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Abstract: In this work, we propose a robust stabilizer for nonholonomic systems with 

time varying time delays and nonlinear disturbances. The proposed approach implements 

a composite nonlinear feedback structure in which a linear controller is designed to yield 

a fast response and a nonlinear feedback control law is considered to increase the 

system’s damping ratio. This structure results in the simultaneous improvement of the 

steady-state accuracy and transient performance of time-delay nonholomic systems. 
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Asymptotic stability of the proposed feedback control approach is derived using a 

Lyapunov–Krasovskii functional aimed at reaching a compromise between system’s 

transient performance and asymptotic stability. Simulation and analytical results are 

considered to highlight the robustness and superior performance of the proposed 

approach in controlling high-order-time-delay nonholonomic systems with nonlinear 

disturbances.  

Keywords: Composite nonlinear feedback, nonholonomic systems, time-delay, nonlinear 

disturbances. 

1. Introduction 

Though system stabilization is widely considered in the literature, reaching a tradeoff 

between stability, steady-state performance and transient response for highly nonlinear 

time-delay systems is still a challenging problem [1]. For instance, in stabilization 

problems, the transient performance should not be overlooked. There is agreement among 

researchers that the transient response of adaptive systems is generally not acceptable due 

to the large initial swings in their performance [2]. Hence, various control approaches 

were proposed to improve systems’ transient stability performance [3].  

However, a trade-off between settling time and overshoot persists in most of existing 

nonlinear control designs [4]. The Composite Nonlinear Feedback (CNF) approach was 

recently proposed to overcome this problem and improve transient performance by 

combining linear and nonlinear feedback controllers without switching components [5]. 

The linear component is implemented to ensure a fast response whereas the nonlinear 

portion gradually changes the damping ratio as the system’s output converges to zero 
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whilst reducing the overshoot produced via the linear component. The CNF method was 

first introduced in [6] to modify the transient performance of the tracking controller of 

second-order linear systems with input-saturation. A CNF-based Integral Sliding Mode 

Control (ISMC) approach was proposed in [7] for fast and accurate robust-tracker and 

model-follower design of linear uncertain systems subject to time-delays and external 

disturbances. In [8], a two-term CNF control technique is proposed for nonlinear time-

delay systems with input saturations. Reference [9] developed a CNF-based finite-time 

robust tracker for chaotic systems with external disturbances, Lipschitz nonlinearities and 

time delays.  

Nonholonomic systems are a special class of nonlinear systems with non-integrable 

constraints on their velocities [10]. In other words, systems with constraints on their 

velocity those are not derivable from position constraints. Characteristics commonly 

found in various mechanical systems such as surface vessels, space vehicles, wheeled 

robots, to name a few. Designing stabilizers or trackers for nonholonomic robotic systems 

is a challenging problem since this class of systems is not controllable (linearly) around 

the equilibria and does not guarantee the necessary smooth-feedback stability condition 

(Brockett theorem) [11]. Hence, smooth-feedback controllers cannot stabilize these 

systems. Some discontinuous control schemes such as Sliding Mode Control (SMC), 

hybrid control and time-varying feedback [12] were developed to control this class of 

dynamical systems. In practice, nonholonomic systems are also prone to time delays. 

Since certain time delays can be a potential source of instability, they should be taken 

into consideration at the control design stage [13-15]. Thus, given the complex nature of 
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nonholonomic systems, their stabilization and tracking continues to be an active research 

topic [16].  

In [14], a control approach is suggested to asymptotically stabilize the chained input-

delay nonholonomic systems via input-state scaling static gain controller methods. The 

tracking problem of a chained-form nonholonomic system was also considered in [17] 

using the K-exponential control technique.  System stabilization was considered using the 

Linear Matrix Inequality (LMI) method assuming the system is free of disturbances and 

time-delays. In [18], output-feedback stability of nonholonomic system with time-delay is 

addressed. One distinguished feature of [18] is that time delays exist in polynomial 

nonlinear growing circumstances. The considered system of [18] has low nonlinearity 

and is free of perturbations. A recursive Terminal Sliding Mode (TSM) strategy was 

proposed in [19] for the tracking problem of a chained-form nonholonomic system with 

disturbances. The design ensured that state trajectory is forced to converge to the origin 

in finite time; however, the proposed design did not take into consideration time delays. 

The global stabilization problem for nonholonomic systems in chained-form under input 

delays was investigated in [20]. The approach considered a specific transformation to 

convert the original system into a delay-free form. However, the approach was limited to 

constant and time invariant time delays. A control approach that ensures the global 

asymptotic stability for a class of time delay nonholonomic systems was proposed in [1]. 

The control design process entailed relaxing the powers of the nonlinear terms and 

adopting a new Lyapunov-Krasovskii functional. The design along with the performance 

assessment was focused on the asymptotic stability of the system and neglected its 

transient behavior. Hence, in this paper, we propose to further expand that work and 
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design a CNF approach that is able to simultaneously improve the system’s transient 

behavior whilst guaranteeing asymptotic stability. Additionally, the simultaneous 

presence of time-varying time delays and nonlinear disturbances will be considered in 

this paper, contrary to [1], which only dealt with time delays.  

The main contributions of this work are as follows: 

 The construction of a new power-integrator-based Lyapunov–Krasovskii 

functional that takes into consideration system’s transient performance and 

time-delays.  

 A CNF control approach to counteract the effect of time delays and ensure 

both robust stabilization and performance improvement of the system.  

 An output control structure that guarantees both steady-state accuracy and 

improved transient performance despite the time delays and nonlinear 

disturbances. 

The remainder of the paper is organized as follows. The problem under consideration 

is formulated in section 2. The design procedure for the CNF-based approach for 

nonholonomic systems with time delays and external disturbances is detailed in section 3. 

Simulation results illustrating the performance of the proposed approach are given in 

section 4. Finally, some conclusions are provided in section 5. 

2. Problem formulation 

Given the following nonholonomic system [1] 
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Designing the control input 
1
( )u t  entails some transformations in the dynamical 

equations. When 
0
( ) 0u t   for any finite time, the following scaling transformation is 
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3. Proposed approach 

The proposed approach aims at implementing the CNF control paradigm for high-

order nonholonomic systems with time-delays. The linear feedback input is designed to 

generate a quick dynamic response with small damping ratio, whereas the nonlinear 

feedback is designed to improve the damping ratio as system states approach the origin. 

Thus, it results in simultaneous improvement in both steady-state accuracy and transient 

performance. 

In what follows, we proceed to design the control laws u0(t) and u1(t). First, the control 

law u0(t) is designed and used to analyze the stability of the state x0. Then control law 

u1(t) is synthesized to ensure the asymptomatic stability and performance improvement of 

the other states in the presence of time delays and disturbances. 

3.1. Design of the control law u0(t) 

The linear feedback controller 
0

( )
L

u t  and the nonlinear control law 
0
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N

u t  are defined 

as  

0 0 0
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L
u t x t   (39) 
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N
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u t u t u t x t x t       .  (41) 

The nonlinear function 
0
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 

2

0
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( ) ( ) ( ( ))d t x t x t




 
 

 
, (42) 
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where   is upper bound of external disturbance (
0
( )D t  ), 

0
  is a positive scalar, and 

0
  is a positive continuous (uniformly bounded) function with 

0 0 0
lim ( ( ))
t

x d 


      (43) 

where 
0

0  . The selection process of 
0 0
( ( ))x t  will be discussed in the next 

subsection. 

Now, considering 
0

1q   in (1) and constructing the Lyapunov function as  

2

0 0 0
0.5V P x , (44) 

the time-derivative of 
0

V  is obtained as  

0 0 0 0 0 0

2 2 2

0 0 0 0 0 0 0 0

( ( ) ( ) )

2 ( ) 2 ,

V P x d t u t D

Qx d t x x D  

 

   
 (45) 

where 
0 0 0

2 ( )Q d t  . Then, using   as the upper bound of external disturbance, Eq. 

(45) can be written as 

 
22

0 0 0 0 0 0 0 0
2 ( ) ( ) 2 ( )V Qx d t x t x t       . (46) 

The value of Q is positive; hence, the first term in the last function is negative. In 

order to have a negative derivation of the Lyapunov function, the nonlinear function 0
  

is chosen as (42).  

3.2. Design of the control law u1(t) 

For designing the virtual controllers in the next section, the nonlinear functions 1
  and 

1k


  are defined as 
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 
2

1

1 1 2 1 1

1 2

1 2 1 1 1 1 1

( ) ( )

( ) ( ) ( ) ( )

d t z t

d t z t d t z t

 


  


 

 
   

 (47) 

1k





 


 (48) 

with 

    1 2
1 2

1

... ...1 2 1 1 2
1 2 1

1
1

...
...

1 1 1

21
2

...

1 1 1 1

( ) ( )

( ) ( ) ( )

k
k

s p p p pk k k
k k

p p
p p

k k k

p p p

k k k k k

d t z t

z t z t z t



 






  
 




  



   

 

   
      

  
  

 (49) 

1

... ...1 2 1 1 2
1 2

...
1 2 1

1 1 2

1
2

...

1 1 1 1 1 1

1
2

...

1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( )

s p p p pk k k
k

s p p
k k

k k

p p

k k k k k k

p p p

k k k k

d t z t z t z t

d t z t z t







 

  


 
 



     



  

 
      

 
 

 

 (50) 

where 1
  and 1k


  are positive values, 

1
  and 

1k 
  are positive uniform continuous 

bounded functions and ( ) ( ) ( ) , 1, ...,is

i i i
z t z t z t i n



    which satisfy 

1 1 1
lim ( ( ))
t

x d 


      (51) 

1 1 1
lim ( ( ))

k k k
t

x d 
  

 

      (52) 

where 
1

  and 
1k 

  are two positive constants. The selection procedure of 
1 1
( ( ))x t  and 

1 1
( ( ))

k k
x t

 
  will be discussed later. 

Theorem 1: For the time-delay nonholonomic system (1), considering the CNF control 

law (41) and output-feedback controller as 
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1

1

1

1 ...

...

1
ˆ ˆ( ) ( ) ( )

n

n n n

p p

l p p s

n n n
u t z t z t




 

    
 
 

.  (53) 

Then, using the CNF virtual controllers ( )
i

t , the control laws 
0
( )u t  and 

1
( )u t  

guarantee that the system states are bounded for any initial condition 

0 0 1 0 0
[ ( ), ( ), ..., ( )]

n

n
x t x t x t R   and lim ( ) 0, 0, ... ,

i
t

x t i n


  .  

Proof: Assume 
0 0
( ) 0x t  . The proofs of the stability analysis for the subsystems 

0
( )x t  

and 
1
( ), ..., ( )

n
x t x t  are presented in the following procedure:  

Step I. Stability analysis and controller design for subsystem x0 

Substituting 
0

1q   in (1), one obtains 

0 0 0 0
( ) ( ) ( ) ( )x t D t d t u t  . (54) 

Construct the Lyapunov functional as 

2

0 0 0 0
( ( )) 0.5 ( )V x t x t , (55) 

where differentiating (55) and using (54), one attains 

 0 0 0 0 0 0 0
( ( )) ( ) ( ) ( ) ( )V x t x t d t u t D t  . (56) 

Substitution (41) into (56), one can achieve 

 
22

0 0 0 0 0 0 0 0 0 0
( ( )) ( ) ( ) ( ) ( ) ( )V x t Qx t d t x t x t D t      . (57) 

where 
0 0 0

( )Q d t  . From (57), one obtains 

22

0 0 0 0 0 0 0 0 0
( ( )) ( ) ( ) ( ) ( )V x t Qx t d t x t x t        (58) 

where substituting the nonlinear function (42) into (58), one has 
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0 0 0 02

0 0 0

0 0 0 0

( ( )) ( )
( ( )) ( )

( ( )) ( )

x t x t
x t Qx t

x t x t
V

 

 


  

 
.  (59) 

Considering the fact that  

0 0

0 0

0 0

( ( ))
0 ( ( )),

( ( ))

x t
x t

x t






  

 
 (60) 

the last term of Eq. (59) is less than 
0 0
( ( ))x t , and hence one obtains 

2

0 0 0 0 0
( ( )) ( ) ( ( ))V x t Q x t x t    .  (61) 

Besides, there exist positive coefficients 
1

   and 
2

  so that for every 
0

t t  one gets 

2 2

1 0 0 0 2 0
( ) ( ( )) ( )x t V x t x t   .  (62) 

From (61) and (62), it follows that 

0

0 0

2

1 0 0 0 0 0 0 0 0

2 2

2 0 0 0 0 0

0 ( ) ( ( )) ( ( )) ( ( ))

( ) ( ) 2 ( ( )) ,

t

t

t t

t t

x t V x t V x t V x d

x t Q x d x d

  

    

   

   



 

 (63) 

Since 0Q  , one can obtain 

0

2

0
( ) 0

t

t

Q x d   ; then, it follows from (63) that  

0

2 2

1 0 2 0 0 0 0
0 ( ) ( ) 2 ( ( )) .

t

t

x t x t x d        (64) 

Now, notice that for 
0

t t , one obtains 

 0
0

0 0 0
, )

sup ( ( ))

t

t t
t

x d 
 

    (65) 

where from (64) and (65), one attains 
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2 2

1 0 2 0 0 0
0 ( ) ( ) 2x t x t     .  (66) 

Furthermore, taking the limit of the last term of (63) as time goes to infinity follows 

that 

0 0

2 2

2 0 0 0 0 0
0 ( ) lim ( ) 2 lim ( ( ))

t t

t t
t t

x t Q x d x d    
 

      (67) 

where from (65) and (67), one can obtain 

2 2

0 2 0 0 0
lim ( ) ( ) 2
t

Q x d x t  


   .  (68) 

It is confirmed from (66) that 
0
( )x t  is (uniformly) bounded. Because 

0
( )x t  is a 

continuous signal, the term 
2

0
( )Q x t  in (68) is also (uniformly) continuous. Using 

Barbalat lemma [24] on (68) gives 

2

0
lim ( ) 0
t

Q x t


 .  (69) 

Since Q  is positive, one obtains 

0
lim ( ) 0
t

x t


 .  (70) 

Step II. Stability analysis and controller design for the x-subsystem 

Since 
0 0
( ) 0x t  , one can obtain from (41) that 

0
( ) 0u t   for any t   . Then, using 

(4) and (5), the x-subsystem (1) is transformed into  -subsystem (13) and (20). In what 

follows, for simplification of the controller design, one can assume that /w q p , where 

q  and p are even and odd integers, respectively. First, a state-feedback control law is 

designed assuming that all the states are measurable; then, a suitable state-observer is 

constructed to design an output feedback controller. 
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The Lyapunov-Krasovskii functional is constructed as 

1 11 1 12 1 1
( ( )) ( ( ), ( ))V V z t V z t z t    ,   (71) 

the time-derivative of (71) fulfills 

1 11 1 12 1 1
( ( )) ( ( ), ( ))V V z t V z t z t     (72) 

where using the time-derivatives of (24) and (25), it follows that 

   

 

2 1

1 1 1 1
1 1

1 1

21
2

1 1 1 0 1 0

2 2

1 2 1 21 1

1 1 1 1

( ) ( ) ( ) ( )

( ) ( ) 1 ( ) ( ) ( ) .
1 1

s p

p p p pp s

s sb b

V t t t t

z t z t t z t z t



 

    

 
    

 




 

 
    

 

   
         

    
   

 (73) 

From (13) and (21), one obtains 

 

 

2 1

1 1 1

1 1

21
2

1 1 2 1 0 1 1

2 2

1 2 1 21 1

1 1 1 1

( ) ( ) ( , , ( ), ( )) ( ) ( )

( ) ( ) 1 ( ) ( ) ( ) ,
1 1

s p

p p s

s sb b

V d t t f t x t t z t z t

z t z t t z t z t



 

   

 
    

 




 

 
    

 
 

   
         

    
   

 (74) 

where using Assumption 2, one gets 

 

 

2 1

1 1 1

1 1

2 1

1 1 1

21
2

1 1 2 1 0 1 1

2 2

1 2 1 21 1

1 1 1 1

21
2

1 2 1 1

1

( ) ( ) ( , , ( ), ( )) ( ) ( )

( ) ( ) 1 ( ) ( )
1 1

( ) ( ) ( ) ( )

( ,

s p

p p s

s sb b

s p

p p s

V d t t f t x t t z t z t

z t z t z t z t

d t t z t z t

f t x



 



   

 
    

 






 




 
    

 
 

   
         

    
   

 
  

 
 



2 1

1 1

1 1

21
2

0 1 1

2 2

1 2 1 21

1 1 1 1 1

, ( ), ( )) ( ) ( )

( ) ( ) ( ) ( ) .
1

s p

p s

s sb b

t t z t z t

z t z t z t z t



 

  


    






 

 

   
        

   
   

 (75) 
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From Lemma 4, one deduces that 

2 1

1 1 1 1

2 1
1 1

1 1 1
1 1 1 1 1 1

1

21
2

1 1 2 1 1

21
1 1 2

1

1 1 1 1 1 1

2 2

1 2 1 21

1 1 1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

s p

p p s p

s p
s w s w

p s pb
p s p p s p

s sb b

V d t t z t z t

a z t z t z t z t z t z t

z t z t z t z t





 



  


    







  



 

 
  

 
 

 
       

 

 
      

 
 

1 .
 
 
 
 

 (76) 

According to Cauchy Lemma [25], one obtains 

2 1
2 1

1 1 1
1 1 1

21
212

2

1 1 1 1
( ) ( ) ( ) ( )

s p
s p

p s p
p s pz t z t z t z t







 
   

 
 (77) 

where from (76) and (77), one obtains 

2 1

1 1 1 1

1 1

2 1 1 1 2 1

1 1 1 1 1 1 1 1 1 1

21
2

1 1 2 1 1

2 2

1 2 1 21

1 1 1 1 1

2 21 1
2 21

1 1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

( ) ( ) ( ) ( )

s p

p p s p

s sb b

s p s w s w s p
b

p s p p s p s p s p

V d t t z t z t

z t z t z t z t

a z t z t z t z t



 

 




    








 

   
   

 
  

 
 

   
        

   
   

    1 1

2 1 1 2 1 1

1 1 1 1 1 1 1 1 1 1

1 1
2

1 1

2 21 1
2

1 1 1 1 1 1

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) .

p p

s p s w s p s w

s p p p s p s p s p

z t z t

z t z t z t z t z t z t

 



  



   



 




      



 
(78) 

From (3), the following inequality is obtained for 2i  :  

2 1
s p   (79) 

where  1
max

i n i
s w

 
  . It follows from (78) and (79) that  
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1 1 1 1

1 1

1 1 1 1 1 1 1 1 1 1

1
2

1 1 2 1 1

2 2

1 2 1 21

1 1 1 1 1

1 1 2 1 1
2 2 21

1 1 1 1 1 1

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

( ) ( ) ( ) ( ) ( ) ( )

(

p p s p

s sb b

b
p s p p s p s p p p

V d t t z t z t

z t z t z t z t

a z t z t z t z t z t z t

z t



 

  




    



 



 

   

 
  

 
 

   
        

   
   


     



 1 1 1 1 1 1 1 1 1 1

1 1
2

1 1 1 1 1
) ( ) ( ) ( ) ( ) ( ) .s p p p s p s p s pz t z t z t z t z t

   

  
 

     


 
(80) 

Now, from Lemma 7 and considering 
1

1p   , one attains 

1 1

1
1 1

1

1

2

1 21

1 1 2 1 1 1 1

2
2

2 11 2 1

1 1 1 1 1 1

1

2 11

1 1 11

1 1

( ) ( ) ( ) ( ) ( ) ( )
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( ) ( ) 1.5 ( ) 2 ( ) 1.5 ( )

( )
( ) ( ) (

2
1 1

s sb

sb b
s s

s

s
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z t z t a z t z t z t

z t
z t z t zs

s s

 
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


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
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

 

 


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



   
      

   
   

  
        

   

 
   

 

1

1

1

1

1 1 2

1

1

1 1

( )
)

0.5 ( ) .

1 1

s

s

s

z t
t s

z t

s s











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

 


   
 

 

(81) 

Eq. (81) can be simplified as 

1

1 1

1 1

1 1 1 1 2

2 2

2 1 1 21

1 1 1 1 1

2 2

1 1

1 1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

3 1
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V z t z t d t t

z t z t z t z t

a z t z t a z t z t
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 

 
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   

   
        

   

 (82) 

where using Lemma 1, one gets 

 

1

1 1

1 1 1 1 2

2 2

1 1 2 1 21

1 1 1 1 1

( ) ( ) ( ) ( )
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1

s

s sb b b
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

 




     


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 
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 
 
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(83) 
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Eq. (83) can be rewritten with the virtual controller 
1
( )t  as  

1

2
1

1
1

2

2

1 1 1

2

1 2

1 1 1 1 1 1 2 1

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( )),

s w

s

s

sb

V n z t z t

a z t z t d t z t z t t t









      

 



 
   

 
 

  
         

   
   

 (84) 

with 
1
( )t  which is defined as  

 
1

1 1

1

3
( ) ( )

2 ( ) 1

ba
t n z t

d t


 




 

     

, (85) 

where 
 

1

1

1

3

2 ( ) 1

ba
n

d t







  


, and if the condition 

1
a   is satisfied, then 

1
0V   is 

obtained.  

Similarly, for 2, ...,k n , to proceed the controller design, there exist a candidate 

Lyapunov-Krasovskii function 
1k

V


 as (23) and a virtual control law 
1k




 with 

1 1 1 1

...
1 2 1

1 2 1 1

2 2
1 1

... ...2 1 2

1

1 1

1
2

...

1 1 1 1

( 2) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ( ) ( ) )

i i i i

s p p
k k

k k k

k k

s p p s p pb

k i i i i i

i i

p p p p

k k k k k

V n k z t z t k i z t z t

d t z t z t t t



 

    

  

 

 
  

 





 



   

   
             

   
   

 
   

 
 

 

 (86) 

where 
i

 ’s are positive constants. Then, choosing 
1 1 2k k k k

V V V V


   , the time-

derivative of 
k

V  is attained as 

1 1 2k k k k
dV dV dV dV

dt dt dt dt


   .   (87) 

Since 
1k

V  is a functional of 1
, ...,

k
  , it follows from (13) and (24) that  
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 

1 1 1 1 11

1 1

1 1 1 1

1 1

11 1

1

1 1 1

1 1

1

...

...

(.) ( ) ( ) (.) .k i
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k k

k

k k k k

k k i
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k

p pk k k

k k k i i i

ik k i

dV V V V

dt t t t

V V V V

V V V
f d t d t f

 

  

   
   

  
  











 



    
   

     

   
    

   

  
   

  





 (88) 

Now, using (25), (86)-(88) and Lemma 1, one obtains 

...
1 2 1

1 1 1 2 1 1

1 1

2 1
1 2

... ...2

1 1 1 1

1

2
1

...1 2 1

1

( 2) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ) )

( ) ( ) ( )
1

s p p
k k

i i k k k

i i

k

s p p p p p p

k i i k k k k k

i

k

s p pb k

i i i

i

V n k z t z t d t z t z t t t

k i z t z t





   


    



 
   



 

   





 



  
         

   
   

 
       

  
 





 
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1 1

2

...2 1

2
1

...1 2 1 1

1 1

1

( ) ( ) (.)
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k k k i

s p pb k

k k k

k

k
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




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(89) 

or equivalently 
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2
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(90) 

Now, using Lemma 5, it follows that 
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where 
1 2k k k

L L L  . Eq. (91) can be rewritten as  
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  (92) 

For obtaining the Lyapunov stability condition ( 0
k

V  ), the virtual controller is 

deduced as  

1 1

1 2

...21( ) 1 ( ) ( )
1
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k k k k k

k
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,  (93) 

where substituting derivative of (24) (with respect to 
k

 ) into (93), one obtains 

 
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1
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k k k
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.  (94) 

From Eq. (94) and Lemma 1, one achieves  
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or equivalently 
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which results that substituting (96) into (92), one finds 0
k

V  .  
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 (97) 

When k=n, the time-derivative of Lyapunov-Krasovskii functional is attained from 

(92) as 
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 (98) 

where taking 
1 n

  , the Lyapunov stability condition 0
n

V   is ensured.  

Now, from (5) and (96), the designed output-feedback controller is obtained as (53) 

and all the state trajectories of the system are globally bounded, i.e. lim ( ) 0
t

z t


 . Then, 

from (20) and (21), and considering 
0
( ) 0u t  , one obtains: lim ( ) 0

t

x t


 . 

In what follows, the CNF-based virtual control function 
1
( )t  is presented as 
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1 1 1 1 1 1
( ) ( ) ( )t z t z t     ,  (99) 

where 
1

0  . Substituting (99) into (84) follows that 
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Substituting the nonlinear function (47) into (100) and considering (60), one obtains  
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


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1

2 21
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( ) ( ) ( ) .

b
n z t a z t  





      

 (101) 

There exist positive constants 
1 1

r , 
1 2

r  , 11
g , 

12
g  such that for every

0
t t , it follows: 

2 2

11 1 11 12 1
( ) ( )r z t V r z t  , (102) 

2 2

11 1 12 12 1
( ) ( )g z t V g z t     ,  (103) 

where from (23), (102) and (103), one can obtain 

2 2 2 2

11 1 11 1 1 12 1 12 1
( ) ( ) ( ) ( )r z t g z t V r z t g z t       .  (104) 

From (101) and (104), it follows that 
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0

0

0 0

2 2

11 1 11 1 1 1 1 0 1 0 1 1 1

2 2 2

12 1 0 12 1 0 1

2

1 1 1 1 1

0 ( ) ( ) ( ( ), ( )) ( ( ), ( ))

( ) ( ) ( )

( ) ( ) ( ( ), ( )) .

t

t

t

t

t t

t t

r z t g z t V V z t z t V z z d

r z t g z t n z d

a z t d z z d

     

   

      

       

   

     





 

 (105) 

Because 
1

a   and n  are both positive, then the expressions 

0

2

1
( )

t

t

n z d     and 

0

2

1 1
( ) ( )

t

t

a z t d      are negative; hence  

0

2 2 2 2

11 1 11 1 12 1 0 12 1 0 1 1 1
0 ( ) ( ) ( ) ( ) ( ( ), ( ))

t

t

r z t g z t r z t g z t z z d              . (106) 

Now, notice that for 0
t t , one gets  

 0
0

1 1 1 1
, )

sup ( ( ), ( ))

t

t t
t

z z d   
 

    , (107) 

where from (106) and (107), one attains 

2 2 2 2

11 1 11 1 12 1 0 12 1 0 1
0 ( ) ( ) ( ) ( )r z t g z t r z t g z t         .  (108) 

On the other hand, taking the limit of the last term of (105) as time goes to infinity, 

one achieves 

0

0 0

2 2 2

12 1 0 12 1 0 1

2

1 1 1 1 1

0 ( ) ( ) lim ( )

lim ( ) ( ) lim ( ( ), ( ))

t

t
t

t t

t t
t t

r z t g z t n z d

a z t d z z d

   

      



 

   

     



 

 (109) 

where from (107) and (109), one can find 
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0 0

2 2 2 2

1 1 1 12 1 0 12 1 0 1
( ) ( ) ( ) ( ) ( )

t t

t t

a z d n z r z t g z t               .  (110) 

It can be deduced from (110) that 1
( )z t  and 1

( )z t   are uniformly bounded. Since 

1
( )z t  and 

1
( )z t   are continuous, the terms 

0

2

1
( )

t

t

n z d    and 

0

2

1 1
( ) ( )

t

t

a z d      in 

(110) are also (uniformly) continuous. If Barbalat lemma is applied to (110), it gives 

2 2

1 1 1
( ) lim ( ) lim ( ) 0

t t

a z n z    
 

     (111) 

where since n  and 
1

a   are positive, it results that 

1
lim ( ) 0
t

z 


 , (112) 

1
lim ( ) 0
t

z  


  . (113) 

The same procedure for the stability analysis can be considered for 

( ), ( ), 2, ... ,
i i

z t z t i n  .           □ 

3.3. Procedure for selecting Ω 

The main function of the nonlinear term ( ( ))
i

x t is to accelerate the settling time and 

hence improve the system’s speed of response. When the norms of the system states are 

small, a significant amount is contributed to the linear control signal. The selection 

procedure of a suitable nonlinear function ( ( ))
i

x t  is the central problem of the CNF 

control design. The function ( ( ))
i

x t  is required to be selected such that: 

(1) Since ( ( ))
i

x t  acts over the absolute value of ( )
i

x t  and should satisfy (107), then 

it follows that    ( ) ( ) 0
i i

x t x t     .  
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(2) When the states 
0

[ ( ), ..., ( )]
T

n
x t x t  are far away from origin, ( ( ))

i
x t  will have 

high value such that the term ( ( ))
i

x t  will become small, hence making the 

contribution of the nonlinear portion insignificant. 

(3)  When the states converge to zero, ( ( ))
i

x t  converges to a low value such that 

( ( ))
i

x t  will be large, thus increasing the significance of the nonlinear portion 

of the control design.  

The nonlinear portion ( ( ))
i

x t  is not unique and one can define it in numerous 

procedures. In this article, the function ( ( ))
i

x t  is described in exponential form as 

( ( )) exp
( )

i

i

x t
x t


 

 
     

 

, (114) 

0 0
exp( )t    , (115) 

where  ,  , 
0

  and 
0

  are some positive tuning coefficients. The function ( ( ))
i

x t  

reaches the maximum amount 
0

( )   when ( )
i

x t  increases and approaches to 

minimum amount (zero) while ( )
i

x t  converges to the origin. 

The design procedure can be illustrated using the flowchart illustrated in Fig.1. 
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Fig.1. Flowchart of the proposed approach 

 

4. Simulation results 

Example. Consider the following nonholonomic system with time delays and nonlinear 

disturbances [1]: 

 0 0

3 2 2

1 2 0 0 1 1 1

2

2 1 0 2 2 2

( ) 1 0.5 sin ( ),

( ) ( ) ( ) ( ) ( ( )) ( , ( ), ( )),

( ) ( ) ( ) ( ( )) ( , ( ), ( )),

x t t u t

x t x t u t x t x t t d t x t x t

x t u t x t x t t d t x t x t

 

 

 

    

    

 (116) 

where 0 1 2
[ , , ]

T
x x x  are system states; 

1
(.)d  and 

2
(.)d  are external disturbances; 

0
( )u t  and 

1
( )u t  are control inputs; 

1
( )t  and 

2
( )t  are time-varying delays. This example is 

simulated in MATLAB
®
 Simulink

® 
(2016b) and run on an Intel

®
 Core i7- 6700K 

processor with 2 GB of memory. 

The following coefficients were considered: 
0

1  , 
1

1p  , 
2

3p  , 
1

1s  , 1w  , 

2
1s  , 

1
1m  , 2.1  , 

1
2  , 

2
3  , 2n  , 3  , 

0
2  , 

0
1  , 

1
1   and 
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1
2  . The initial states are taken as 

0
(0) 0.5x  , 

1
(0) 0.3x   , 

2
(0) 0.7x    and 

2
ˆ (0) 1.2   .  (41), (53) and (99), yield the following control inputs:  

   
0 0

0

9
( ) 1 ( ),

1 0.5 sin 3 ( ) 2
u t x t

t x t

 
   

  
 

 (117) 

   
11

2 33
1 2 2

ˆ ˆ( ) 2.1 2 ,u t z z     (118) 

with        2

2 2 1 2 1 1 1 1
ˆ ˆˆ ˆ ˆ1 2z z z           , where 

1 1
ẑ  , 

2 2
ˆˆ ( ) 2.1t   , 

1

1

0

( )
( )

( )

x t
t

u t
  , 

2 2 1 1 1
ˆ ( ) ( ) 2 ( ) ( )t z t z t z t     and 

 
2

2 1

1 2

2 1 1

3 ( )

( ) 3 ( ) 0.952

z t

z t z t







 

 
. 

Two cases were considered in assessing the performance of the proposed control 

framework. Additionally, a comparison analysis to the approach proposed in [1] was also 

carried over. 

Case 1: Performance in the presence of time-varying time delays: 

In this case, the system is subjected to the following time-varying time delays:

1 2
( ) ( ) 0.5 sint t t   . The time histories of the states obtained in this case are ilustrated 

in Fig. 2. Note that the propose approach is able to properly mitigate the effect of time 

delays. Note also that the proposed approach is able to steer the states to the origin faster 

than the approach proposed in [1]. The control inputs for both approaches are depicted in 

Fig. 3. Note that the proposed controller requires less control effort compared to the 

approach proposed in [1]. The observer’s dynamics are highlighted in Fig. 4. As can be 

seen from Fig. 4, the proposed observer has faster low-frequency responses compared to 

the approach proposed in [1].  
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Fig. 2: Dynamics of the system’s states. 
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Fig. 3: Time histories of the control inputs. 

 

Fig. 4: Time trajectories of observer’s variables.  
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To further assess the performance of both controller, we consider the Integral of 

Absolute-value of Error (IAE) as performance index: 

1

0

( )

t

I dt    (119) 

where   is a signal in time domain. The obtained values of IAE (
1

I ) and settling time (

s
T ) are depicted in Table 1 for both the proposed approach and the one outlines in [1]. 

Note that the proposed approach yields smaller IAE and settling time values than the 

approach depicted in [1]. For instance, the improvements of IAE and settling time values 

for the state 
0

x  using the proposed controller are 73.2% and 72.46%, respectively; 

whereas, the improvements of IAE values for the controller signals 
0

u  and 
1

u  are 35.86% 

and 13.9%, respectively.  

Table 1: Performance indices (IAE and settling time values) 

 
1 0
( )I x  

1 1
( )I x  

1 2
( )I x  

1 0
( )I u  

1 1
( )I u  

0
( )

s
T x  

1
( )

s
T x  

2
( )

s
T x  

Method in [1] 1.2891 0.0559 0.8157 1.2891 3.2872 6.9 s 1.4 s 2.6 s 

Proposed method 0.3457 0.0638 0.3504 0.8268 2.8302 1.9 s 0.8 s 1.4 s 

 

Case 2: Performance in the simultaneous presence of time-varying time delays and 

nonlinear disturbances: 

To further assess the robustness of the proposed approach, we subject the system to 

both time-varying delays and disturbances. Hence, we consider 
1
( ) 2 2 sint t   , 

2
( ) 1 0.5 cost t   , 

2

1 0
1.5 ( )d x t ,  2 0 1

2.1 ( ) ( )d x t x t   and 
0
(0) 0.6x  , 

1
(0) 0.5x   , 

2
(0) 1.1x    and 

2
ˆ (0) 1.6   . The obtained dynamics for the states, control signals and 
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observer variables, in this case, are depicted Fig. 5 through Fig. 7, respectively. Note 

from Fig. 5 that the system states controlled with the proposed approach exhibit lower 

overshoot and settling time than the approach highlighted in [1]. Fig. 6 shows that the 

proposed control inputs are faster than the controllers of [1]. Fig. 7 illustrates that the 

proposed observers have lower frequency responses and smaller settling time compared 

to the approach proposed in [1]. Hence, the proposed approach is faster and more 

effective at controlling nonholonomic systems with time delays and disturbances that the 

approach proposed in [1].  

 

Fig. 5: Time responses of system states. 
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Fig. 6: Time responses of controller signals. 

 

Fig. 7: Time trajectories of observer variables. 

A comparison between the IAE and settling time values obtained using the proposed 

approach compared to those obtained using the approach in [1] are illustrated in Table 2.  
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Table 2: The values of performance indices 

 
1 0
( )I x  

1 1
( )I x  

1 2
( )I x  

1 0
( )I u  

1 1
( )I u  

0
( )

s
T x  

1
( )

s
T x  

2
( )

s
T x  

Method in [1] 1.2891 0.0705 2.0008 1.2891 6.4690 7 s 2.5 s 5.3 s 

Proposed approach 0.3457 0.0638 0.2987 0.8268 3.1612 1.2 s 0.8 s 1.2 s 

 

Note the reduction in IAE and settling time values when using the proposed control 

approach compared to the method in [1]. More specifically, the improvements of IAE 

values for the 
0

x , 
1

x , 
2

x , 
0

u  and 
1

u  are 73.18%, 9.5%, 85.07%, 35.86% and 51.13%, 

respectively, wheras the improvements of settling times for the states 
0

x , 
1

x  and 
2

x  

using the proposed controller are 82.85%, 68% and 77.35%, respectively.  

It is concluded from these simulations and analytical results that the proposed control 

approach exhibits robust performance in the simultaneous presence of time-varying 

delays and external disturbances.  

5. Conclusion 

This paper proposed a control paradigm based on the composite nonlinear feedback 

control approach for nonholonomic systems with time-delays and external disturbances. 

To stabilize such systems and ensure the asymptotic convergence of the state trajectories 

to zero in the presence of external disturbances and time-varying time delays both linear 

and nonlinear feedback terms are synthesized. The linear term is designed to generate a 

quick dynamic response with small damping ratio, whereas the nonlinear feedback law is 

used to improve the damping ratio as system states approach the target reference. A 

robust stabilizer was synthesized to ensure the global asymptotic stability of 
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nonholonomic systems by constructing a power-integrator-based Lyapunov–Krasovskii 

functional. Simulation results showed simultaneous improvement in both steady-state 

accuracy and transient performance. Comparison of IAE and settling times to the results 

of the method proposed in [1] showed also superior performance. Thus, the proposed 

approach is very effective at stabilizing highly complex nonholonomic and under-

actuated systems. Extending the results to high-order nonholonomic systems with 

multiple time-varying input-delays will be the focus of our future work. 

References 

1.  Liu Z-G, Wu Y-Q, Sun Z-Y. Output feedback control for a class of high-order 

nonholonomic systems with complicated nonlinearity and time-varying delay. Journal of 

the Franklin Institute. 2017, 354, 4289-310. 

2.  Sun W, Zhang Y, Huang Y, Gao H, Kaynak O. Transient-performance-

guaranteed robust adaptive control and its application to precision motion control 

systems. IEEE Transactions on Industrial Electronics. 2016, 63, 6510-8. 

3.  Zhu D, Zou X, Zhou S, Dong W, Kang Y, Hu J. Feedforward current references 

control for DFIG-based wind turbine to improve transient control performance during 

grid faults. IEEE Transactions on Energy Conversion. 2017, 33, 670-81. 

4.  Aghababa MP. Sliding-mode control composite with disturbance observer for 

tracking control of mismatched uncertain nDOF nonlinear systems. IEEE/ASME 

Transactions on Mechatronics. 2017, 23, 482-90. 

5.  Lu T, Lan W. Composite nonlinear feedback control for strict-feedback nonlinear 

systems with input saturation. International Journal of Control. 2019, 92, 2170-7. 

6.  Lin Z, Pachter M, Banda S. Toward improvement of tracking performance 

nonlinear feedback for linear systems. International Journal of Control. 1998, 70, 1-11. 

7.  Majd VJ, Mobayen S. An ISM-based CNF tracking controller design for 

uncertain MIMO linear systems with multiple time-delays and external disturbances. 

Nonlinear Dynamics. 2015, 80, 591-613. 

8.  Singh S, Purwar S, Kulkarni A. Two term composite nonlinear feedback 

controller design for nonlinear time-delay systems. Transactions of the Institute of 

Measurement and Control. 2018, 40, 3424-32. 

9.  Mobayen S, Ma J. Robust finite-time composite nonlinear feedback control for 

synchronization of uncertain chaotic systems with nonlinearity and time-delay. Chaos, 

Solitons & Fractals. 2018, 114, 46-54. 

10.  Gu J, Li W, Yang H. Distributed adaptive control for multiple nonholonomic 

systems with nonlinearly parameterized uncertainties. International Journal of Adaptive 

Control and Signal Processing. 2019, 33, 747-66. 



 

38 of 38 

11.  Park BS, Yoo SJ. A low-complexity tracker design for uncertain nonholonomic 

wheeled mobile robots with time-varying input delay at nonlinear dynamic level. 

Nonlinear Dynamics. 2017, 89, 1705-17. 

12.  Janiak M, Tchoń K. Constrained motion planning of nonholonomic systems. 

Systems & Control Letters. 2011, 60, 625-31. 

13.  Hassan A, Torres-Perez A, Kaczmarczyk S, Picton P. The effect of time delay on 

control stability of an electromagnetic active tuned mass damper for vibration control.  

Journal of Physics: Conference Series. IOP Publishing2016. p. 012007. 

14.  Chen X, Zhang X, Zhang C, Chang L. Global asymptotic stabilization for input-

delay chained nonholonomic systems via the static gain approach. Journal of the Franklin 

Institute. 2018, 355, 3895-910. 

15.  Jenabzadeh A, Safarinejadian B. Tracking control of nonholonomic mobile 

agents with external disturbances and input delay. ISA transactions. 2018, 76, 122-33. 

16.  Jenabzadeh A, Safarinejadian B, Binazadeh T. Distributed tracking control of 

multiple nonholonomic mobile agents with input delay. Transactions of the Institute of 

Measurement and Control. 2018, 0142331218771143. 

17.  Cao K-C. Global K-exponential trackers for nonholonomic chained-form systems 

based on LMI. International Journal of Systems Science. 2011, 42, 1981-92. 

18.  Wu Y-Q, Liu Z-G. Output feedback stabilization for time-delay nonholonomic 

systems with polynomial conditions. ISA transactions. 2015, 58, 1-10. 

19.  Mobayen S. Finite-time tracking control of chained-form nonholonomic systems 

with external disturbances based on recursive terminal sliding mode method. Nonlinear 

Dynamics. 2015, 80, 669-83. 

20.  Shang Y, Xie J. Global stabilization of nonholonomic chained form systems with 

input delay.  Abstract and Applied Analysis. Hindawi2014. 

21.  Lei H, Lin W. Robust control of uncertain systems with polynomial nonlinearity 

by output feedback. International Journal of Robust and Nonlinear Control. 2009, 19, 

692-723. 

22.  Shang Y, Yuan Y. Global Asymptotic Stabilization for a Class of High-Order 

Nonholonomic Systems with Time-Varying Delays. International Journal of Applied 

Mathematics. 2017, 47. 

23.  Sousa JVdC, de Oliveira EC. Leibniz type rule: ψ-Hilfer fractional operator. 

Communications in Nonlinear Science and Numerical Simulation. 2019, 77, 305-11. 

24.  Souahi A, Naifar O, Makhlouf AB, Hammami MA. Discussion on Barbalat 

Lemma extensions for conformable fractional integrals. International Journal of Control. 

2019, 92, 234-41. 

25.  Wigren T. The Cauchy-Schwarz inequality: Proofs and applications in various 

spaces. 2015. 
 


