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 

Abstract—Dynamical movement primitives (DMPs) model is a 

useful tool for efficiently robotic learning manipulation skills from 

human demonstrations and then generalizing these skills to fulfill 

new tasks. It is improved and applied for the cases with multiple 

constraints such as having obstacles or relative distance limitation 

for multi-agent formation. However, the improved DMPs should 

change additional terms according to the specified constraints of 

different tasks. In this paper, we will propose a novel DMPs 

framework facing the constrained conditions for robotic skills 

generalization. First, we conclude the common characteristics of 

previous modified DMPs with constraints and propose a general 

DMPs framework with various classified constraints. Inspired by 

barrier Lyapunov functions (BLFs), an additional acceleration 

term of the general model is deduced to compensate tracking 

errors between the real and desired trajectories with constraints. 

Furthermore, we prove convergence of the generated path and 

makes a discussion about advantages of the proposed method 

compared with existing literature. Finally, we instantiate the novel 

framework through three experiments: obstacle avoidance in the 

static and dynamic environment and human-like cooperative 

manipulation, to certify its effectiveness. 

 
Index Terms—Dynamic movement primitives (DMPs), robot 

learning, skills generalization, barrier Lyapunov functions(BLFs) 

 

I. INTRODUCTION 

earning from demonstration (LfD), inspired by 

neuroscience, is an effective way for robotics learning 

manipulation skills such as opening doors or grasping cups 

from human’s natural actions [1]. Since 1980s, plenty of 

methods are proposed, e.g. Calinon, Billard and Khansari- 

Zadeh et al. used Gaussian mixture model (GMM) and 

Gaussian mixture regression (GMR) to regenerate motions [2]-

[4]. Ng and Russell proposed the inverse reinforcement learning 

(IRL) method to build up an unknown reward function based 

on the observed trajectories to characterize solutions [5]. 

Ijspeert et al. proposed dynamic movement primitives (DMPs) 
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model that produces a trajectory similar to the demonstrations 

to solve the path planning without building kinematic models 

[6], [7]. Since then, DMPs model was modified and improved 

widely for imitation and learning of human skills like reaching 

movements [8], object grasping [9] and clothes manipulation 

[10] etc.  

Constraints in joint and task spaces [11] and caused by force 

interaction [12] are common topics for LfD. Some researchers 

improved DMPs model and combined neural networks control 

with DMPs [13]-[14] to solve the tasks with special constraints 

such as obstacle avoidance [15]-[19], bimanual operation [20]- 

[24] and interaction with external objects [27], the majority of 

which added a coupling term based on the basic functions. 

 For obstacle avoidance, Khansari-Zadeh et al. and Park et al. 

took repulsive potential fields as coupling terms into DMPs for 

obstacle avoidance [15], [16]. Hoffmann et al. motivated by 

biological data and human behaviors and modified the DMPs 

model by adding an acceleration term to avoid moving obstacle 

[17]. But, Pairet et al. pointed out that the additional coupling 

term will bring some limitations: dead-zone compromising the 

method’s reliability, without a strategy to guide to a preferred 

route to circumnavigate an obstacle, performance decrease 

facing non-point obstacles, time-consuming and prone to 

measurement noise. Therefore, they proposed a hierarchical 

framework that combines the versatility of DMPs and strengths 

of learning techniques [18]. As statements mentioned in [16], 

these proposed approaches enable a robot to avoid conflict with 

an obstacle by predefining policies. But, a non-expert cannot 

teach a robot his/her special skills of avoiding a collision with 

different objects by demonstrations.  

Cooperative DMPs for bimanual robot manipulation [20]-[24]  

and multi-robot formation [25] has another kind of constraint, 

which brings strong space constraints to all the related roles. 

Umlauft et al. [20] inspired by DMPs interacting with external 

perturbations, added an error item to increase adaptability under 

external disturbances. Kulvicius et al. studied interactive DMPs 

and added an accelerating predictive reaction for the coupling 

agents, which is similar to the term for obstacle avoidance [22]. 
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Gams et al. argued that not only at acceleration level but also 

the velocity should be added a term for smoother interactions in 

DMPs, which can be seen as the combination of above two 

papers [23]. They also used iterative learning control method to 

learn the coupling term to modify the original trajectory based 

on the force feedback generated during executions of the tasks. 

Lee et al. studied with purpose of both obstacle avoidance and 

cooperative manipulation by DMPs for aerial robots formation, 

and two terms were formulated based on regular DMPs to solve 

two problems separately [25]. Lastly, some researchers studied 

special constraints such as curved surface [26] to modify DMPs  

by adding an accelerating coupling term for realizing trajectory 

planning and force control [27].  

Seen from the presented work, it is not hard to find that the 

coupling terms are specially designed with different constraints 

and purposes for the varying tasks and operational demands. In 

fact, these terms have two implicit usages: path replanning and 

generalization.  As there are many researches has proposed path 

replanning methods for various scenes, we hope to propose a 

general DMPs-based skill generalization method based on the 

path replanning methods to enable the original path to fit tasks 

with constraints, especially, with several dispersed constraints. 

Some researchers have made a few experimental studies, e.g. in 

[28], Krug et al. combined the model predictive control (MPC) 

method and DMPs to calculate possibilities of obstacle 

avoidance for online optimization of trajectory. Furthermore, 

Khansari-Zadeh, and Billard proposed an idea of safety margin 

around obstacle via a safety factor for obstacle avoidance [15]. 

Compared with other researches, these two papers attempted to 

provide a general DMPs method to more cases with constraints.  

With this inspiration, we propose a novel DMPs framework that 

combines the control concept of Barrier Lyaponov Functions 

(BLFs) with regular DMPs model. The idea integrating control 

and learning methods is similar to our previous work [29]-[31], 

[38] but has a difference that is by adding an acceleration term 

calculated by constrained paths and safety margins, the control 

method will be embedded in the DMPs model and modify the 

trajectories timely. The main contributions are listed as follows: 

1) Proposing a new abstracted DMPs model with classified 

constraints based on the summary of plenty of improved 

DMPs cases with constraints, covering obstacle avoidance, 

cooperative manipulation, and curved surface movement. 

2) Proposing a new method combining path planning (DMPs) 

and control concept (BLFs) to solve constrained trajectory 

planning based on the new model. A technical discussion 

is taken to compare with methods presented in the previous 

papers[16]-[18]. Convergence of the generalized trajectory 

is proved.  

3) Three experiments are taken to prove the effectiveness of 

the proposed method for non-point obstacle avoidance in 

static and dynamic environment and cooperative dual-arm 

robot operation. The results show that most of limitations 

of the original DMPs presented by Pairet et al [18] will be 

addressed. 

The rest of the paper is organized as follows. Section 2 starts 

from basic knowledge of DMPs and proposes a new framework 

based on summary of modified DMPs with special constraints. 

The improved constrained DMPs is presented in Section 3. In 

Section 4, we make an analysis about advantages of the method 

comparing with existing literatures and present the procedures 

for skill learning and generalization in actual. Section 5 shows 

three DMPs-based experiments and compares the results with 

original DMPs. Section 6 concludes the paper finally.   

II. DYNAMIC MOVEMENT PRIMITIVES AND CONSTRAINTS  

This section contains two parts. The first one introduces the 

basic components for DMPs function proposed by Ijspeert et al. 

[6]-[7], and the second part presents a general DMPs model 

with classified constraints, which is the research foundation for 

the next section.  

A. Dynamic movement primitives 

The DMPs model is firstly proposed in [6] as  

 
    z zv g x v f s

x v

  



    




, (1) 

TABLE I 

TYPICAL IMPROVED DMPS WITH CONSTRAINTS 

Ref. No. Constraints’ expressions Expressions of improved DMPs  

[17] 

Obstacle constraint: ( , ) ( )Rvp expx v     , R is a rotation matrix with axis 

of  r o x v   and o is the position of the obstacle, and 1 ( )
cos

To x v

o x v
 

 
     

 
     0 ( , )v k g x dx k g x s kf s p x v         

[20] 
Cooperative distance constraint:  ( )

i

i j

i ij i j ij

j N i j

x x
c x x x d

x x





   


  

ijd is the desired distance between the agent i and agent j ; 

    

2

( )

1 ( )

i z z i i i i

i i i

i i
i

i

v g x v f s

x v kc x

s
s

c x

  








   

 

 


 

[23] 

Obstacle and internal force constraint: , ,i j i j fiC cF l , , , ( )i j j i d aF F k d d    

represents the internal force between two agents, and dd  represents the desired 

distance between two effectors and ad is the actual distance; 

     2 ,

,

, , ( )

i i i i j

i i i j

i j i j

v k d g x x f s c C

x v C

C cF t





    

 



 

[27] 
Curved surface constraint: a   is added as the force coupling term  related to 

the contact force error. 

    ,v k d g x x f s w a

x v

 



    

  
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where   ( )Tf s s  is a linear combination of nonlinear radial 

basis functions, and    1 2 1 2, ,..., , ( ) , ,...,
T T

n nw w w s       

 2

1

( )
, ( ) exp( ( ) )

( )

i

i i i in

ii

s s
s h s c

s


 




   


. 

where ic  and 0ih   are the centers and widths of radial basis 

functions respectively. The factors , 0z z   are coefficients 

of the linear part in (1) and (1) has a unique attracting point at 

, 0. 0x g v    is a timing parameter adjusting speed before 

execution of movements. s is a phase variable to achieve the 

dependency of function  f s  out of time.  

Remark 1: The expression of the forcing function is not unique, 

some researchers such as Wang et al. [32] and Wu et al. [33] 

proposed the DMP plus method by adding a bias term to each 

kernel and used the truncated kernels to achieve lower MSE in 

position deviation. 

The dynamics of s  is expressed by a canonical system  

 , 0s s     . (2) 

Eq. (2) has implicit relation with time that we can modify the 

converging time by the factor  . When 0s  , as t  , the 

value of  f s  trends to 0 and  ,x v  reaches to the stability 

point [ ,0]g . The vector   can be learned using supervised 

learning algorithms such as locally weighted regression (LWR) 

[32]-[34]. The purpose of calculating process is to minimize the 

error function: 

     
1

min
N Tar

j jj
f s f s


 , (3) 

where  jf s represents the item calculated by the jth trajectory 

in demonstration, and  Tar

jf s is the target value of  jf s as 

     Tar

j z z j jf s v g x v      . (4) 

B. Generalization of modified DMPs and constraints  

As mentioned in Section I, eq. (1) is improved and proposed 

with several constraints , we list some typical ones in Table I. It 

is not hard to notice that both the basic expression of DMPs and 

additional terms differ from each other with various purposes 

for manipulations. We express them with a general function: 

 

   2

1 1

, , , , ( , )

( , , ) ( , )

( , )

gv f g x v k s u s u

x f x F g x v

s s

   

 



    


 
  


 ,(5) 

where ( , )s  is the canonical system like (2) and  ,k s  and

( , )u s   containing s . The difference of  ,k s  and ( , )u s  is 

 ,k s  represents a linear term like  0k g x s in [17] and 

 ,u s  is the forcing function like ( )f s  in [17], [20] etc. 
g is 

a constant factor and usually set as 1  .  2 , , ,f g x v   is a 

general linear function of DMPs like   z z g x v     in (1).  

u  is an additional accelerating term caused by the constraints. 

All the DMPs functions in Table I can obviously abstracted into 

the formulation in (5). In the next section, a general method will 

be presented to deduce the exact expression of u . 

Following Table I, we know that any constrained term has a 

referring point or trajectory like point o in [17], or 
jx  to ix  in 

[20], and position errors like o x or
i j ijx x d   are used to 

calculate the additional term. As trajectory points are x , we set 

the referring point of x as 
cx , c

ix and ix are positions along the 

trajectories cx and x . Additionally, we are inspired by the 

concept of “safety limits” in [34] and “safety margin” in [15] 

and propose ih  to describe the relations of c

ix and ix . All the 

possible relations can be shown as:  

c

i i i ih x x h   or 
c

i i ix x h   or/and c

i i ix x h  .       (6) 

where ih  and ih are upper and lower boundary functions, and

i ih h . c

ix  and ih (including ih and ih ) depends on operator’s 

decisions or objective conditions learned on-time or by multi -

disciplines in [16] and [18]. They also can be generated by local 

constraints and operator prefer routes. Different from intelligent 

learning methods of path planning, the proposed DMPs model 

has two following advantages: 

1. Ensuring stability of trajectory. No matter the two-order 

expression of DMPs or the integrated BLFs method are 

proved to be stable and converged, but some intelligent 

methods are not.  

2. DMPs can be integrated with intelligent learning methods 

and control theory to improve the learning efficiency and 

autonomy such as terms cx  and ih  can be manually set and 

learned by intelligent methods or calculated based on the 

analytic geometrical relations of interactive objects. After 

getting c

ix and ih , the improved DMPs model will enact to 

ensure convergence of the generalized trajectory satisfying 

inequalities in (6). 
 Furthermore, we divide (6) into two conditions, which both 

contain two cases. 

Condition 1: Asymmetric constraints   

Case 1: 
c

i i i ih x x h   ; 

Case 2: 
c

i i ix x h   and/or c

i i ix x h  . 

Condition 2: Symmetric constraints  

Case 1: 
c

i i ix x h   

Case 2: c

i i ix x h   

Some assumptions are proposed as follows: 

Assumption 1: The constrained trajectory is stable and satisfies 

if 0s  , then  
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  2 , , ,c c cv f g x v  and    , ,0c cx v g . (7) 

Assumption 2: The constrained trajectories and velocities are 

continuous and differentiable within every skill segmentation 

range.  

Remark 2: Assumption 1 is basis for trajectory convergence. 

According to [19], if 0s  , the s -related term will decrease 

to 0 for normal DMPs function. While for (5),  2 , , ,v f g x v   

u  which means that trajectory is influenced by error terms 

1 2,z z . It is hoped that the additional constraints will not 

influence trajectory converging to the target, thus the generated 

referring trajectory satisfying Assumption 1 ensures that 
cx x and , 0cv v   at the destination . 

Remark 3: Assumption 2 is proposed for calculation. Actually, 

a long-term demonstration will be segmented into several parts. 

The constraints may be presented discretely aside the trajectory 

or even go across several segmented intervals. Two methods for 

generating continuous referring paths to connect the constraints 

is introduced in the next section, and Assumption 2 is the basis 

for the method.  

III. CONSTRAINED DYNAMIC MOVEMENT PRIMITIVES 

A. Constrained referring trajectory  

As it is presented in Table 1, the referring variable 
cx maybe 

a point, a surface or a moving trajectory and its function is to 

guide x to satisfy conditions in (6), though some researchers 

proposed constrained dynamic movement primitives (CDMPs) 

that does not build referring trajectory but use the transformed 

states instead of the original DMPs states to maintain the joint 

trajectories within the safety limits [34].  

Creating referring trajectory points c

ix is the first step for the  

new DMPs method. Here, we consider a case containing some 

local separate constraints and build a trajectory reserving the 

majority of the original path points and using the constraints to 

avoid obstacles or pass narrow avenues. Then using the integral 

and continuous trajectory to guide robotic movements. Here, 

we provide two methods to achieve this purpose: interpolation 

and extended DMPs method.  

Set intervals divided by constraints and skill segmentations 

are      0 1 2 3 1, , , ,..., ,i ix x x x x x . The interpolation method such 

as Lagrange interpolation polynomial provides some internal 

points to enrich the space between adjacent intervals, ensuring 

the continuity of positions and velocities. The extended DMPs 

method uses the generalized sub-skills to modify the interval 

goals, which is achieved by two steps: 

1) Calculating original DMPs within the interval  1,i ix x and 

endpoint satisfying i ig x ; 

2) Changing goal ig to the start of new period 1ix  , then the 

current interval is extended from  1,i ix x to  1 1,i ix x  . 

The two methods are verified and compared in experiment 1. 

When the constraints come across with each other, a common 

solution satisfying all the constraints will be selected. Moreover, 

we design the boundary functions according to manipulation 

requirements. Following convergence proof in part C, trajectory 

will converge based on the condition of  0

1( ) ,i i iz s h h  , where 

0

is  represents 
is in the ith  interval at the start time  0 . Then 

the junction point for the  1 thi  and thi intervals satisfies 

the condition of (6), such as for case 1, condition 1, we have 

       0 0
1 1

1 1 1 1, ,
i i i i

c c

i i i i i i i is s s s
x x x x h h h h   

 
         

to ensure continuity and avoid phase initially instability of path 

points. 

B. Constrained dynamic movement primitives  

Barrier Lyapunov functions (BLFs) is used for analyzing 

stability of closed-loop system, and  it restricts full-state to the 

constraints [29], [35]. In this paper, BLFs is adopted to calculate 

the additional item, enabling the trajectory calculated by new 

DMPs to satisfy constraints in (6).  

Define two new variables  1

c

z i iz k x x   ,  2 2z iz d v  , 

, 0z zk d  are constant, and 2  is a stabilizing function to be 

designed. Similar to asymmetric BLFs candidate in [36], we 

taking case 1, condition 1 as an example and build a Lyapunov 

function as  

2 2

2

1 1 22 22 2

11

1 1
( ) log (1 ( )) log

2 2

c i i

ii

h h
V q z q z z

h zh z

 
    

 
. (8) 

where ( ) 1, 0q if    and ( ) 0, 0q if    . Then 
cV is 

   1 1

1 2 22 22 2

11

( ) 1 ( )c c

z i i z i

ii

q z q z
V z k x x z d v

h zh z


 
     

 
. (9) 

For realizing the stability condition of 0cV  , the terms 2 ,

( , )u s  and nk are taken as  

 

 

   

1 1

2

1

2 2 2

2

2 1 1 1

2 2 22 2

11

( , , )

( , )

, , , ,
( , )

( , ) ( ) 1 ( )

4

c

z i

z

n

g

z

n

z z ii

d x f x F z

d g x

f g x v k s u k z
u s

k k g x q z q z
k

d d h zh z






  






  
 



   





     
  

, (10) 

where 2 0k  is a positive number and the proof is presented in 

Part C. Following (4), Taru  without constraints is  

 
   2 , , , ,

Tar

g

v f g x v k s
u

 



 
 . (11) 

It is desired that the additional constraints do not repeat the 

skill learning process (calculation of forcing functions), then the 

value error of  ( , ) Taru s u  will decrease to zero, and u  is  
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 2 2nu k z v    .    (12) 

Taking (12) into (5), we get the modified DMPs satisfying 

constraints in case 1, condition 1 as  

 

     2

1 1

2 2

, , , , ,

( , , ) ( , )

( , )

g

n

v f g x v k s u s u

x f x F g x v

s s

u k z v

   

 





    


 


 
   

. (13) 

Remark 4: For the regular DMPs model like (1), the terms in 

(13) are instantiated as  1 1 2( , , ) 0, ( , ) 1 , , , ,f x F g x f g x v    

    , , 0, 1z z gg x v k s          , then  

      2 2z z n zv g x v f s k z z d

x v

s s

   



 

      



  

. (14) 

Case 2: Similar to (8) of case 1, we build the BLFs candidate : 

22

1 1

2 2 2 2

1 1

2 2

21 1

22 2 2 2

1 1

1 ( )
(1 ( )) log (1 ( )) log

2

( ) 1
( ) log ( ) log

2 2

c i

i i

i i

i

i i

i i

hq z z
V q h q h

z h h z

hq z z
q h q h z

h z z h

 
    

  

 
   

  

,(15) 

and the factors satisfying 0cV  are calculated with different 

results in (10) except for the ( , )u s  as  
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 (16) 

Condition 2: Lyapunov functions are built with a different 

formation to (8), and 
cV  for cases 1 and 2 are defined as  

2

21

22 2

1

1 1
log

2 2

c

i

z
V z

z h
 


 and 

2

2

22 2

1

1 1
log

2 2

c i

i

h
V z

h z
 


(17) 

Factors
2 , ( , )u s  and 

nk  enable system stability condition 

0cV   to be satisfied are shown in Table II.  

Remark 5: Compared with (8), it is not hard to find that the 

expression of ( , )u s   does not change along with constraints, 

such that u is calculated with a fixed expression for any cases, 

though the other two factors 2 and nk   will vary with different 

conditions. 

C. Convergence proof 

Some previous work integrated control methods with DMPs 

and proved convergence of the generated DMPs trajectory. In 

[19], Rai and Meier et al. built a Lyapunov stability criterion for 

DMPs with a coupling term to prove the condition that if 0s 

or t  , then x g , which means that the convergence of 

trajectory  is changed by the additional term tC . Similarly, for 

u in (13), we synthesize a Lyapunov function as 

     1 1 1
,

2 2

Tc T c cV V V g x K g x v v V x x       ,(18) 

where 0z zK     , 
1V represents the two former terms of V . 

Taking case 1, condition 1 as an example, to prove 0V  , we 

first proves 0cV  . Taking (5) into (9), we have 
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.(19) 

 Using the symbols in (10), we have  
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Because 2, , 0z zk d k  , 
2 2

1 0ih z  , and 2 2

1 0ih z  , then if 

 0

1( ) ,i i iz s h h  , where 0

is  is the phase variable equals to the 

time 0t  for the thk interval, then the inequality 0cV  holds. 

According to remark 2, we know that when 0s  , we have 

 , 0c cV x x  and 1 2 2, , 0z z z  , then (13) will degenerate to 

TABLE II 

SYMBOL CALCULATIONS FOR CONDITION 2 
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(1). Following [19], 
1 0V   will be proved under the condition 

that if 0s  , then   0f s  . Then combining assumption 1, 

when 0s  ,we have   z zv g x v     .Setting 
z zK   , 

we can get  

 

 

    

1

0

T T

T
Tz

z

Tz

V x K g x v v

v
K g x v g x v

v v




 





   

     

  

. (21) 

It is easy to know that 0V   is achieved. The proof reveals 

that the additional term does not influence the system stability.  

IV. DISCUSSION 

In this section, we will make a discussion about if the method 

can address most of the problems stated by Pairet et al in [18]. 

Here, we classify the problems into following three categories 

and most of them are proved through experiments in Section V.  

Dead-zone & preferred route: In [18], the authors stated that 

for the point obstacle avoidance method like [17], the analytical 

term ( )exp     (  is a constant and   is an variable) 

has a dead zone around 0, and the system will become less 

reactive as the heading towards the obstacle narrows, thus 

compromising the method’s reliability. But for the proposed 

method, we can select multi-piece trajectories or make a tiny 

modification of the planned path around the dead zone as new 

references, and the preferred route also can be designed flexibly 

following the operator’s preference.  

Moving non-point obstacles: Some papers used DMPs model 

for the case with moving obstacles, such as Hoffmann et al. 

studied the robustness of dynamic systems against perturbations 

for obstacle avoidance and extended it to the cases with multiple 

obstacles and moving obstacles [17]. Park et al. designed a 

special dynamic potential function for the moving obstacles 

[16]. But, these methods don’t suit non-point obstacle cases. As 

some existed researches addressed the object detection and real-

time trajectory navigation based on autoregressive model [37], 

Kalman filter or tracking method [39] to solve the problem for 

non-demonstration cases, we can select a suitable method as 

prepositive treatment of our proposed DMPs framework, but it 

is not the main work in this paper.  

By using detection method , we assume for any position ix , 

robot can perceive edges and forecast dynamic positions of the 

obstacle within the next few steps as 1, ,...,
T

o o o o

k k k NX x x x 
     

and o

kx is a data set filled with detected obstacle positions. Then 

path point c

kx   and constraints are generated by setting a ‘safety 

margin’ [15] toward the obstacle. The advantages of combining 

path prospective method and proposed DMPs model are: 

1) Without the need of prior knowledge for all the objects in 

the whole map and predesigned trajectories e.g. [16]. The 

robot can select a planned path to avoid conflicts and return 

to the original DMPs route once facing obstacles.   

2) Useful for multi-segment convex obstacle avoidance. As 

the presentations in the experiment of Section V.B that the 

referring path connects several local constraints to form a 

continuous long trajectory, and most of the constraints can 

be designed with different conditions change with dynamic 

environment timely and flexibly. 

Time-consuming & noise: Actually, the calculation in (13) is 

more complex than the methods in [16], [17]. But, the proposed 

method just modifies trajectory points along part of the previous 

path, which can avoid extra calculation for the whole trajectory. 

For the influence of measuring noise, it is hard to be diminished 

but we can estimate the boundaries of noise varying range and 

add them for the design of ih . For example, in experiment 3, 

using physical constraints (e. g. distance of joint links and end 

effectors), the measuring noises and errors will be filtered and 

amended. Though the proposed method solves most problems 

with universal equations for various cases, similar to most of 

the path replanning methods, it depends on prediction accuracy 

of the environmental parameters and referring trajectories that 

can be calculated timely.  

Another issue for discussion is calculation procedures (Fig.1) 

of the improved DMPs method in calculation.  

 
Fig. 1.  Calculation procedures of the constrained DMPs framework 

Similar to normal skill learning process based on DMPs, 

there are two steps from demonstrations to applications in new 

cases. After pretreatments such as data filtering, task division 

and data aligning etc., the forcing function will be learned and 

then the skill (trajectory) will be generalized based on the given 

new start and end point and timing factor. But, due to the new 

cases occurred in the environment, the primitive generated path 

may not satisfy the operational demands. Following the changes 

of the environment, preferred routes of the operators and some 

physical limitations will be used to generate the referring path 

(Section III.A) with classified constraints (Section II.B). Using 

eqs.(10) and (12), the additional term  u  will be calculated 

and added to DMPs functions and the new trajectory will be 

generalized. The term u does not influence the skill learning 

results and easy to be embedded to the original DMPs function. 



 

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

7 

 

The chosen parameters such as , z  and
z are the same as in 

(3) and (4). In the next section, we will follow the diagram to 

explore the potential applications of the method for different 

tasks with various conditions.   

V. EXPERIMENTS 

We take three experiments for various kinds of constraints 

caused by human preferences, shapes of extra obstacles, and 

physics limitations. The first experiment is about static non-

point obstacle avoidance to certify special zone avoidance and 

preferred route selection. The second is about dynamic convex 

obstacle avoidance to solve the second kind of problems in the 

previous section. The last is about dual-arm robot cooperative 

operation with distance constraints of end effectors and joint 

links.  Influence of measuring noise and errors are weakened by 

using physical constraints. The former two experiments use 

Phantom Omni joystick to record demonstrator’s operational 

trajectories and the third uses Kinect to track skeleton results. 

 The experiments select DMPs expression in (14) to generate 

trajectories. The common parameters are 150, 25,z zk d   

225, 4, 0.7, 10z z z k       , and others are set separately in 

each experiment.  

A. Static obstacle avoidance  

The experimental setup is shown in Fig. 2. The platform is 

built on a board with a 2D map which is a square of 20 16 cm 

and the startpoint locates at [17, 3] and endpoint at [5, 13]. The 

values are recorded and presented in the virtual environment of 

MATLAB in Fig.2 (b). Here we set predesigned preferred 

trajectory points 2 1c

ix R   (blue line with dots in the zoomed 

subfigure) to avoid confliction with additional block (blue 

triangle area). Furthermore, we set a “safety margin” 0.5ih   

to limit the trajectory ranges that satisfies: 

 
2 1

2
,c

i i i ix x h x R    . (22) 

  
(a)                                                         (b) 

Fig. 2.  Experimental setups and conditions for static obstacle avoidance (a) 

Experiment equipment (b) Simulation environment equivalent to the physical: 

orange blocks are original obstacles and the triangular blue block is additional 

obstacle and the blue arc is the prospected trajectory with a safe distance to the 

new obstacle to protect its corner. Human demonstrated motions are colored in 

red and have no conflict with original obstacles.  

Fig. 3 shows the generated constrained trajectories and 

simulation results. Using BP-AR-HMM method mentioned in 

[43], demonstrations are segmented and generalized into two 

sub-skills (red and blue lines in Fig.3 (a)), each of which is 

reshaped with 100 points. Due to the new obstacle, the robot 

following the path will encounter a collision. Furthermore, the 

constraints only affect the second sub-skill points, judging by 

the coordinate ranges in the X-axis.  Therefore, we redivide the 

ranges of the second sub-skill into three regions (two black and 

a red line), and generate the whole-range potential trajectory 

points by the two methods developed in section IV.B 

Fig.3 (b) shows a referring path with constrained path point 

generated by cubic spline interpolation that reserves part of the 

results of original DMPs. It connects original path point sets and 

constrained path with optimized interpolation points. While the 

trajectories generated by the extended DMPs model, shown in 

Fig.3(c), come cross the original obstacles and are not suitable 

for the task in this paper. The main reason is environmental 

factors (shape of obstacles and conflict etc.) are not considered 

in the original DMPs function. Thus, we select Fig.3 (b) as the 

referring path in this paper. But, it does not mean that which of 

the two methods is better, but depends on operational demands 

for different tasks. Usually, for a short distance point-to-point 

connection, the interpolation method is easier to be used and it 

will not change the previously planned path, while the DMPs- 

based method changes the distinction of the trajectory segment, 

which can be generalized in the space and time scales. While, 

the obstacles and other limitations should be considered during 

the design process for both cases.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3.  Experimental results of static obstacle avoidance (a) Trajectories of 

original DMPs model, containing two segmentations: blue line for the first and 

red line for the second; (b) Constrained path generated by interpolation method: 

thin blue line with dot is the constrained path, blue line is trajectory of subskill 

1 and red line is the reserved original subskill 2, and black line the interpolation 

trajectory; (c) Constrained path generated by extended DMPs; thin blue line 

with dot is the constrained path, and the blue and red line are the extend DMPs 

trajectories to connect constrained path; (d) Final generated trajectories based 

on the constrained route in subfigure (b), compared with (b), the additional area 

and lines are: green line is the generated 2nd DMPs subskill and the gray area 

is the safe margin to protect collision with obstacles.  

Finally, Fig.3(d) shows the final path generated by modified 

DMPs. Under the conditions in (22), it researches to the largest 
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distance to the constrained path, but still keeps within a certain 

distance to 2

cx  and converges to constrained path quickly at the 

end of arch points.  

Remark 6: Here, we make a further analysis about the selection 

of parameters. Actually, the parameters z and z are selected 

as 4z z  to guarantee that the globally stable system in (1) 

and (14) are critically damped, allowing x to monotonically 

converge to g [32]. Factors zk and zd relate to the position and 

velocity errors, and a similar rate to x and v  is selected as 
2 4z zk d . Here, we select an approximate solution as 150zk   

25zd  . The simulation shows that 
2k realizes system stability 

and influences dynamic performance of the generate trajectory, 

A larger 2k will achieve a larger tracking error of cx x  for this 

experiment, but it is not a conclusive result for all cases. 

B. Moving convex obstacle avoidance 

The purpose of this experiment is to certify real-time obstacle 

avoidance with the consideration of the shape of obstacles. The 

simulation condition and initial demonstrations are as the same 

as experiment one and there are two obstacles colored in yellow 

and blue, as Fig. 4 shows. Considering the DMPs path does not 

have direct relations with time, we set the dynamic obstacle 

colored in orange to move with a speed of [0.005,0.006] every 

step and the movements can be observed by the robot. By using 

the method mentioned in Section VI.C and DMPs model of (1), 

we firstly estimate x within the next ten steps and let robot to 

detect obstacles within a circular area. The obstacle edges in the 

area will be calculated the distance to x , and only the one with 

minimum distance will be selected to design point 
2 1c

ix R  . To 

avoid conflict caused by estimated error, we set constraints as 
2 1

2
0.8,c

i i ix x x R    . If there is no obstacle, the path points 

will be calculated by (1) as before.  

 
Fig. 4.    Experimental results for dynamic obstacle avoidance: the blue block 

is a static obstacle and the orange block is a dynamic obstacle with a slow speed 

of [0.005,0.006] every step, and the gray arrow represents the moving direction 

and the black line segment is the moved distance of current state. To present 

the moving state of the mobile obstacle, the gray round area represents the 

original location. As the end point design the constrained path and margins 

timely, the green line represents the constrained path within next ten steps with 

the yellow detection area.  

The simulation takes 200 iterative steps and we select some 

internal simulation results to present in fig.3. It can be seen that 

the trajectories avoid collision with all the obstacle edge points 

and reach to the distinction. Because x are determined by the 

obstacles and the original DMPs model, the generated trajectory 

is closer to the obstacle boundary than in experiment one.  

Remark 7: The constraints of experiment 1 and 2 that limit the 

generated path within a range around the referring path, can be 

realized by multiple unilateral constraints, which is similar to 

the propositions in [15]. The constrained referring trajectory 
c

ix  

can be seen as the desired path. Without building safety margin 

for the generated path, we can use modified DMP methods such 

as DMP plus [32], [33] to fit the constrained path points, which 

has smaller lower MSE in position deviation compared with 

ordinary DMPs. The general expression of (5) is compatible to 

different DMPs regression methods. By setting ih as the safety 

margin, the generated path has larger freedom to move within 

the safety area and easy to acquire smoother results. Meanwhile, 

the perfect dynamic performance of DMP plus method will help 

to provide a wider varying space than the normal DMPs. 

C. Bimanual cooperative manipulation 

DMPs are widely used for multi-joint humanoid skill 

learning such as object-lifting, and cutting food [40]-[44]. Most 

of the papers only learned and generalized joint information 

[40], [41], [43], while for cooperative bimanual manipulation 

with a strict distance limitation of robot end effectors, e.g. 

holding a box or grasping a bar, only training data for joint 

information is not enough. Thus, cooperative DMPs [20]-[24] 

usually studied the trajectories of robot ends in the Cartesian 

coordinate. In this experiment, we combine these two cases and 

consider the constraints both in the joint distance and relative 

distance of robot ends. First, we build a data set about positions 

of the shoulders, elbows and wrists (for simplification, we use 

the wrists data instead of hands) of demonstrations measured by 

Kinect. there are two major problems of the measured data:  

1) Positions of the wrists exist large numbers of errors due to 

the occlusions by the chair back and opaque object in Fig.5. 

Then the trained results of DMPs by the raw data are prone 

to exist errors; 

2) Compared with the wrists and the elbows, the data of the 

shoulders is more stable and creditable. As it is shown in 

Fig. 6, we calculate internal distances of the wrists, elbows 

and shoulders to middle values of 10 times demonstrations. 

It can be seen that the data width of the wrists is about as 

twice as the shoulders.  

Because  the cooperative manipulation of robot ends endures 

the constraint of constant relative distance, by defining ,w e

j jx x  

3 1, ,s

jx R j l r  as positions of the wrists, elbows and 

shoulders, we proposed the following constraints for robot end 

effectors: 

 2: , ,

dw w w

j j j

dw w w

j jj

x x h
wrist j l r

x x d

  


 

, (23) 
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where
3 1w

jd R  represents the desired relative distance and 

w

jd  is a constant , and 
w

jh is an acceptable distance calculation 

errors caused by object deformation or measuring errors. Define 

,j

seL  j

ewL are the vectors between the shoulders and the elbows, 

and the elbows and the wrists (Fig.5(a)) , the constraints of other 

linked joints are:  

2 2: , : , ,

ds s s de e e

j j j j j j

ds j e de j w

j se j j ew j

x x h x x h
shoulder elbow j l r

x L x x L x

     
 

     

. (24) 

 
Fig. 6.  Spreading distances of the wrist, elbow and shoulder. In each subfigure, 

red area represents distance range of the left hand, and blue area is the results 

of the right hand, and the purple area presents the intersection area. 

Due to the mentioned relative distance constraints  (eq.(23)) 

and distance constraints (eq.(24)) are contradicted: every joint 

is affected by relative constraints, but the position error rates of 

the end effectors are higher than the other joints, we propose the 

following calculation diagram: 

Left 

Shoulder 

Left 

Elbow
Left Wrist

270

Right 

Shoulder 

Right 

Elbow
Right Wrist

Relative 

constrains

Loop 1 Loop 2Distance constrains

 
Fig. 7.  Calculation diagram for cooperative DMPs that contains two loops of 

distances constraints and one relative constraints 

The distance constraints are utilized twice: in loop 1, we use 

the shoulder and elbow data to correct the wrist data with errors. 

Then, the relative positions of the wrists are revised again by 

(23). Finally, using inverse calculation (from endpoint to the 

former two joints, loop 2), we amend the shoulder and elbow 

data under the distance constraints (24).  

 
Fig. 8. Positions and trajectories of skeleton points in cooperative DMPs 

corresponding with the operation process (see (a)~(f)). The blue lines are 

generated skills of the left shoulder, elbow and wrist. The red lines are the 

results of the right arm.  

The joint distance in fig.5(a) are measured with
2

22 ,seL cm , 

2
28ewL cm , and 

2
33w

jd cm  is the length of the box and 

1 , ,s e w

j j jh h h cm j l r     are acceptable trajectory tracking 

errors and object deformation degree. The simulation results are 

presented in Figs. 8 to 10. 

 
(a)   

 
(b) 

Fig. 9.  Distance between adjacent joints (shoulder and elbow, elbow and wrist) 

(a) Results of the left arm (b) Results of the right arm. The solid lines of the 

two figures are the results of improved DMPs and the dash lines are the results 

of original DMPs with the same dataset, and the colored areas are designed error 

margins of the generated link lengths. The generated distance within the area 

means the constrained condition (21) is satisfied 

 
Fig. 5.  Bimanual holding and replacing an opaque box (a) Coordinate of 

human body and related links length (b)~(f) Moving steps of the object 
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Fig. 10.  Relative distance of the left hand and right hand in the generated DMPs 

path (red line is results of modified DMPs and blue line is results of original 

DMPs). The red area is the error margin of relative distance introduced in (19). 

Fig. 8 shows the trajectories generated by constrained DMPs 

are different from original DMPs and data analysis is presented 

in Figs. 9 and 10. Fig.9 (a) shows the distance between adjacent 

joints of the left arm. It can be seen that the real joint distance 

of 
2

l

seL and 
2

l

ewL  calculated by the original DMPs vary within 

ranges of  12,40 and  16,32 , which are influenced seriously 

by the measuring noises and errors and can’t meet the actual 

situation. So as the results of 
2

r

seL and 
2

r

ewL of the right arm 

in Fig.9 (b). While the trajectories of the modified DMPs keep 

a stable distance as predesigned in (24), which presents that the 

influence of noise is reduced. Fig.10 shows the relative distance 

of the wrist (hands). The modified DMPs framework decreases 

the varying range from  31,37 to  32,33 , ensuring bimanual 

manipulation stability. 

VI. CONCLUSION 

In this paper, we propose a general DMPs framework with 

the classified constraints based on a generalized DMPs model 

and BLFs. Compared with other improved DMPs models, a 

general additional term is calculated with certain expressions to 

encounter the changes of the environment and suit various tasks 

such as obstacle avoidance and cooperative manipulation by 

selecting suitable parameters. We make a further discussion 

about advantages of this method such as addressing dead-zone 

& human online preferred route, non-point obstacle and part of 

the measuring noise, as well as limitations. Finally, three 

experiments with some typical constraints are taken to verify 

the effectiveness and flexibility of the proposed method. The 

future work will combine the proposed method with auto 

navigation by using visual reality and the constraints will be 

learned and generated naturally from human demonstrations, 

not by artificial settings. 
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