (c) observed and simulated monthly 366 
streamflows for validation period, and (d) observed and simulated scatter plot for validation 367 
period from the Tapacurá River basin. 368 
 369 

Figure 7 presents the uncertainty analysis results of SUFI-2 during the calibration and 370 

validation periods at the Vitória de Santo Antão streamflow gauge. In this figure, the shaded 371 



region (95% probability uncertainty plot - 95PPU) contains all uncertainties from the different 372 

sources. The results for the streamflow gauge show that most (84%) of the observed data were 373 

bracketed by the 95PPU. The results show that although some peak values were missing from 374 

the 95PPU band, the SWAT model was however capable of simulating large flows and 375 

extreme events in the river basin. This shows that the SUFI-2 algorithm captured the observed 376 

data well for the streamflow gauge but had high uncertainty for simulated peak values. In 377 

addition, the results obtained show that calibration of the SWAT model in this basin is 378 

challenging due to the uncertainties that are driven by the streamflow process, which are not 379 

totally understood. 380 

 381 

 382 

Figure 7. 95% probability uncertainty plot of observed and simulated streamflow 383 

 384 

The results indicated that the p-factor and r-factor values during the calibration were 385 

0.22 and 0.33, respectively. These results can be considered good in terms of the percentage 386 

of data being bracketed (p-factor), but the uncertainties are larger as expressed by the r-factor 387 

for calibration, showing higher uncertainty in discharge peaks. The parameter uncertainties 388 

were tolerable when the parameter ranges of the NS and R² reached the desired limits. When 389 



the NSE value is >0.60, the results are satisfactory, and once NSE is >0.75, the simulation 390 

results are good (Nash & Sutcliffe, 1977). For the results during the calibration, the values of 391 

R² and NS were 0.78 and 0.75, respectively. The results indicate that the model can be 392 

accepted for the Tapacurá River basin. 393 

 394 

3.2.2 Baseline sediment yield (1995-2013) 395 

The modeled mean sediment yield results were very close to the observed mean value, 396 

showing a mean difference of only −0.69 t, with R² = 0.77, NSE = 0.69 and PBIAS = 21.68 397 

(Table 4), which can be considered as good. The results are close to those obtained by da 398 

Silva et al. (2012) and dos Santos et al. (2015), who estimated sediment yield for this basin 399 

based on the universal soil loss equation and its modified version, respectively, for the 400 

Tapacurá River basin. 401 

 402 

Table 4. Results of modeling sediment yield 403 

Statistics Simulated sediment yield 
(t/ha/year) 

Observed sediment yield 
(t/ha/year) 

Mean 2.49 3.18 
Maxima 6.18 7.42 
Minima 0.37 0.11 

Standard deviation 2.29 3.03 
R² 0.77 

0.69 
21.68 

NSE 
PBIAS 

 404 

3.3 Streamflow and sediment yield for Tapacurá River basin 405 

After calibration and validation for the current conditions of climate and LULC, streamflow 406 

and sediment yield for the Tapacurá basin were compared (Table 5). The results show that 407 

sediment yield in the basin is directly related to rainfall, indicating that this region has a fast 408 

flow response. The highest values occurred in 2005 and 2011. The lowest estimated sediment 409 

yield occurred in 1998, which registered the lowest rainfall and corresponding flow for the 410 



entire analyzed period. The results show a marked variation in the standard deviation for 411 

streamflow and sediment yield data, equal to 83.25 mm and 11.48%, respectively. The 412 

coefficient of variation similarly shows marked variation of above 60% during the period 413 

analyzed. Figure 8a represents the spatial distribution of sediment yield in the sub-basins. The 414 

results show that sediment yield was higher in the eastern sub-basins due to the predominance 415 

of areas with sugarcane cultivation in undulating terrain, and the influence of higher rainfall 416 

(Figure 8b), resulting in higher streamflow (Figure 8c), contributing in turn, to accelerated 417 

erosion in these sub-basins. 418 

 419 

Table 5. Annual averages of rainfall, streamflow and sediment yield 420 

Year Rainfall (mm) Streamflow (mm)  Sediment yield 
(t/ha/year) 

1995 817.26 74.62 7.80 
1996 993.81 105.61 18.44 
1997 770.63 102.90 14.21 
1998 427.16 5.84 0.25 
1999 582.25 29.79 4.40 
2000 1396.87 237.65 30.20 
2001 831.03 58.33 5.83 
2002 995.98 114.96 18.46 
2003 639.97 42.03 7.88 
2004 886.84 131.73 23.65 
2005 1159.85 239.62 35.16 
2006 728.63 65.46 9.44 
2007 841.53 78.10 11.42 
2008 786.33 75.58 16.83 
2009 878.35 100.04 25.33 
2010 897.69 154.98 16.88 
2011 1482.81 338.31 41.21 
2012 730.46 96.45 31.67 

Mean 880.41 114.00 17.73 
Standard deviation 261.31 83.25 11.48 

Coefficient of variation (%) 29.68 73.03 64.78 
 421 



 422 

Figure 8. Maps of spatial distribution: (a) streamflow, (b) rainfall, and (c) sediment yield for Tapacurá River 423 

basin. 424 

 425 

3.4 Estimating future LULC in the Tapacurá River basin by 2050 426 

Figures 9a and 9b show the prediction of the LULC for 2050 estimated by the MP algorithm 427 

and spatial validation of simulated LULC for Tapacurá River basin in 2015, respectively. The 428 

kappa statistics for LULC classifications in 1989, 2007 and 2015 showed good agreement 429 

between the classified map of each year and the mesh equaled 0.81, 0.79, and 0.82, 430 

respectively. The matrix of the transition probability of LULC for 2007 and 2015 is shown in 431 

Table 6. The diagonal matrix results show the percentages of persistence, while the other 432 

values correspond to the percentages of change from one LULC class to another. The water, 433 

urban area, and sugarcane classes had a probability of persistence greater than 80%. However, 434 

the highest probability of change was from the livestock to the sugarcane class. 435 

 436 

Table 6. Matrix of the transition probability of LULC classes for 2007 and 2015 in the study 437 

area. 438 

2007 2015 
Caatinga Livestock Rain forest Water Agriculture Urban area Sugarcane 

Caatinga 0.2394 0.1682 0 0.0054 0.5075 0.0152 0.0643 
Livestock 0.0356 0.2693 0 0 0.5719 0.0411 0.0821 
Rain forest 0.0029 0.2356 0.6108 0.1005 0 0 0.0501 

Water 0.0123 0.0066 0.0343 0.8489 0.0757 0.0173 0.0049 
Agriculture 0.2479 0.1237 0.0546 0 0.5242 0 0.0496 
Urban area 0 0.0018 0 0.0001 0.0051 0.9930 0 
Sugarcane 0 0.1244 0.0015 0.0002 0 0 0.8739 

 439 



The areas with the most forecast hits comprised the greater part of the central portion of 440 

study area, where agriculture and sugarcane classes predominate (predicting hits). Most 441 

prediction failures (misses) were found in the border of the study area. For the western region 442 

of the catchment, the forecasting resulted in class changes, but these did not suggest 443 

considerable changes (false alarms). 444 

 445 

  446 

Figure 9. (a) LULC map for the Tapacurá River basin for 2050, and (b) spatial validation of 447 

simulated LULC in 2015. 448 

 449 

Table 7 shows the areas for each LULC identified in the Tapacurá River basin and the 450 

percentage of change in the area for the two studied scenarios for 2050. The modeling results 451 

show an increase in agriculture and sugarcane classes, and a decrease in the livestock 452 

(−87.01%) and rain forest (−17.27) classes. These results are corroborated by Xavier and 453 

Silva (2018), who pointed out that forest cover has been reducing since the 1970s due to the 454 

expansion of agriculture and sugarcane, mainly in the southwestern and eastern portion of the 455 

basin, with the latter being the most occupied by sugarcane. Table 8 presents the modeled 456 

LULC for the study area in 2015 and confusion matrix with omission and commission errors 457 

found by comparing the classification. The class that showed the largest omission error and 458 

commission were Caatinga and livestock. The values show counts of pixels that have been 459 

wrongly included in a category. The agriculture and sugarcane classes showed the best results 460 



when compared to the others, because they are the classes that had the greatest area of growth 461 

and therefore the least error in the estimated areas. 462 

 463 

Table 7. Change in two LULC scenarios in the Tapacurá River basin for 2050. 464 

LULC Optimistic Pessimistic Change 
(%) Area (km²) Area (%) Area (km²) Area (%) 

Agriculture 180.89 38.47 252.19 53.66 71.30 
Livestock  182.30 38.77 95.29 20.27 −87.01 
Sugarcane 53.60 11.40 65.55 13.95 11.95 
Rain forest 27.38 5.82 10.11 2.15 −17.27 
Urban areas 10.36 2.20 18.34 3.90 7.98 
Water 10.50 2.23 10.60 2.26 0.10 
Caatinga 5.13 1.09 17.92 3.81 12.79 

Total 470 100 470 100 - 
 465 

Table 8. Matrix of omission and commission errors. 466 

LULC Caatinga Livestock Sugarcane Rain  
forest Water Agriculture Urban 

area 
Omission 

(%) 
Commission 

(%) 
Caatinga 16861 4435 239 39 85 6040 456 40.11 21.91 
Livestock 1947 78039 1251 228 235 8803 342 14.10 20.78 
Sugarcane 0 726 54905 172 348 35 4 2.29 9,16 
Rain forest 2 270 234 9269 246 209 0 9.39 9.83 
Water 0 254 454 307 9973 124 0 10.25 10.13 
Agriculture 2771 14464 3806 189 210 248983 2954 8.92 6.59 
Urban area 12 322 0 0 0 2359 13975 16.16 21.18 
 467 

3.5 Evaluation of downscaling for future climate scenarios 468 

In this section, the comparison of HadGEM2-ES model with observed rainfall data is shown. 469 

Figure 10 shows the comparison between observed and downscaled average monthly rainfall 470 

(RCPs 4.5 and 8.5). The average R² values was 0.93, thereby indicating better correspondence 471 

between downscaled and observed data after bias correction.  472 

 473 



 474 

Figure 10. Bias correction of future, baseline, and observed rainfall data for RCPs 4.5 and 475 

8.5. 476 

 477 

3.6 Combined impacts of climate change and LULC on streamflow and sediment yield 478 

Runoff-erosion processes for the Tapacurá River basin were estimated using two different 479 

land use scenarios (optimistic and pessimistic), driven by two RCPs (4.5 and 8.5). The rainfall 480 

in all other periods was higher than the rainfall of the baseline period (1995–2012), for both 481 

RCPs (Table 9). Streamflow based on RCP 4.5, and LULC optimistic, had an increase relative 482 

to the base period (1995-2012) of 79, 104 and 63%, respectively in the periods 2011–2020, 483 

2041–2070 and 2071–2099. Based on RCP 8.5, the expected streamflow exceeded that 484 



observed in the base period by 217% in the period 2011–2040, 145% in 2041–2070 and 119% 485 

in the three past decades (2071–2099), due to the increase in the estimated rainfall in relation 486 

to RCP 4.5. 487 

In this study, the SWAT hydrological model driven by climate simulations estimated an 488 

overall increase in the Tapacurá River flow for optimistic and pessimistic scenarios. The 489 

results obtained showed that the average annual simulated streamflow will increase mainly 490 

between 2014–2040 in the RCP 8.5, while in the RCP 4.5 presented the lower values. 491 

Between 2041–2070 and 2071–2099 there is less variation between RCPs and scenarios, but 492 

also with an increase in values in relation to the baseline. The results of annual simulated 493 

streamflow showed an increase in the optimistic scenario in the two climatic scenarios (RCP 494 

4.5 and RCP 8.5). The greatest values were obtained using the RCP 4.5 scenario, whose 495 

values were greater by 8.2% in 2014–2040, 12.2% in 2041–2070, and 15.0% in 2071–2099. 496 

This result is clearly sensitive to the result of future climate projections. Silva et al. (2012) 497 

and Santos et al. (2015) stated that the increase in river streamflow in the future depends 498 

mainly on increases in precipitation and decreases in temperature and evapotranspiration in 499 

this basin. 500 

 501 

Table 9. Annual averages of rainfall, streamflow and sediment yield in different scenarios of 502 
climate change and LULC 503 

LULC Processes Baseline* RCP 4.5 RCP 8.5 
1995–2012 2014–2040 2041–2070 2071–2099 2014–2040 2041–2070 2071–2099 

Rainfall (mm) 880.41 1194.43 1244.41 1078.88 1487.20 1222.70 1200.81 

Optimistic  
Streamflow (mm) 114.00 204.57 232.82 185.87 361.64 278.96 249.72 

Sediment yield 
(t/ha/year) 17.73 36.95 38.517 32.00 51.42 38.519 36.69 

Pessimistic 
Streamflow (mm) − 208.13 246.88 195.10 369.57 295.78 265.93 

Sediment yield 
(t/ha/year) − 59.13 67.67 52.55 93.65 74.02 69.22 

*Baseline: period used for hydrologic modeling in the SWAT model. 504 

 505 

As expected, sediment yield in the basin showed the same trend as streamflow in both 506 

climate change scenarios. The projected sediment yield values for RCP 4.5 exceeded those of 507 



the baseline by between 80 and 117%. For RCP 8.5, the values were even higher, varying 508 

between 107 to 190% for the different periods of analysis. The pessimistic LULC scenario 509 

showed increases in sediment yield for all years and RCPs relative to the optimistic. These 510 

results serve as an urgent call for the adoption of mitigating measures to avoid associated 511 

environmental problems and improve the management of land and water resources. 512 

The streamflow in the pessimistic scenario, for RCP 4.5 exceeds the optimistic scenario 513 

by 2% in the period 2011–2040, 6% in the period 2041–2070 and 5% in the period 2071–514 

2099. Sediment yield varies by 60, 76 and 64% across the periods. The streamflow results for 515 

the pessimistic scenario RCP 8.5 show a slight increase of between 2 to 6% when compared 516 

to the optimistic scenario. The sediment yield increase ranged between 60 and 76%, showing 517 

that soil erosion in the region is more sensitive to climate variability than streamflow, and that 518 

LULC changes can have serious impacts on the basin. 519 

The highest values of streamflow and sediment yield in the RCP 4.5 scenarios occurred 520 

in 2041–2070, while in the RCP 8.5 scenarios, the highest values occurred in the first part of 521 

the century (2014–2040). This trend is related to the rainfall pattern of the RCP 4.5 and 8.5 522 

scenarios, as in RCP 4.5 the rainiest period is 2041–2070, and in RCP 8.5 it is 2014–2040. 523 

The results suggest that even in the near (2014–2040) to medium (2041–2070) future there 524 

may be negative impacts on the dynamics of the Tapacurá River basin, as well as for the 525 

RMR, including floods, silting in rivers and reservoirs, and reducing the productive capacity 526 

of the soils. 527 

Figure 11 shows the results of streamflow and sediment yield estimated for Tapacurá 528 

reservoir using future climate data. Based on SWAT model projections, the results show an 529 

increase in sediment yield for the analyzed LULC scenarios and climate change. These values 530 

suggest decision makers responsible for storage management in the Tapacurá Reservoir must 531 

implement measures for the effective management of the stored volume, as the reservoir plays 532 



a significant role in the regional hydrology and for water management for the 533 

Caatinga/Atlantic forest ecotone region, including amelioration of flood events in the RMR. 534 

 535 

 536 

Figure 11. Streamflow (a) and sediment yield (b) estimated for Tapacurá reservoir. 537 

 538 

4. Discussion 539 

This study has analyzed the impact of climate and LULC change on streamflow and sediment 540 

yield in the Tapacurá River basin, using a combination of two models (climate and 541 

hydrological), which allowed a more integrated assessment of water balance and sediment 542 

dynamics. Previous studies have focused on different components of the Tapacurá river Basin. 543 

For instance, Silva e al. (2010a) studied the spatiotemporal variability and precipitation 544 

pattern for this basin and reported a warming trend in northeastern Brazil and a decreasing 545 

trend in rainfall in Tapacurá River basin between 1970-2000 and an increase from 546 

2000-2010. Silva et al. (2010b) and Silva et al. (2012) analyzed vegetation cover, sediment 547 

yield, soil loss, and prioritization of critical sub-catchments in the Tapacurá River basin based 548 

on remote sensing and Geographic Information System. Silva et al. (2014) predicted soil 549 

erosion and sediment yield in the Tapacurá catchment using an empirical model, whereas 550 

Xavier and Silva (2018) implemented a GIS-based method for temporal dynamic modelling 551 

of the land use and land cover. Montenegro and Ragab (2012) analyzed the impact of possible 552 

climate and land use changes in the Brazilian semi-arid region, while Dos Santos et al. (2015) 553 



investigated historic land cover and climate change effects on streamflow and sediment yield 554 

for the Tapacurá River basin specifically. Although these studies have provided useful 555 

contextual understanding and methodological advances, what has been lacking is an 556 

integrated evaluation of the effects of LULC change on streamflow and sediment yield, within 557 

the context of alternative climate change scenarios. Furthermore, previous studies have 558 

analyzed certain aspects of the climate and land, using different input data quality, methods 559 

and assumptions, hindering the comparison of results between studies. Like Tapacurá River 560 

basin is a strategic basin in the Caatinga/Atlantic forest ecotone of Northeastern Brazil, an 561 

assessment of future climatic and hydrological conditions is essential for water management 562 

for this basin. Several applications of LULC change and climate change models with SWAT 563 

model has been used for predicting the hydrologic response (Strauch et al., 2012; Čerkasova 564 

et al., 2018; Tamm et al., 2018; Silva et al., 2018; Chen et al., 2019; Bhatta et al., 2019). 565 

Using a combination of SWAT model and climate model a more realistic description of the 566 

processes taking place in the Tapacurá River basin. The hydrological model gave some 567 

answers on the relative importance of LULC versus climate change effect on streamflow. The 568 

combined impact of climate variability and LULC changes on water resources under present 569 

and future scenarios were evaluated with multiple projections using both RCP 4.5 and 8.5 570 

scenarios. However, a limitation of this study is the use of a single hydrological model and a 571 

single regional climate model. The application of multi-model techniques might improve 572 

understanding of uncertainty arising from model selection. Another limitation of this study is 573 

that static LULC maps were used to represent baseline and future periods. In the future, 574 

additional LULC maps must be considered to circumvent scenario-based ambiguity. 575 

The results over the studied period using the projected datasets indicate that this basin 576 

clearly presents a high variability during the studied period, and further that precipitation does 577 

not show a uniform trend in past observation or in future projections, and that the pessimistic 578 



and optimistic climate scenarios also yielded higher flows than those of the baseline. 579 

Moreover, studies using regional circulation models showed a systematic decrease of total 580 

precipitation in northeastern Brazil, as reported by Oyama and Nobre (2004), Souza and 581 

Oyama (2011), Feron et al. (2019), and Marengo et al. (2020), runoff (Lapola et al., 2019; 582 

Avila-Díaz et al., 2020) and sediment yield (Rodriguez-Lloveras et al., 2016), when compared 583 

with the present behavior of the basin over the baseline period.  584 

Additionally, as can be seen in the projected data, the bias correction is having the effect 585 

of increasing winter rainfall relative to baseline for the first two periods, which is probably 586 

why there are bigger increases in modelled flow and sediment for these periods, relative to the 587 

final period. The results of streamflow and sediment yield are influenced by the model used, 588 

and the bias correction selected in the modeling. Furthermore, this study is limited to 589 

simulations on a monthly scale, due to the low performance of the model for simulations on a 590 

daily scale for this basin. Poor simulations at daily scale arise due to the high climatic 591 

variability, soil types and LULC in this basin, as presented in Silva et al. (2014), and Xavier 592 

and Silva (2018). However, these results are in agreement with other hydrological projections 593 

in the Brazilian semiarid region (Santos et al., 2016). Relative to historical conditions, 594 

therefore, higher flows and sediment yields in this basin can be anticipated. These results 595 

serve to alert decision makers of the value in using hydrological models such as SWAT to 596 

highlight potential changes in the behavior of flows and sediment yield.  597 

Another point to be highlighted is the uncertainties regarding the behavior of the climate 598 

in this portion of Brazil, which is marked by the low quality of the prediction of climatic data 599 

(Silva et al., 2010a), especially for the long-term due to recurrent periods of drought in the 600 

region (Silva et al., 2010b; Santos et al., 2020). As for the simulations of LULC, it should be 601 

noted that this basin has had a high rate of change in LULC in recent decades, due to the 602 

increase in monocultures such as sugar cane, and more recently with the increased livestock 603 



(De Carvalho et al., 2015; Santana et al., 2019), which increase the uncertainties in the LULC 604 

scenario estimates. However, there is a lack of studies on modeling the impacts of future 605 

LULC and climate change on runoff and sediment yield for the Tapacurá River basin, as well 606 

as for the entire portion of the coastal area of northeastern Brazil, which can be used by 607 

decision makers on availability/consumption of water for economic activities and for the 608 

population of the basin. Future studies using other GCMs are necessary to improve the 609 

simulation of precipitation in northeastern Brazil, including for example, the effect of 610 

different domain sizes and grid spacing. Despite these uncertainties, the SWAT model results 611 

have contributed to developing a better understanding of runoff and sediment behavior in the 612 

Tapacurá River basin. 613 

 614 

5. Conclusions 615 

This paper investigated the impacts of climate change on streamflow and sediment yield in 616 

the Tapacurá River basin. The SUFI-2 algorithm was used for the calibration and validation 617 

of the SWAT model, driven by bias corrected, downscaled climate projections under 618 

projected land use change scenarios. The hydrologic modeling represented the runoff-erosion 619 

processes for the Tapacurá River basin effectively, with results achieving a ‘good’ threshold 620 

(Moriasi et al. 2007). Streamflow and sediment yield processes were more intense in sub-621 

basins that have predominant coverage of sugarcane in undulating terrain. 622 

The projected LULC changes for 2050 were mainly reductions in the livestock and rain 623 

forest classes and their replacement by agriculture and sugarcane classes. This was observed 624 

almost across the entire basin. The LULC projections based on the MP algorithm showed 625 

acceptable values, with a good kappa statistic and an AUC of 0.71, which is considered good 626 

quality for simulations. 627 



Mean streamflow and particularly sediment yield of the basin are expected to rise 628 

considerably under RCP 8.5, partly in response to likely increases in mean rainfall. 629 

Simulations indicated highest erosion for the pessimistic scenario under RCP 8.5, followed by 630 

the pessimistic scenario and RCP4.5. Lower sediment yields occurred for the optimistic and 631 

RCP 8.5, with lower still for the optimistic and RCP 4.5. However, the latter is still 632 

considerably higher than baseline. The results show that despite the uncertainties present in 633 

the simulations of climate change impacts, the basin may experience serious environmental, 634 

and water availability problems linked to severe climatic conditions. 635 

 Based on our findings, the Tapacurá Reservoir will experience an increase in 636 

streamflow for both scenarios of LULC and climate change. Although this may lead to an 637 

increase in the reservoir water availability, the associated increase in sediment yield means 638 

there is also a considerable increase in the risk of silting, with a consequent decrease in 639 

storage capacity and reduced flood protection during extreme events. In recent decades, 640 

considerable changes in LULC due to an increase of livestock and agriculture have already 641 

altered the streamflow and sediment yield of the Tapacurá River basin at both seasonal and 642 

long-term time scales. As the pressure for LULC changes in the Tapacurá River basin 643 

continue to grow, evaluation of its impacts on the projected runoff-erosion regime of the basin 644 

must be systematically integrated into decision-making for water, land and biodiversity 645 

management in the basins in the Caatinga/Atlantic forest ecotone of Brazil. 646 
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