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Abstract—The actuator failure compensation control problem
of robotic systems possessing dynamic uncertainties has been
investigated in this paper. Control design against partial loss of
effective (PLOE) and total loss of effective (TLOE) of the actuator
are considered and described respectively, and a disturbance
observer (DO) using neural networks is constructed to attenuate
the influence of unknown disturbance. Regarding the prescribed
error bounds as time-varying constraints, control design method
based on barrier Lyapunov function (BLF) is used to strictly
guarantee both the steady-state performance and the transient
performance. Simulation study on a two-link planar manipulator
verifies the effectiveness of the proposed controllers in dealing
with the prescribed performance, the system uncertainties and
the unknown actuator failure simultaneously. Implementation on
a Baxter robot gives a experimental verification of our controller.

Index Terms—Actuator failure compensation, neural networks,
prescribed performance, disturbance observer, barrier Lyapunov
function, Baxter.

I. INTRODUCTION

Nowadays, our daily life is increasingly relying on and
demanding for robots [1-11]. As failures have a high prob-
ability of leading to damage on the environment or even
causing a security incident, robotic systems inevitably need
to be equipped with the ability of fault-tolerance, especial-
ly for robots with long-term and frequent physical human-
robot interaction. Actuator, as the workhorse in the control
system, is one of the most vulnerable components to failure
because of the implementation of long-term continuous task.
From the perspective of the effectiveness of executing control
commands, actuator failure can be generally divided into two
typical types: PLOE and TLOE. In robot systems, PLOE
type of failure means that performance degradation occurs
to actuators at one or more robot joints, and TLOE type of
failure, often causing more serious consequence than PLOE,
means that actuators at one or more robot joints are completely
out of control. Both of them pose significant hurdles to the
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task execution if not handled properly. Over the past years,
many effective methods have been proposed against actuator
failures for nonlinear systems [12-14]. Among all of these
methods, the adaptive failure compensation control approach
avoids the effect of fault diagnosis error and has been used
more and more recently [15-34]. While for the actuator failure
compensation control of robotic systems, only under-actuated
control [35] or PLOE of actuator [36] have been considered,
more generic problems associated with which such as the
uncertainties, the disturbance and the TLOE type of actuator
failure need to be further investigated.

For the system uncertainties, learning-based control has
been proved to be a mature way to overcome them [37-
54]. In this paper, neural learning-based control technique is
used. In practice, disturbances are usually difficult or even
impossible to be measured physically by sensors in robot
systems. To attenuate the disturbances promptly, control design
based on DO has been widely studied [55-59]. Dominated
by the uncertainties, common DOs no longer suit since most
of them use the system information. Then the DO technique
combined with neural network has been proposed and used
[60]. However, few literatures consider the unknown actuator
failure which means that the actual control signal cannot be
obtained. In this paper, radial basis function (RBF) neural
networks are utilized in the construction of the DO to estimate
the unknown system dynamics and the unknown actuator
torque coefficient.

With the raising requirements of robotic control systems,
the dynamic performance of the robot is gradually being
emphasized, which is directly characterized by the response
speed and accuracy requirement. So another important prob-
lem is the prescribed performance at both transient and steady
states [61-64]. Traditional nonlinear adaptive control design
ensures that the tracking error converges to the residual set
with a small size depending on the parameters selection. Nev-
ertheless, how to systematically choose the above controller
parameters to satisfy the prescribed state error in advance
remains an ongoing challenge. Switching adaptive control
technique used in [65] and [66] is an effective way to ensure
the prescribed error bounds. Another effective method to
guarantee the steady-state behavior is regarding this issue as
an output constraint problem and then using the BLF method
to overcome it [67-70]. What is more difficult to guarantee is
the prescribed transient performance, by which we mean that
both the convergence rate and the overshoot should be limited.
Error transformation technique has been widely used to deal

JC's Mac



IEEE TRANSACTIONS ON CYBERNETICS, VOL. , NO. , 2019 2

with prescribed performance bounds problem [71-75]. This
method is novel and practical to deal with the control precision
problem, but the performance functions are required to be
positive and decreasing. Motivated by [76, 77], we regard the
prescribed error bounds as time-varying constraints, and then
control design method based on BLF is used to guarantee the
prescribed performance, which relaxes the above limitation.

In this paper, we focus on the accommodation for unknown
actuator failures, system uncertainties, unknown external dis-
turbance and prescribed performance in the meantime. The
main contributions are listed as follows:

(I) The prescribed performance control problem of uncer-
tain robotic systems against both PLOE and TLOE
of actuators is investigated for the first time, and the
proposed control method is verified on a real robot
platform.

(II) Control design method based on asymmetrical time-
varying BLF is used to strictly guarantee both the steady-
state performance and the transient performance.

(III) A novel DO combined with RBF neural networks is
constructed to attenuate the influence of the disturbance.

In what follows, the preliminaries and problem formulation
are given in Section II. Section III is divided into two parts
which successively shows the design process of the two
controllers against two typical types of failure, respectively.
Section IV shows the numeric simulation work. Section V
describes the experiment setup and results. Lastly, Section VI
gives the conclusion and future work.

II. PRELIMINARIES AND PROBLEM FORMULATION

In joint space, the dynamics model of a rigid robot that does
not account for actuator failures can be described as follows:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ(t)− d(t) (1)

where q ∈ Rn, τ ∈ Rn, M(q) ∈ Rn×n, C(q, q̇) ∈ Rn×n,
G(q) ∈ Rn, d(t) ∈ Rn are the vector of joint variables,
the control input torque, the inertia matrix, the Coriolis and
centrifugal matrix, the gravitational force, the external distur-
bance, respectively.

Property 1: [77] The inertia matrix M(q) is symmetric and
positive definite, and 1

2Ṁ(q)− C(q, q̇) is skew-symmetric.
Property 2: [77] M−1(q) exists and is also positive defi-

nite and bounded. i.e. ∃0 < β < ∞, such that 0 < M−1(q) <
βIn×n where I denotes identity matrix.

Assumption 1: The external disturbance d(t) is assumed to
be continuous and bounded. i.e. ∃d̄ > 0, such that ∀t > 0, d ≤
d̄

Remark 1: | ∗ | denotes taking the absolute values of all
the elements in the vector ∗.

Remark 2: λmin(•) and λmax(•) are the minimum and
maximum eigenvalues of matrix •, respectively.

Generally speaking, the actual torques generated by the
actuators are exactly the commanded torques of the controller,
but situation changes when the actuator failures occur. The
control objective is to ensure that the output q follows the de-
sired trajectory qd while guaranteeing prescribed performance
as well as the boundness of all close-loop signals even when
some inevitable actuator failures take place.

t(sec)

ρ
0

e(0)

ρ∞
0

σρ
0
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Fig. 1. Tracking error prescribed performance

When studying prescribed performance issue, it usually
refers to three aspects: the minimum convergence rate, the
maximum overshoot and the steady-state error bound. Mo-
tivated by [71, 72], a smooth positive performance function
ρ(t) = (ρ0 − ρ∞)e−ht + ρ∞ is defined, where ρ0, ρ∞, h are
positive constants to be designed. As shown in Fig. 1, ρ(t) and
σρ(t) (0 ≤ σ < 1) limit the tracking error behavior as long as
the initial error is in the bound. Note that the decreasing rate
of ρ(t) represents the minimum allowable convergence rate,
the steady-state error bounds are prescribed by ρ∞ and σρ∞,
and σρ(0) reflects the overshoot of the error. Regarding the
prescribed error bounds as time-varying constraints, Lyapunov
direct method based on asymmetric time-varying BLFs is then
used to cope with the prescribed performance problem.

III. CONTROL DESIGN AND STABILITY ANALYSIS

The actuator failure is divided into two types, PLOE and
TLOE, and discussed in this section. The control design and
the proof of system stability are mainly based on back-stepping
technique and Lyapunov’s direct method.

A. PLOE Type of Failure

When PLOE type of failure occurs, the dynamics model (1)
is rewritten as

M(q)q̈ + C(q, q̇)q̇ +G(q) = Ktτc(t)− d(t) (2)

where τc(t) denotes the commanded control input, the diag-
onal matrix Kt = diag[kt1, kt2, · · · , kti, · · · , ktn] represents
the actuator torque coefficient satisfying 0 < Kti ≤ 1. We
define:

e = q − qd = [e1, e2 · · · en]T (3)

S = [S1, S1 · · ·Sn]
T = ė+ Λe (4)

where e and S represent a tracking error and a general-
ized tracking error, Λ = diag[Λ1,Λ2 · · ·Λn] is a positive
matrix to be designed. As mentioned above, the prescribe
performance issue can be transformed into the time-varying
constraints problem. In case I (or II), ρi(t) (or σρi(t))
and −σρi(t) (or −ρi(t)) represent the upper constraint and
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lower constraint of the tracking error ei, respectively. For
simplification, the upper constraint and lower constraint are
expressed as k(t) = [k1, k2, · · · , ki, · · · , kn]T and k(t) =
[k1, k2, · · · , ki, · · · , kn]T . Introduce a BLF as follows:

V1(t) =

n∑
i=1

[
P (ei)

2
ln

k
2

i (t)

k
2

i (t)− e2i (t)

+
1− P (ei)

2
ln

k2i (t)

k2i (t)− e2i (t)
]

(5)

where P (ei) is defined as

P (ei) =

{
0, ei ≤ 0

1, ei > 0 i = 1, 2, 3, · · · , n
(6)

Differentiating V1 yields

V̇1 =

n∑
i=1

( P (ei)ei(t)

k
2

i (t)− e2i (t)
(Si − Λiei(t)− ei(t)

k̇i(t)

ki(t)
)

+
(1− P (ei))ei(t)

k2i (t)− e2i (t)
(Si − Λiei(t)− ei(t)

k̇i(t)

ki(t)
)
) (7)

The diagonal matrix Λ is introduced as

Λ = K1 + µ

= diag[k11, k12 · · · k1n] + diag[µ1, µ2 · · ·µn] (8)

where K1 ∈ Rn×n is a gain matrix and µi is defined as an

upper bound of

√
(

˙
ki(t)

ki(t)
)2 + (

k̇i(t)
ki(t)

)2, which can be easy found

since ki(t) and ki(t) are the performance functions defined
before. Here we give a simple proof to show the existence of
the upper bound in the Case I:√√√√(

k̇i(t)

ki(t)
)2 + (

k̇i(t)

ki(t)
)2 =

√
2h(

ρ0 − ρ∞
ρ0 − ρ∞ + ρ∞elt

)

≤
√
2h (9)

Similar results can be proved for Case II. Combining (7) with
(8), we have

V̇1 ≤ −
n∑

i=1

k1ie
2
i

( P (ei)

k
2

i (t)− e2i (t)
+

1− P (ei)

k2i (t)− e2i (t)

)
+

n∑
i=1

Si

( P (ei)ei(t)

k
2

i (t)− e2i (t)
+

(1− P (ei))ei(t)

k2i (t)− e2i (t)

)
≤ −

n∑
i=1

k1ieiξi + ST ξ (10)

where the auxiliary variable ξ = [ξ1, ξ2, · · · , ξi, · · · , ξn]T is
defined as

ξi =
P (ei)ei(t)

k
2

i (t)− e2i (t)
+

(1− P (ei))ei(t)

k2i (t)− e2i (t)
(11)

Introduce a new Lyapunov function

V2 = V1 +
1

2
STM(q)S (12)

Based on Property 1, we have

V̇2 = V̇1 +
1

2
ST Ṁ(q)S + STM(q)Ṡ

= V1 +
1

2
ST Ṁ(q)S + STM(q)Λė− STM(q)q̈d

+ST
(
Ktτc − d(t)−G(q)

)
− STC(q, q̇)q̇

= V̇1 + ST (Ktτc − C(q, q̇)q̇d −G(q)− d(t)

−M(q)q̈d + C(q, q̇)Λe+M(q)Λė) (13)

Introduce a virtual controller α as

α = K2S + ξ − d(t)− C(q, q̇)q̇d −G(q)

−M(q)q̈d + C(q, q̇)Λe+M(q)Λė (14)

where K2 ∈ Rn×n is a positive diagonal matrix. Then, V̇2 can
be reduced to

V̇2 = V̇1 + ST (Ktτc + α−K2S − ξ) (15)

Define B = K−1
t = [b1, b2, · · · , bi, · · · , bn] and the model-

based fault-tolerant control law is proposed as{
τc = −B̂α

˙̂
bi = Sαi − γib̂i, i = 1, 2, · · · , n

(16)

where γi is a positive adjustable parameter, B̂ and b̂ are the
approximations of B and b. Define b̃i = b̂i− bi, then consider
a new Lyapunov function

V3 = V2 +
1

2

n∑
i=1

b̃Ti Ktib̃i (17)

Differentiating V3 yields

V̇3 =V̇2 +
n∑

i=1

b̃Ti KtiSαi −
n∑

i=1

b̃Ti Ktib̂i

≤
n∑

i=1

−k1ieiξi + ST (−KtB̂α+ α−K2S)

+
n∑

i=1

b̃Ti KtiSαi −
n∑

i=1

γib̃
T
i Ktib̂i

(18)

Combined with −STKtB̂α + STα +
∑n

i=1 b̃
T
i KtiSαi = 0,

we have

V̇3 ≤− STK2S −
n∑

i=1

k1ieiξi −
n∑

i=1

γib̃
T
i Ktib̂i (19)

Applying Young’s inequality, we have

−b̃Ti Ktib̂i =− b̃Ti Ktib̃i − b̃Ti Ktibi

≤− b̃Ti Ktib̃i +
1

2
b̃Ti Ktib̃i +

1

2
bTi Ktibi

≤− 1

2
b̃Ti Ktib̃i +

1

2
bTi Ktibi

(20)

Plugging (20) into (19) yields

V̇3 ≤ −c1V3 + c2 (21)

where c1 and c2 are two positive constant given as

c1 = min
i=1,2···n

(2λmin(K1),
2λmin(K2)

λmax(M(q))
, γi) (22)
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c2 =
n∑

i=1

γi
2
bTi Ktibi (23)

The aforementioned controller is built on the premise that
the dynamics information can be obtained, but the dynamics
parameters are sometimes unmeasured or varied in robotic
systems. In addition, the external disturbance is usually un-
known and cannot be accurately measured by sensors. To solve
these problems, learning control based on neural networks is
employed, and a nonlinear DO is constructed. The uncertain
continuous vector functions are estimated by two RBF neural
networks as follows:

W ∗TN(Z) =− C(q, q̇)q̇d −M(q)q̈d + C(q, q̇)Λe

−G(q) +M(q)Λė+ ϵ(Z)
(24)

W ∗T
d Nd(Zd) = Ktτc − C(q, q̇)q̇ + ϵd(Zd)−G(q) (25)

where Z = [qT , q̇T , ST ] and Zd = [qT , q̇T , τTc ] are the RBF
neural networks inputs , N(Z) = [N1(Z), N2(Z) · · ·Nl(Z)]T

and Nd(Zd) = [Nd1(Zd), Nd2(Zd), · · · , Ndl(Zd)]
T are the

regressor vectors with Ni(Z) and Ndi(Zd) being the Gaussian
radial basis functions, Nd(Zd) satisfies ∥ Nd(Zd) ∥≤ nd

with nd being an unknown positive constant, l is the neu-
ral networks node number, W ∗ = [W ∗

1 ,W
∗
2 , · · · ,W ∗

n ] and
W ∗

d = [W ∗
d1,W

∗
d2, · · · ,W ∗

dn] are the weights of the two neural
networks, ϵ(Z) and ϵd(Zd) are the neural networks approxima-
tion errors satisfying | ϵ(Z) |≤ ϵ̄(Z) and | ϵd(Zd) |≤ ϵ̄d(Zd).
The weight adaption laws of the neural networks are set as

˙̂
Wi = −Γi

(
Ni(Z)Si + σiŴi

)
, i = 1, 2, · · · , n (26)

˙̂
Wdi = −Γdi

(
Ndi(Zd)d̂i + σdiŴdi

)
, i = 1, 2, · · · , n (27)

where Γi and Γdi are the constant gain matrixes, d̂ is the
approximation value of the disturbance, Ŵ and Ŵd are
the estimations of the two weight vectors, σi and σdi are
small constants to avoid the drift of the W ∗TN(Z) and
W ∗T

d Nd(Zd), respectively. Introducing an auxiliary variable
ẑ, the DO is constructed as d̂ = ẑ + kdq̇

˙̂z = −kaẑ − ka

(
ŴT

d Nd(Zd) + kdq̇
) (28)

where ka ∈ Rn×n and kd ∈ Rn×n are two diagonal matrixes
satisfying ka ≥ βkd ≥ kdM

−1(q) > 0. Then, ˙̂
d becames

˙̂
d =− ka(−kdq̇ + d̂)− ka

(
ŴT

d Nd(Zd) + kdq̇
)

+ kdM
−1(q) (Ktτc − C(q, q̇)q̇ −G(q)− d)

=− kad̂− kdM
−1(q)d− kaŴ

T
d Nd(Zd)

+ kdM
−1(q)ŴT

d Nd(Zd)

(29)

Applying Young’s inequality we conclude that

d̂T
˙̂
d ≤− d̂T kad̂− d̂T kdM

−1(q)d+ |d̂T kaŴT
d Nd(Zd)|

≤ − d̂T kad̂+
1

2
d̂T kdM

−1(q)d̂+
1

2
d̄T kdM

−1(q)d̄

+
1

2
ϵ̄Td k

2
aϵ̄d +

1

2
d̂T d̂+

1

2
d̂T d̂+

1

2
ndW

∗T
d k2aW

∗
d

≤− d̂T
(
ka −

1

2
βkd − I

)
d̂+

1

2
d̄Tβkdd̄

+
1

2
ϵ̄Td (Zd)k

2
aϵ̄d(Zd) +

1

2
nd ∥ kaW

∗
d ∥2

(30)

The virtual control α is rewritten as

α = K2S + ŴTN(Z) + ξ − d̂ (31)

Consider an overall Lyapunov function

V4 = V3 +
1

2

n∑
i=1

(W̃T
i Γ−1

i W̃i + W̃T
diΓ

−1
di W̃di) +

1

2
d̂T d̂ (32)

where W̃i = Ŵi − W ∗
i and W̃di = Ŵdi − W ∗

di are the
neural networks approximation errors, d̃ = d̂ − d is the DO
error. Applying Young’s inequality, the derivative of V4 can
be written as

V̇4 ≤−
n∑

i=1

k1ieiξi − ST (K2 −
3

2
I)S −

n∑
i=1

γi
2
b̃Ti Ktib̃i

−
n∑

i=1

1

2
W̃T

i σiW̃i − d̂T (ka − 2I − 1

2
βkd)d̂

−
n∑

i=1

1

2
W̃T

diσdiW̃di +
n∑

i=1

1

2
W ∗T

i σiW
∗
i

+
1

2
d̄T (I + βkd)d̄+

1

2
ϵ̄T (Z)ϵ̄(Z) +

1

2
ϵ̄Td (Zd)

(
I

+ k2a

)
ϵ̄d(Zd) +

1

2

n∑
i=1

W ∗T
di σdiW

∗
di

+
n∑

i=1

γi
2
bTi Ktibi +

1

2
nd ∥ kaW

∗
d ∥2

≤− c3V4 + c4
(33)

where c3 and c4 are two positive constants given as

c3 = min
i=1,2···n

(
2λmin(K1),

2λmin(K2 − 3
2I)

λmax(M(q))
, 2λmin(ka

− 2I − 1

2
βkd), γi,

σi

λmax(Γ
−1
i )

,
σdi

λmax(Γ
−1
di )

) (34)

c4 =
n∑

i=1

1

2
W ∗T

i σiW
∗
i +

1

2
d̄T (I + βkd)d̄+

1

2
ϵ̄T (Z)ϵ̄(Z)

+
1

2
ϵ̄Td (Zd)(I + k2a)ϵ̄d(Zd) +

n∑
i=1

1

2
W ∗T

di σdiW
∗
di

+
1

2
nd ∥ kaW

∗
d ∥2 +

n∑
i=1

γi
2
bTi Ktibi

(35)
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To ensure c3 > 0, the gain matrix K2, ka and kd are chosen
to satisfy

λmin(K2 −
3

2
I) > 0, λmin(ka − 2I − 1

2
βkd) > 0 (36)

Multiplying both sides by ec3t in (33), and applying the
integration over [0, t], we have

V4(t) ≤(V4(0)−
c4
c3

)e−c3t +
c4
c3

≤V4(0) +
c4
c3

(37)

Define E = 2(V4(0) + c4/c3), then the following inequalities
hold:√

1− e−Eki ≤ ei ≤
√
1− e−Eki, ||d̂|| ≤

√
E (38)

||S|| ≤
√
E/λmin(M(q)), ||b̃i|| ≤

√
E/λmin(K

−1
t ) (39)

||W̃i|| ≤
√

E/λmin(Γ
−1
i ), ||W̃di|| ≤

√
E/λmin(Γ

−1
di ) (40)

Note that E > 0 and ki < 0 < ki, ki <
√
1− e−Eki ≤

ei ≤
√
1− e−Eki < ki can be easily derived. Thus we

can guarantee the tracking error within the prescribed bounds.
From above, we know that e, S, d̂, b̃i, W̃i are bounded. Owing
to the assumption 1 and the definition d̃ = d̂−d, the DO error
is bounded. Because of the definition of S, we can know that
ė is bounded. Based on the boundness of S, W̃i,Wi, d̂ and
in terms of α = K2S + ŴTN(Z) + ξ − d̂, α is bounded.
Therefor, all signals in the closed-loop system are bounded.

Remark 3: According to the definition of E, if we set the c3
relatively large,

√
1− e−Eki and

√
1− e−Eki will be smaller.

Thus the tracking error can be guaranteed within a small
neighborhood around zero by appropriately choosing design
parameters.

Theorem 1: For the robotic system considering the PLOE
of actuators (2), with bounded initial conditions, semi-global
uniform boundedness (SGUB) stability is obtained under the
control law (16) with the DO constructed as (28) and α
designed as (31). The prescribed performance of the tracking
error is guaranteed, namely ∀t > 0, ki(t) < ei(t) < ki(t).

B. TLOE Type of Failure

Different from PLOE, when TLOE type of failure occurs
at some joint, these actuator outputs will be stuck at some
unknown values and totally out of control. Considering that
these values can even be zero, redundant control method is
used to solve this problem, which provides greater flexibility in
robotic systems [78]. In the presence of TLOE type of failure,
the dynamics (1) can be rewritten as

M(q)q̈ + C(q, q̇)q̇ +G(q) = τtot(t) = τ1(t) + τ2(t)

τ1(t) = ρ1τc1(t) + τ̄c1(t)

τ2(t) = ρ2τc2(t) + τ̄c2(t)

(41)

where ρ1, ρ2 ∈ Rn×n are two diagonal matrixes denoting the
actuator efficiency factors, τtot(t), τ1(t), τ2(t) ∈ Rn are the
actual control inputs, τc1(t), τc2(t) ∈ Rn are the commanded
inputs of the control law, τ̄c1(t), τ̄c2(t) ∈ Rn are the unknown
constant vectors denoting the stuck positions of the actuators.

It is assumed that for anyone joint, the two redundant actuators
cannot lose control at the same time.

Remark 4: We have ρiτ̄ci = 0, i = 1, 2, which means that
PLOE and TLOE types of failure can never occur to one
actuator at the same time.

We first consider that ρ1, ρ2, τ̄c1, τ̄c2 are all known, the
control law is given as

τc1 = −K11α−K12, τc2 = −K21α−K22 (42)

where K11,K12,K21,K22 ∈ Rn×n are diagonal matrixes that
can be calculated by{

ρ1K11 + ρ2K21 = I

ρ1K12 + ρ2K22 = τ̄c1 + τ̄c2
(43)

When we know all information of the system, including the
dynamics, the disturbance and the failures, we rewritten V̇2 as

V̇2 =V̇1 + ST (τ1(t) + τ2(t)−K2S − ξ + α)

=V̇1 + ST (−ρ1K11α− ρ2K21α− ρ1K12

− ρ2K22 + τ̄c1 + τ̄c2 + α−K2S − ξ)

=V̇1 − STK2S − ST ξ

(44)

Since ρ1, ρ2, τ̄c1, τ̄c2 are all unknown, K11,K12,K21,K22

cannot be obtained. To overcome this challenge, the adaptive
parameter adjustment technique is employed, the feasibility of
which is guaranteed by the existence of the solution of (43).
The adaptive laws are designed as follows:

˙̂
Ki1 = SαT − γiK̂i1,

˙̂
Ki2 = S − γiK̂i2 (45)

where K̂ij(i = 1, 2; j = 1, 2) is the estimation of Kij . Hence,
the control law is rewritten as

τc1 = −K̂11α− K̂12, τc2 = −K̂21α− K̂22 (46)

Different from the above controller against PLOE type of
failure, the neural networks used to construct the DO should
be changed. (25) is rewritten as

W ∗T
D ND(ZD) =ρ1τc1(t) + τ̄c1(t) + ρ2τc2(t)−G(q)

− C(q, q̇)q̇ + ϵD(ZD) + τ̄c2(t)
(47)

where ZD = [qT , q̇T , τTc1, τ
T
c2] is the RBF neural networks

input, ND(ZD) = [ND1(ZD), ND2(ZD), · · · , NDl′(ZD)]T is
the regressor vector with NDi(ZD) being the Gaussian radial
basis function, ND(ZD) satisfies ∥ ND(ZD) ∥≤ nD with nD

being an unknown positive constant, l′ is the node number,
ϵD(ZD) is the approximation error satisfying ∥ ϵD(ZD) ∥≤
ϵ̄D(ZD). The weights adaption law is given as

˙̂
WDi = −ΓDi(NDi(ZD)d̂+ σDiŴDi) (48)

Similar to (28), the DO is constructed as d̂ = ẑ + kdq̇

˙̂z = −kaẑ − ka

(
ŴDND(ZD) + kdq̇

) (49)
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Consider a new overall Lyapunov function

V5 = V2 +

n∑
i=1

1

2
W̃T

i Γ−1
i W̃i +

n∑
i=1

1

2
W̃T

DiΓ
−1
DiW̃Di

+
2∑

i=1

2∑
j=1

1

2
K̃ijρiK̃ij +

1

2
d̂T d̂

(50)

where K̃ij = K̂ij − Kij denotes the approximation error.
Similar to (33), taking the time derivative of V5 yields

V̇5 ≤ −c3V5 + c5 (51)

where c3 is the same as before and c5 is a positive constant
given as

c5 =
2∑

i=1

2∑
j=1

γi
2
KijρiKij +

n∑
i=1

1

2
W ∗T

Di σDiW
∗
Di

+
n∑

i=1

1

2
W ∗T

i σiW
∗
i +

1

2
d̄T (I + βkd)d̄

+
1

2
ϵ̄TD(ZD)(2βkd + k2a)ϵ̄D(ZD)

+
1

2
ϵ̄T (Z)ϵ̄(Z) +

1

2
nD ∥ kaW

∗
d ∥2

(52)

Theorem 2: Similar to case A, for the robotic system con-
sidering the TLOE of actuators (41), with bounded initial
conditions, SGUB stability is obtained with the DO construct-
ed as (49) and α designed as (31). The prescribed perfor-
mance of the tracking error is guaranteed, namely ∀t > 0,
ki(t) < ei(t) < ki(t).

Fig. 2. A two-link planar manipulator

IV. SIMULATION STUDY

Consider a rigid robot with a uniform mass distribution
shown in Fig. 2. Assumed to move on the Cartesian space,
the joint variables vector q of the robot is given as

q =

[
θ1
θ2

]
=

[
q1
q2

]
(53)

Then the M(q), C(q, q̇), G(q) in the dynamics model can be
similarly obtained as in [79]. Parameters of the robot are given
as

m1 = 1kg,m2 = 0.85kg, l1 = 0.3m, l2 = 0.4m (54)

The desired trajectory is set as θ1 = sin(t), θ2 = cos(2t), the
states are initialized at θ1(0) = 1, θ2(0) = 0, θ̇1(0) = θ̇2(0) =

0, and the initial configuration of the neural network weight
is 0. The disturbance is given as d(t) = [sin(t)+1; 2 cos(t)+
0.5]T . For the prescribed performance, the steady state error
of q1 demands to be no more than 0.1, and the minimum
convergence rate is determined by the exponential e−t, and
to ensure the initial error is in the bounds, ρ0 and σ are set
as ρ0 = 1.5, σ = 0.5. Then, the performance function of q1
is designed as ρ(t) = (1.5 − 0.1)e−t + 0.1 The prescribed
performance function of q2 is set symmetry with q1’s. Thus,
the prescribed bounds of q can be written as

k(t) =

[
1.4e−t + 0.1
0.7e−t + 0.05

]
, k(t) =

[
−0.7e−t − 0.05
−1.4e−t − 0.1

]
(55)

The simulation study encompasses three cases, and the
controller in the last case is used for comparison to show
the advancement of the former two controllers. To enhance
the comparability and convincingness, the design parameters
of the three controllers are the same and shown in Table. 1,
where η2 is the variance of centers.

TABLE I
THE DESIGN PARAMETERS

Item K1 K2 σ1(σd1, σD1) σ2(σd2, σD2)
Value 3I2×2 10I2×2 2 2
Item η2 l(l′) Γ1(Γd1,ΓD1) Γ2(Γd2,ΓD2)
Value 1 64 10I64×64 10I64×64

Case 1: Controller against PLOE type of failure.
In the simulation, the failure is assumed to occur twice at

t = 1s and t = 7s, and the control torque coefficient Kt is
written as

Kt =



[
1 0
0 1

]
, 0 ≤ t < 1[

0.7 0
0 0.5

]
, 1 ≤ t < 7[

0.5 0
0 0.4

]
, t ≥ 7

(56)

Simulation results given in Figs. 3-5 show that the desired
trajectory of the joint position q is well tracked, and the
tracking error e strictly remains within the prescribed bounds.
From Fig. 5, it can be known that the actual input torques and
the commanded torques satisfy τ = Ktτc.

Case 2: Controller against TLOE type of failure.
As mentioned before, when TLOE type of failure occurs

to the robotic system, redundancy control technique is used.
Under this circumstance, every joint has two actuators corre-
spondingly. It is assumed that the actuator τ1 loses effective-
ness twice at t = 1s and t = 7s, and the actuator τ2 is stuck
at [5, 7]T . The parameters ρ1, ρ2, τ̄c1, τ̄c2 in (41) are written as

ρ2 =


[

1 0
0 1

]
, 0 ≤ t < 1[

0 0
0 0

]
, t ≥ 1

(57)

ρ1 = Kt, τ̄c1 = [0, 0]T , τ̄c2 = [5, 7]T (58)
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Figs. 6-8 show the simulation results. The tracking perfor-
mance and the error are respectively plotted in Fig. 6 and Fig.
7, from which it can be seen that even one of the two actuators
is stuck, the output can still follow the desired trajectory
well and the prescribed performance is guaranteed. Fig. 8
gives the control input, where the red solid line represents
the commanded torque τc1, the blue dashed line represents
the actual torque generated by the actuator τ1 which is not
stuck, the green plus sign line indicates the output torque of
the stuck actuator τ2, the black dash-dotted line indicates the
total torque delivered to the joint. These variables meet the
setting of ρ1 and ρ2 expressed by (58) and (57).

Case 3: neural controller without consideration of the actu-
ator failure and the prescribed performance

In this case, the state feedback neural controller presented
in [79] is used, which doesn’t take the actuator failure and the
prescribed performance into consideration. Simulation results
are given in Fig. 9 and Fig. 10 from which a bad tracking
performance and a violation of the prescribed bounds can be
found. Comparison of these simulation results in the three
cases proves the advancement of our controllers.
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Fig. 3. Tracking performance in Case 1.
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Fig. 4. Tracking errors and the prescribed bounds in Case 1.
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Fig. 6. Tracking performance in Case 2.
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Fig. 7. Tracking errors and the prescribed bounds in Case 2.

V. EXPERIMENT

To further prove the validity of our proposed control
method, we test our controller against PLOE type of failure
on the Baxter robot as shown in Fig. 11. Each Baxter’s joint is
actuated by only one motor, so the redundant controller against
TLOE which means at least two actuators at each joint cannot
be implemented. The disturbances in the experiment derive
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Fig. 13. The control block diagram.
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Fig. 8. Control inputs in Case 2.
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Fig. 9. Tracking performance in Case 3.
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Fig. 10. Tracking errors and the prescribed bounds in Case 3.

from sensor measurement errors and communication delays.
Dominated by the computing speed, we use two collaborative
computers in our experiment. A slave computer with Windows
operating system is used for iterative calculation of the neural
networks output, and a master computer with Ubuntu operating
system is applied for trajectory planning and giving the control
signal to the Baxter as well as the neural input signals to
the slave computer. The two computers communicate with
each other through the Ethernet as shown in the experimental
schematic diagram Fig. 12. The transmitting and receiving
frequency of the master computer is set as 200Hz. The
frequency of total closed-loop is set as 250Hz. As shown in
the control block diagram Fig. 13, we input a desired position
of the end effector through the master computer, then MoveIt,
a state of the art software for mobile manipulation, is used for
trajectory planning, and we use the cubic spline interpolation
to get the velocity and acceleration expectations of the joints.
Based on the neural networks output and the state feedback
signals, the master computer calculate the commanded control
torque τc. Then through the actuator failure part we designed,
the motors generate actual torque τ to drive the Baxter’s joints.

For simplification, the prescribed tracking error performance

JC's Mac



IEEE TRANSACTIONS ON CYBERNETICS, VOL. , NO. , 2019 9

s0
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e0

e1

w0
w1

w2

Fig. 11. The Baxter robot with seven joints.

Master computer Slave computer

Baxter

Ethernet

Master computer

Baxter

Slave computer

Fig. 12. The Experimental schematic diagram. The master computer with
Ubuntu operating system directly generates the control command to drive
the Baxter joint motors. The slave computer with Windows operating system
receives the neural input from the master computer and returns the neural
network output back through MATLAB.

functions for the seven joints are the same one with the
upper bound set as ρ(t) = 0.5e−2t + 0.05 and the lower
bound set as ρ(t) = −0.6e−2t − 0.06. The PLOE type of
failure occurs at t = 0.5s with the Kt = 0.1I7×7. The
experiment results are given in Figs. 14-15. The angle tracking
performance of the seven joints is indicated in Fig. 14 from
which we can see that the errors are quickly getting small
and successfully guaranteed within the prescribed bounds. Fig.
15 shows the actual torques delivered to the seven joints. A
comparative PD controller is also tested on the Baxter, and
Figs. 16 and 17 show the tracking performance and the actual
torques, respectively. The tracking errors converge slowly with
a violation of the prescribed bounds.

VI. CONCLUSION

Two adaptive neural control schemes have been proposed
for robotic systems against PLOE and TLOE types of actu-
ator failure, respectively. A novel DO combined with RBF
neural networks is constructed to attenuate the influence of
the unknown disturbance. Simulation studies show that the
control method can guarantee a prescribed performance even
facing with system uncertainties, unknown disturbance and
actuator failure simultaneously. Moreover, implementation on
a seven-joints robot gives a experimental verification of our
control algorithm. However, the proposed control schemes are
based on some assumptions such as finite number of failures
and bounded disturbance. our future work will focus on the
relaxation of these assumptions.

Fig. 14. The tracking errors of seven joints and their prescribed bounds
under neural controller.

Fig. 15. The actual torques under neural controller.

Fig. 16. The tracking errors of seven joints and their prescribed bounds
under PD controller.
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Fig. 17. The actual torques under PD controller.
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