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Disturbance Observer-Based Neural Network
Control of Cooperative Multiple Manipulators with

Input Saturation
Wei He, Yongkun Sun, Zichen Yan, Chenguang Yang, Zhijun Li, Okyay Kaynak

Abstract—In this paper, the complex problems of internal
forces and position control are studied simultaneously and a
disturbance observer-based radial basis function neural network
(RBFNN) control scheme is proposed to (i) estimate the unknown
parameters accurately, (ii) approximate the disturbance experi-
enced by the system due to input saturation, (iii) simultaneously
improve the robustness of the system. More specifically, the
proposed scheme utilizes disturbance observers, neural network
(NN) collaborative control with an adaptive law, and full state
feedback. Utilizing Lyapunov stability principles, it is shown that
semi-globally uniformly bounded stability is guaranteed for all
controlled signals of the closed-loop system. The effectiveness of
the proposed controller as predicted by the theoretical analysis
is verified by comparative experimental studies.

Index Terms—Adaptive neural network control, multi-
manipulator collaborative control, distubance observer, input
saturation, robot.

I. INTRODUCTION

IN three-dimensional task space, compared with a single ma-
nipulator, cooperative multiple manipulators (CMM) have

more conspicuous advantages in the carriage of heavy objects,
the assembly of intricate parts, and the interaction between
people and robots [1]–[3]. In recent years, CMM, rather than
a single manipulator, have been more widely employed in
service robots and industrial robots market, because CMM
possess the ability of greater flexibility, higher reliability, and
larger payload capacity to accomplish more complex industrial
tasks. Simultaneously, great progress has been made in the
nonlinear intelligent control algorithms [4]–[12]. However,
there still exist a sequence of crucial issues about CMM
that need to be pondered. For example, if position errors are
relatively large, huge internal forces may be produced that can
damage handled objects or manipulators themselves.
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Due to the size and the weight of large objects, some
closed-chain tasks may have to be accomplished through a
multi-manipulator system. Therefore, the design of an effective
multi-manipulator cooperative control strategy is of great
significance in the industry. However, in comparison with
a single robot system, multi-manipulator robots have great
differences in the solution of the kinematics and the analysis
of the dynamic model [13]. In [14]–[16], the authors put
forward methods for trajectory tracking of end effectors and
the relationship of interaction forces. The interaction between
the payload and the manipulators is usually described by
an impedance model in [17]–[19]. To tackle the motion and
force problems, a decentralized coordination control scheme is
suggested in this paper. In a decentralized control architecture
[20], each manipulator is controlled independently by its
own controller. The decentralized control scheme has less
computation cost. The control laws for all the manipulators
can be the same, while no communication is needed between
them.

For a robot manufacturer, kinematic parameters of robots
can innately be known, but there exist the problems of unavail-
able external disturbances and uncertainties in the dynamic
model of a robot system [21]–[24]. Unlike traditional methods,
artificial intelligence based control methods have the advan-
tages of not requiring accurate models [25]–[29]. A method,
which can reduce the requirements of robotic manipulator
parameters, was taken into account in the feedback control
presented in [30]–[35]. In [36]–[39], NN controllers by full
state feedback were adopted to achieve trajectory-tracking con-
trol of manipulators with unknown dynamic parameters. These
efforts were complemented by an adaptive NN control strategy
implemented in [40]–[42], to compensate the uncertainties
generated by the external environment, the interaction between
manipulators and objects, and the inexactness in dynamic
parameters of the manipulators. Compared with other NN
control methods, RBFNN is a local approximation network
and has no local minimum problem [43]. Consequently, it
performs better in approximating the unknown model.

All actuators have an upper bound of torque. When it is
reached, non-linear saturation of the motor can affect the
instantaneous performance of the system, resulting in its
instability [44]–[46]. Input saturation in a multi-manipulator
robot system cannot be neglected in controller design. A
second key question is how to deal with input saturation
in CMM, to ensure that the joint angles track the desired
trajectory in a reasonable space. Various approaches have been
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suggested in connection with input saturation. In [47], with
regard to uncertainties in robotic systems and the potential
actuator saturation, the authors proposed a saturated adaptive
robust control strategy. In [48], Nussbaum function was rec-
ommended to make up for the non-linear term generated by the
input saturation and external disturbance, which did not require
assumptions on uncertain parameters within a known compact
set. In [49] and [50], an adaptive fuzzy control method was
proposed for a class of uncertain nonstrict-feedback systems
with input saturation and output constraints while this paper
proposed an adaptive RBFNN technique.

External disturbances in the environment may introduce un-
certainties to manipulators that may cause large tracking errors
and threaten the safety of the robotic manipulators and the
surrounding people [51]–[53]. So a third key question is how
to design a disturbance observer and simultaneously guarantee
the stability of the system [54]–[57]. In [58], adaptive fuzzy
controllers by state feedback and output feedback combining
with fuzzy approximation and disturbance observers have
been presented to estimate existing uncertainties of dynamic
parameters, unknown input saturation, and unknown external
disturbances. An innovative control method that combines
human-operated control and robot automatic control was pro-
posed in [59]. Nevertheless, the approaches briefly reviewed
above find it hard to compensate for all uncertainties. In [60]–
[62], a nonlinear disturbance-observer-based control approach
is proposed to improve the robust performance for a nonlinear
system. The present work is motivated by this fact. To neu-
tralize the uncertainties discussed, RBFNN controllers with
parameter adaptation mechanisms and disturbance observers
that provide information on torque inputs are inserted into the
system via feed-forward loops.

There are numerous methods for stability analysis of NNs
described in the literature, e.g. [63]–[66]. In this particular
paper, through the Lyapunov stability analysis, it is ascertained
that the stability of the multi-manipulator robot system is
guaranteed and the boundedness of the system state variables
is achieved by choosing appropriate control gains, especially
tracking errors of link angles which converges to little neigh-
borhoods in input saturation defined by authors.

This manuscript is arranged as follows. N -link non-linear
CMM system dynamic model used in this study is demon-
strated in Section II. The control design and the stability proof
via Lyapunov stability theorem are discussed in Section III.
A series of control experiments are presented. The feasibility
and the effectiveness of the proposed controllers are verified
in Section IV by a comparative study with PID control and
NN control with the rigid manipulator model. At the end of
the paper, in Section V, we summarize the research results.

II. PRELIMINARIES AND PROBLEM FORMULATION

A multi-manipulator robot grasping a normal object is
proposed to implement a special task as shown in Fig. 1.

A. Problem Formulation

1) Kinematics of system: We can define the kinematic
description of an end effector qb = [q(p), q(o)] ∈ RNo , where

q(p) and q(o) present the position and the orientation with
regard to the reference coordinate system, respectively and
No is the degree of freedom (DOF) of the object [67]. The
forward kinematics function Φi converts the joint angle qmi

to the description of position and orientation qb, so we can get
the forward kinematics

qb = Φi(qmi
). (1)

where the number of manipulators i = 1, 2, . . . , r. Differenti-
ating (1) with respect to time, we can get derivatives of qb

q̇b = Φ̇i(qmi
) = JΦi

(qmi
)q̇mi

(2)

q̈b = J̇Φi(qmi)q̇mi + JΦi(qmi)q̈mi (3)

where JΦi
represents the Jacobian matrix, q̇mi

∈ RNi and
q̈mi
∈ RNi represent joint velocity and joint acceleration of

the ith manipulator and Ni is DOF of the ith manipulator.

Fig. 1: A multi-manipulator robot grabbing movement along
the reference trajectory.

2) Dynamics of system: The dynamic equation of the ith
manipulator [68] in the joint space is given as

Mmi(qmi)q̈mi + Cmi(qmi , q̇mi)q̇mi +Gmi(qmi) =

Sat(τi)− fdisi + JTei(qmi)Fei , i = 1, 2, . . . , r (4)

where Mmi(qmi) ∈ RNi×Ni , Cmi(qmi , q̇mi)q̇mi ∈ RNi , and
Gmi(qmi) ∈ RNi are the inertia matrix, the Centripetal and
Corilis force, and the gravitational force vector of the ith
robotic manipulator, respectively. Jei denotes Jacobian matrix
of the ith robotic manipulator. τi and Fei represent the joint
torque vector and the force applied to the end effector. Sat(τi)
denotes the joint torque vector with input saturation. Sat(τi)
can be described as

Sat(τi) =

{
Smaxsign(τi) |τi| ≥ Smax

τi |τi| < Smax.
(5)

The dynamic equation of the grasped object [69] is

Mb(qb)q̈b + Cb(qb, q̇b)q̇b +Gb(qb) = Fb (6)

where Mb(qb), Cb(qb, q̇b)q̇b and Gb(qb) are the inertia matrix,
the Centripetal and Corilis force, and the gravitational force
vector of the grasped object, respectively. Fb is the resultant
force applied on the center of gravity of the object. Fb can be
formed from

Fb = −
r∑
i=1

Fbei , Fbei = JTbei(qb)Fei , Fbei = fIi + fEi (7)
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where Fbei represents the counterforce exerted by an ob-
ject to the end effector of the ith robotic manipulator and
consists of an interal force fIi and an external force fEi ,
and internal forces offset each other

∑r
i=1 fIi = 0. The

relationship among JΦi
(qmi

), Jei(qmi
) and Jbei(qb) is showed

as Jei(qmi
) = Jbei(qb)JΦi

(qmi
). Combining (6) and (7), the

dynamic equation of the object becomes

Mb(qb)q̈b + Cb(qb, q̇b)q̇b +Gb(qb) = −
r∑
i=1

fEi
. (8)

Therefore, we have

fEi
= −Qi(t)

(
Mb(qb)q̈b + Cb(qb, q̇b)q̇b +Gb(qb)

)
(9)

where Qi ∈ RNo×No is the load distribution diagonal matrix
meeting

∑r
i=1Qi = I . So taking (2), (3) and (9) into Fbei in

(7) yields

Fbei =−Qi(t)
(
Mb(qb)

(
J̇Φi

(qmi
)q̇mi

+ JΦi
(qmi

)q̈mi

)
+ Cb(qb, q̇b)JΦi

(qmi
)q̇mi

+Gb(qb)
)

+ fIi . (10)

Combining the relationship between the Jacobian matrices
and (10) yields

JTei(qmi
)Fei =JTΦi

(qmi
)JTbei(qb)Fei

=JTΦi
(qmi

)Fbei

=−Qi(t)JTΦi
(qmi)

[
Mb(qb)

(
J̇Φi(qmi)q̇mi

+ JΦi
(qmi

)q̈mi

)
+ Cb(qb, q̇b)JΦi

(qmi
)q̇mi

+Gb(qb)
]

+ JTΦi
(qmi)fIi . (11)

Then substituting (11) into (4), we have

Sat(τi) =
[
Mmi(qmi) +Qi(t)J

T
Φi

(qmi)Mb(qb)JΦi(qmi)
]
q̈mi

+
[
Cmi

(qmi
, q̇mi

) +Qi(t)J
T
Φi

(qmi
)
(
Mb(qb)

× J̇Φi
(qmi

) + Cb(qb, q̇b)JΦi
(qmi

)
)]
q̇mi

+
[
Gmi(qmi) +Qi(t)J

T
Φi

(qmi)Gb(qb)
]

− JTΦi
(qmi

)fIi + fdisi . (12)

The cooperative dynamic equation of the robot and the object
is rewritten as

Mci(qmi
)q̈mi

+ Cci(qmi
, q̇mi

)q̇mi
+Gci(qmi

)

+fdisi − JTΦi
(qmi

)fIi = Sat(τi) (13)

where Mci = Mmi
+QiJ

T
Φi
MbJΦi

, Cci = Cmi
+QiJ

T
Φi

(
Mb

× J̇Φi
+ CbJΦi

)
, Gci = Gmi

+QiJ
T
Φi
Gb.

B. Assumptions and Properties

Assumption 1: [70] When the object is grasped by the
arms, there exists no relative movement between the end
effector and the object.

Assumption 2: [70] The object does not deform obviously
due to the force exerted by the arms.

Assumption 3: [68] The disturbance fdisi(t) is assumed
to be continuous because it can be largely attributed to
the exogenous effects; fdisi(t) has finite energy and meets
‖ fdisi(t) ‖≤ fM , where fM is an unknown positive constant.

Property 1: [71] The matrix Ṁci(qmi)−2Cci(qmi , q̇mi)−
Q̇i(t)J

T
Φi

(qmi
)Mb(qb)JΦi

(qmi
) is skew-symmetric.

∀ν ∈ RNi , νT {Ṁci(qmi
)− 2Cci(qmi

, q̇mi
)}

−{Q̇i(t)JTΦi
(qmi

)Mb(qb)JΦi
(qmi

)}ν = 0

Property 2: The matrix Q̇i(t)J
T
Φi

(qmi
)Mb(qb)JΦi

(qmi
) is

bounded and uniformly continuous and meets the inequality
[70]:

‖ Q̇i(t)JTΦi
(qmi

)Mb(qb)JΦi
(qmi

) ‖≤ 2η,∀t ≥ 0, (14)

where η is a positive constant.
Lemma 1: [58] Consider the continuous and differentiable

bounded function φ(t), ∀t ∈ [t1, t2], if φ(t) satisfies ‖φ(t)‖ ≤
ι where ι is a positive constant, then φ̇(t) is bounded.

C. Radial Basis Function Neural Networks
Consider using RBFNNs to estimate a continuous function
F(Zi) : Rω → R [68],

F(Zi) = W ∗Ti Si(Zi) + εi(Zi), ∀Zi ∈ ΩZi (15)

where W ∗i = [w1, w2, . . . , wh]T ∈ Rh is the ideal RBFNN
weight vector, h > 1 is the node number of RBFNN, Zi =
[z1, z2, . . . , zω]T ∈ ΩZ ⊂ Rω is the input vector, and εi(Z) is
the bounded approximation error. Gaussian function is often
selected as basis function

si(Zi) = exp[
−(Zi − µi)T (Zi − µi)

ζ2
i

] (16)

where µi = [µi1, µi2, . . . , µiω]T is the center of given domain
and ζi is the width of the Gaussian basis function. W ∗i is
considered as Wi which minimizes |εi| for all Zi

W ∗i = arg min
Wi∈Rh

{ sup
Zi∈ΩZi

|Fi(Zi)−WT
i Si(Zi)|}. (17)

III. CONTROL DESIGN

A. Model-Based Control Design
Defining x1i = qmi and x2i = q̇mi and considering (13),

we have the description of the cooperative dynamics as

ẋ1i =x2i (18)

ẋ2i
=M−1

ci (x1i
)[Sat(τi) + JTΦi

(x1i
)fIi − Cci(x1i

, x2i
)x2i

−Gci(x1i
)− fdisi ]. (19)

The position tacking error is expressed as z1i
(t) = x1i

(t)−
xdi(t) and ż1i

(t) = x2i
(t) − ẋdi(t). We lead into a virtual

control α1i
(t) and define a virtual error as z2i

(t) = x2i
(t)−

α1i(t)

α1i = −K1iz1i + ẋdi (20)

where the gain matrix K1i
= KT

1i
> 0, and we have

ż1i
= z2i

+ α1i
− ẋdi = z2i

−K1i
z1i
. (21)

According to (21), differentiating z2i
with respect to time,

we have

ż2i
=M−1

ci (x1i
)[Sat(τi) + JTΦi

(x1i
)fIi − Cci(x1i

, x2i
)x2i

−Gci(x1i
)− fdisi ]− α̇1i

(t). (22)
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The design of the disturbance observer consists of the
following steps: 1) define a compounded disturbance, 2) define
an auxiliary variable, 3) get the estimate of the auxiliary
variable, 4) get the estimate of the disturbance.

We define a compounded function of disturbances as fol-
lowing

Di(t) = ∆τi − fdisi (23)

where the difference between the nominal input and the actual
input is ∆τi = Sat(τi) − τi. Therefore, we can rewrite (22)
as

ż2i
=M−1

ci (x1i
)[τi + JTΦi

(x1i
)fIi − Cci(x1i

, x2i
)x2i

−Gci(x1i
) +Di(t)]− α̇1i

(t) (24)

where ‖ Ḋi(t) ‖≤ β, and β is an unknown positive constant
[58]. In order to design a nonlinear disturbance observer to
estimate unknown variable Di(t), an auxiliary function is
introduced as following:

z3i
= Di(t)− Φ(z2i

) (25)

where a function vector Φ(z2i
) is to be proposed. According

to (24) and (25), we have the derivative of z3i
as

ż3i
=Ḋi(t)−Ki(z2i

)ż2i

=Ḋi(t) +Ki(z2i
)α̇1i

(t)−Ki(z2i
)M−1

ci (x1i
)[τi

+ JTΦi
(x1i)fIi − Cci(x1i , x2i)x2i −Gci(x1i)

+Di(t)] (26)

where Ki(z2i
) = (

∂Φ(z2i )

∂zT2i
) ∈ RNi×Ni is defined as the

disturbance gain. For simplification and easy implementation,
Φ(z2i) is chosen as a linear function with respect to z2i .
Then, we get that Ki(z2i

) is a constant easily. For getting
the estimate value of disturbance, we introduce the estimate
value of ż3i

[60] as

˙̂z3i
=−Ki(z2i

)M−1
ci (x1i

)[τi + JTΦi
(x1i

)fIi − Cci(x1i
, x2i

)x2i

−Gci(x1i) + D̂i(t)] +Ki(z2i)α̇1i(t). (27)

According to (25), we can have the estimate of disturbance
Di(t) as

D̂i(t) = ẑ3i + Φ(z2i). (28)

And it is easy to get

z̃3i
= ẑ3i

− z3i
= D̂i(t)−Di(t) = D̃i(t). (29)

Differentiating D̃i(t) with respect to time and considering (26)
and (27), we obtain

˙̃Di(t) = ˙̃z3i = ˙̂z3i − ż3i

=− Ḋi(t)−Ki(z2i
)M−1

ci (x1i
)D̃i(t). (30)

When Mci(x1i
), Cci(x1i

, x2i
), Gci(x1i

), and JTΦi
(x1i

)fIi
are known, we propose the model-based control as

τi =− z1i
−K2i

z2i
− JTΦi

(x1i
)fIi − D̂i(t) +Gci(x1i

)

+ Cci(x1i
, x2i

)α1i
(t) +Mci(x1i

)α̇1i
(t). (31)

where the gain matrix K2i
= KT

2i
> 0.

Theorem 1: For the dynamic of CMM described by (13),
the controller (31) guarantees that z1i , z2i and D̃i(t) are semi-
globally uniformly bounded. The tracking error z1i

will con-
verge to the compact sets Ωz1i := {z1i

εRNi | ||z1i
|| ≤
√
O1}

where O1 = 2(V2(0) + C1)/ρ1i
. ρ1 and C1 are two positive

constants.
Proof: We consider a Lyapunov function candidate as

V1i =
1

2
zT1i
z1i (32)

and taking its time derivative, we have

V̇1i = −zT1i
K1iz1i + zT1i

z2i . (33)

Then we have the Lyapunov function candidate as

V2i
= V1i

+
1

2
zT2i
Mci(x1i

)z2i
+

1

2
D̃T
i (t)D̃i(t). (34)

Combining (24) and (33) and differentiating (34) with respect
to time yields

V̇2i
=− zT1i

K1i
z1i

+ zT1i
z2i

+
1

2
zT2i
Ṁci(x1i

)z2i
+ zT2i

[τi

+ JTΦi
(x1i

)fIi − Cci(x1i
, x2i

)x2i
−Gci(x1i

) +Di(t)

−Mci(x1i)α̇1i(t)] + D̃i(t)
T ˙̃Di(t). (35)

we know that 1
2z
T
2i
{Ṁci(qmi

) − 2Cci(qmi
, q̇mi

)}z2i
=

1
2z
T
2i
{Q̇i(t)JTΦi

(qmi
)Mb(qb)JΦi

(qmi
)}z2i

and substituting it
into (35) leads to

V̇2i =− zT1i
K1iz1i + zT1i

z2i +
1

2
zT2i
Q̇i(t)J

T
Φi

(qmi
)Mb(qb)

× JΦi(qmi)z2i + zT2i
[τi + JTΦi

(x1i)fIi

− Cci(x1i , x2i)α1i −Gci(x1i) +Di(t)

−Mci(x1i
)α̇1i

(t)] + D̃T
i (t) ˙̃Di(t). (36)

Because of ‖ Q̇i(t)JTΦi
(qmi

)Mb(qb)JΦi
(qmi

) ‖≤ 2η, ∀t ≥ 0,
where η is a positive constant, thus we can get

V̇2i ≤− zT1i
K1iz1i + zT1i

z2i + ηzT2i
z2i + zT2i

[τi + JTΦi
(x1i)fIi

− Cci(x1i , x2i)α1i −Gci(x1i) +Di(t)

−Mci(x1i
)α̇1i

(t)] + D̃T
i (t)[−Ḋi(t)

−Ki(z2i
)M−1

ci (x1i
)D̃i(t)]. (37)

Substituting (31) into (37), we have

V̇2i
≤− zT1i

K1i
z1i
− zT2i

(K2i
− ηI − 1

2
I)z2i − D̃T

i (t)

× (Ki(z2i)M
−1
ci (x1i)− I)D̃i(t) +

1

2
‖ Ḋi(t) ‖2

≤ −ρ1iV2i + C1i . (38)

where

ρ1i = min
(
2λmin(K1i),

2λmin(K2i − ηI − 1
2I)

λmax(Mci(x1i
))

,

2λmin(Ki(z2i)M
−1
ci (x1i)− I)

)
,

C1i
=

1

2
β2 (39)

with λmin(•) and λmax(•) defined as the minimum and
maximum eigenvalues of matrix •, respectively. For ensuring
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ρ1i
> 0, the system parameters must be chosen to satisfy the

following conditions:

λmin(K1i
) > 0, λmin(K2i

− ηI − 1

2
I) > 0,

λmin(Ki(z2i)M
−1
ci (x1i)− I) > 0. (40)

Then, considering the Lyapunov function candidate V2 =∑r
i=1 V2i

and the property of the internal forces, we can get

V̇2 ≤−
r∑
i=1

ρ1i
V2i

+

r∑
i=1

C1i

≤− ρ1V2 + C1 (41)

where ρ1 = min1≤i≤r(ρ1i
), C1 =

∑r
i=1 C1i

.
From the above analysis, it is straightforward to show that

the signals z1i , z2i and D̃i(t) are semiglobally uniformly
bounded. Thus, according to the boundedness of xdi , we can
consider that x1i

is bounded. Since ẋdi is bounded as well
and α1i

is bounded, x2i
is bounded, too. For completeness,

the details of the proof are provided here.
Multiplying (41) by eρ1t yields

d

dt
(V2e

ρ1t) ≤ C1e
ρ1t. (42)

Integrating above the inequality, we have

V2 ≤
(
V2(0)− C1

ρ1

)
e−ρ1t +

C1

ρ1
≤ V2(0) +

C1

ρ1
. (43)

Then, because V2 =
∑r
i=1 V2i , V2i ≤ V2, we have

1

2
‖ z1i

‖2≤ V2(0) +
C1

ρ1
=

1

2
O1. (44)

Therefore, z1i converges to a small range Ωz1i . Bounds for
z2i

and D̃i(t) can be proved similarly and what we presented
above is the conclusion of Proof.

B. Adaptive Neural Network Control Design

Since uncertainties exist in Mci(x1i), Cci(x1i , x2i),
Gci(x1i), JTΦi

(x1i)fIi , the model-based control design may
not be realizable because of uncertainties. To overcome these
challenges, a controller based on RBFNN is utilized to ap-
proximate the uncertainties and improve the performance of
the system via the online estimation. For using this method,
we need to divide the actual value Mci(x1i) into two parts.
One is the virtual part which we denote as Mvi(x1i), the other
is the uncertain part represented as ∆Mi(x1i

) = Mci(x1i
)−

Mvi(x1i
). Similarly, we choose the virtual part Cvi(x1i

, x2i
)

so that Ṁvi(x1i
) − 2Cvi(x1i

, x2i
) is skew symmetric and

∆Ci(x1i , x2i) = Cci(x1i , x2i) − Cvi(x1i , x2i). We propose
the controller as follows

τi =− z1i −K2iz2i − D̂i(t) + Cvi(x1i , x2i)α1i

+ ŴT
i Si(Zi) (45)

where Ŵi is the weight of RBFNN and Si(Zi) is the
basis function of RBFNN. ŴT

i S(Zi) is used to estimate

W ∗Ti Si(Zi) and W ∗Ti Si(Zi) is defined as

W ∗Ti Si(Zi) =∆Cci(x1i , x2i)x2i + ∆Mci(x1i)ż2i

+Mci(x1i
)α̇1i

− JTΦi
(x1i

)fIi +Gci(x1i
)

− εi(Zi) (46)

where Zi = [x1i
, x2i

, ż2i
, α̇1i

]T is the input variable of
RBFNN and εi(Zi) is the approximation error of RBFNN.
The adaptive law is proposed as

˙̂
Wi = −Γi[Si(Zi)z2i

+ σiŴj,i] (47)

where Γi is a constant gain matrix and σi > 0 is a small
positive constant. Therefore, on the basis of (46), (24) is
redefined as follows

Mvi(x1i
)ż2i

=τi − Cvi(x1i
, x2i

)x2i
−W ∗Ti Si(Zi)

− εi(Zi) +Di(t). (48)

The auxiliary function is the same as one of the model-based
control. Similarly, it can be obtained that

ż3i
=Ḋi(t)−Ki(z2i

)ż2i

=Ḋi(t)−Ki(z2i)M
−1
vi (x1i)[τi − Cvi(x1i , x2i)x2i

−W ∗Ti Si(Zi)− εi(Zi) +Di(t)]. (49)

For getting the estimate value of disturbances, the estimate
value of ż3i

is given as

˙̂z3i
=−Ki(z2i

)M−1
vi (x1i

)(τi − Cvi(x1i
, x2i

)x2i

+ D̂i(t)). (50)

Thus, it is easy to get that

z̃3i
= ẑ3i

− z3i
= D̂i(t)−Di(t) = D̃i(t). (51)

According to (49) and (50), differentiating D̃i(t) with respect
to time, it is got that

˙̃Di(t) =− Ḋi(t)−Ki(z2i
)M−1

vi (x1i
)[W ∗Ti Si(Zi)

+ εi(Zi) + D̃i(t)]. (52)

Theorem 2: For the dynamic of CMM described by (13),
the controller (45) with the adaptive law (47) guarantees that
z1i , z2i , D̃i(t), W̃i are semi-globally uniformly bounded. The
error signals z1i

will converge to the compact sets Ωz1i :=

{z1iεR
Ni | ||z1i || ≤

√
O2} where O2 = 2(V3(0) +C2/ρ2). ρ2

and C2 are two positive constants.

Proof: the Lyapunov function is proposed by us as

V3i
=

1

2
zT1i
z1i

+
1

2
zT2i
Mvi(x1i

)z2i
+

1

2
D̃T
i (t)D̃i(t)

+
1

2

n∑
j=1

W̃T
j,iΓ
−1
i W̃j,i (53)

where W̃j,i = Ŵj,i −W ∗j,i, and W̃j,i, Ŵj,i and W ∗j,i are the
RBFNN weight error, estimate and actual value, respectively.
Differenting V3i

with respect to time and substituting (48) into
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V̇3i
, we can get

V̇3i
≤− zT1i

K1i
z1i

+ zT1i
z2i

+ zT2i
[τi − Cvi(x1i

, x2i
)α1i

−W ∗Ti Si(Z)− εi(Zi) +Di(t)] + D̃T
i (t) ˙̃Di(t)

+

n∑
j=1

W̃T
j,iΓ
−1
i

˙̂
Wi. (54)

Then, substituting the controller (45), adaptive law (47) and
(52) into (54), we can obtain

V̇3i ≤− zT1i
K1iz1i − zT2i

K2iz2i − zT2i
D̃i(t)− D̃T

i (t)Ḋi(t)

− D̃T
i (t)Ki(z2i

)M−1
vi (x1i

)[W ∗Ti Si(Zi) + εi(Zi)

+ D̃i(t)]− zT2i
εi(Zi)−

n∑
j=1

W̃T
j,iσiŴj,i (55)

Applying the Young’s inequality, it will be easy to get

−
n∑
j=1

W̃T
j,iσiŴj,i ≤

n∑
j=1

σi
2

(‖W ∗j,i ‖2 − ‖ W̃j,i ‖2). (56)

Further, subistituting (56) into (55), we obtain

V̇3i
≤− zT1i

K1i
z1i
− zT2i

(K2i
− I)z2i

+ ‖ ε(Zi) ‖2 +
1

2
β2

− D̃T
i (t)[Ki(z2i)M

−1
vi (x1i)− (‖ Ki(z2i)M

−1
b (x1i) ‖2

+ 1)I]D̃i(t) +

n∑
j=1

σi+ ‖ Sj,i(Zi) ‖2

2
‖W ∗j,i ‖2

−
n∑
j=1

σi
2
‖ W̃j,i ‖2 . (57)

And because we have ‖ Sj,i(Z) ‖≤ sj , where the joint
number j = 1, 2, . . . , n, sj > 0 [72]. V̇3i

is shown as follow

V̇3i
≤− zT1i

K1i
z1i
− zT2i

(K2i
− I)z2i

+ ‖ εi(Zi) ‖2

− D̃T
i (t)[Ki(z2i)M

−1
vi (x1i)− (‖ Ki(z2i)

×M−1
b (x1i

) ‖2 +1)I]D̃i(t) +
1

2
β2

+

n∑
j=1

σi + s2
j

2
‖W ∗j,i ‖2 −

n∑
j=1

σi
2
‖ W̃j,i ‖2

≤ −ρ2i
V3i

+ C2i
(58)

where

ρ2i
= min

(
2λmin(K1i

),
2λmin(K2i

− I)

λmax(Mci(x1i
))
, 2λmin(Ki(z2i

)

×M−1
vi (x1i

)− (‖ Ki(z2i
)M−1

vi (x1i
) ‖2 +1)I),

min(
σi

λmax(Γ−1
i )

)
)

C2i
= ‖ εi(Zi) ‖2 +

1

2
β2 +

n∑
i=1

σi + s2
i

2
‖W ∗i ‖2 . (59)

Then, considering the Lyapunov function candidate V3 =∑r
i=1 V3i

and the property of the internal forces, we can get

V̇3 ≤−
r∑
i=1

ρ2i
V3i

+

r∑
i=1

C2i

≤− ρ2V3 + C2 (60)

where ρ2 = min1≤i≤r(ρ2i
), C2 =

∑r
i=1 C2i

.
To ensure the closed-loop system stability, we have ρ2 > 0.

So the control parameters are chosen to satisfy the following
conditions:

λmin(K1i
) > 0, λmin(K2i

− I) > 0,

λmin(Ki(z2i
)M−1

vi (x1i
)− (‖ Ki(z2i

)M−1
vi (x1i

) ‖2

+1)I) > 0, λmin(σi) > 0. (61)
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Fig. 2: Full state feedback strategy of CMM.

From the above analysis and the proof of Theorem 1,
||z1i
|| ≤

√
O2. z1i

converges to a small range Ωz1i . z1i
,

z2i and D̃i(t) can be proved to be similarly semiglobally
uniformly bounded. z1i

, z2i
and D̃i(t) can converge to Ωz1i ,

Ωz2i , and ΩD̃i
. Because W ∗i are constants, we know that Ŵi

are also bounded. The full state feedback control strategy is
shown in Fig. 2.

IV. EXPERIMENTS

In this paper, a humanoid vertical 7-joint robot (Baxter)
based on ROS (Robotic Operating System) is utilized to build
a robot motion control platform. ROS is a robot development
environment integrating a variety of robot hardware drivers,
some common robot function modules, a unified program-
ming, compilation, and debugging environment. The proposed
Baxter robot control system consists of a master computer, a
slave computer, an embedded controller, drivers, and a grabbed
object.

Theoretical analysis has demonstrated that the proposed
RBFNN controller has a good control effect. Then we applied
the controller on the dual-arm cooperative robot (Baxter)
manufactured by Rethink Robotics and checked whether the
RBFNN controller can also get better results than the PID
controller in the real environment. We designed an experiment
to let the Baxter robot to hold a small basketball with dual arms
and move along a straight line under the proposed controller,
which was demonstrated in Fig. 3. That is, seven degrees of
freedom of the robot arm need to be controlled by the proposed
RBFNN control. In addition, a general PID controller is used
to achieve the same function. By observing the experimental
results of two different controllers, the theoretical derivation
is verified.

In this set of experiments, we used two computers to process
the data. One computer was used as the master controller
(connecting Baxter robots and slave controllers, controlling the
Baxter robot directly and transferring data from the controllers
and equipped with Linux operating system). Another computer
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acted as the slave controller (connecting the master controller,
efficiently processing data and assisting control, equipped
with Windows operating system). The entire control system
communication and components are shown in Fig. 4. Spline
interpolation is an interpolation method that is commonly used
in industrial design to obtain a smooth curve, and cubic spline
is a more widely used one. The path planning of the robotic
arm was finished by ROS MoveIt. A set of hundred pairs of
joint angles and their corresponding times were collected and
the cubic spline interpolation algorithm was used to interpolate
the acquired data. Through cubic spline interpolation, we
were able to get the planned joint trajectory, velocity and
acceleration.

Fig. 3: The demonstration of Baxter experimental results.

Due to the limited computing speed of computers, a master
computer and a slave computer were were connected to
each other via Ethernet. The transmission frequency and the
receiving frequency of master computer were set to real-time
and 200Hz, respectively. The full closed-loop servo frequency
was set to 250Hz. In order to obtain more considerable ex-
perimental contrasts, we set the same initial conditions for the
verification of both controllers. Under the initial conditions,
the small basketball was held by both arms from the begin-
ning. A decentralized adaptive RBFNN control combined with
disturbance observers is proposed to deal with the unknown
actuator input saturations in the dual arm robot system.

TABLE I: PARAMETERS USED FOR PID EXPERIMENT

Joints

PARM left arm right arm

KP KI KD KP KI KD

S0 35.0 4.0 4.0 17.7 0.01 3.1

S1 15.0 2.0 4.0 15.0 6.0 3.0

E0 14.0 0.2 3.0 18.0 1.5 3.1

E1 25.0 0.2 3.0 20.0 1.5 3.5

W0 50.0 0.2 2.5 18.7 1.0 5.2

W1 60.0 0.2 1.3 26.0 1.2 5.2

W2 5.1 0.1 2.5 10.3 0.1 2.1

Slave ComputerMaster Computer

WindowsLinux

Operating table

Working Space

Router

Rethink Baxter

Fig. 4: The entire control system communication and compo-
nents.

1) PID Control: In this section, a common PID controller
was used to control seven joints of the Baxter robot [73], [74],
so that the pose of the end-effector performed the desired
trajectory planning. Table I illustrated the PID parameters
corresponding to the seven joints of the left and right arms,
respectively. For joints (S0, S1, E0, E1, W0, W1 and W2),
PID parameters corresponded to KP , KI , KD.

The left and right two-arm experimental results of the PID
controller are shown in Fig. 5 and Fig. 6, respectively, where
the red, green and blue lines represent the actual, expected and
error values, respectively. Observing the experimental results
of the two arms, it can be obtained that the actual value of the
PID control can roughly follow the change of the expected
value, and the error value of most joints is also within a
reasonable range.

However, some joints still have large error values. The
tracking error exceeds 0.08 rad in some time segments. It
can be seen from Fig. 5(h) and Fig. 6(h) that the position
tracking of the end effector is not very satisfactory. In actual
applications, accurate positions of joints cannot be guaranteed.
At the same time, we can see from Fig. 7 that the left arm has
considerable torque fluctuations at E1 and S1 and the right arm
has considerable torque fluctuations at W2 and E1 under the
constraint of input saturation while others do not have. Each
joint of the Baxter robot has a peak torque specification which
is the maximum amount of torque that should be demanded
from (or experienced by) each joint. These are shown in Table
II. However, if the object being handled results in higher
torque levels, the actuators will saturate, resulting in additional
nonlinearities.

TABLE II: Peak Joint Torque Specifications of Baxter Joints
(Source: https://sdk.rethinkrobotics.com/wiki/Hardware Spec-
ifications)

Joint Peak Torque

S0, S1, E0, E1 50Nm

W0, W1, W2 15Nm

It is argued in this article that the proposed controller
can still achieve satisfied trajectory control despite saturation.
However, for the experimental evaluations, rather than design-
ing an experiment that requires higher torque levels than those
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specified in Table II, virtual saturation values of 2.0 Nm are
set for each joint. In this way, possible damage to Baxter will
be avoided.
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(d) Left joint E1
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(e) Left joint W0
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(f) Left joint W1
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(g) Left joint W2

X/m

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Y/m

−1.0

−0.5

0.0

0.5

1.0

Z/m

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Left endpoint position Actual value
Desired value

(h) Left endpoint position

Fig. 5: The experimental results for the seven joints of the left
arm under PID control.

The torque value obtained by the PID controller is relatively
large and it is easy to achieve input saturation. Therefore, a
better control method needs to be sought. In addition to image
contrast, the mean square error (MSE) was used to compare
controllers. It is defined as follows:

Ec(k) =
1

n

n∑
k=1

[Yd(k)− Yp(k)]2 (62)

where Yd(k) and Yp(k) denotes output of desired and actual
plant. [75]–[77].
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(b) Right joint S1
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(c) Right joint E0
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(f) Right joint W1
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X/m

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Y/m

−1.0

−0.5

0.0

0.5

1.0

Z/m

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Right endpoint position Actual value
Desired value

(h) Right endpoint position

Fig. 6: The experimental results for the seven joints of the
right arm under PID control.

TABLE III: PARAMETERS USED FOR RBFNN EXPERI-
MENT

Joints

PARM left arm right arm

K1 K2 K1 K2

S0 20.6 12.1 17.7 5.1

S1 20.0 8.5 15 18

E0 22.0 4.0 18.0 4.1

E1 20.3 5.1 22.0 4.5

W0 17.7 3.1 16.7 4.2

W1 30.0 2.8 26.0 3.5

W2 15.7 4.2 10.3 2.1
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2) Neural Network Cooperative Control Based on Distur-
bance Observer: There are seven groups of RBFNN param-
eters, which match the seven joints of Baxter’s left limb and
right limb. In the theoretical part, we proposed the RBFNN
dual-arm cooperative controller with disturbance observers
and considered the input saturation problem, and verified it
by using the Lyapunov method. In this part, we applied the
proposed controller on Baxter to verify the controller. For its
control effect, we used ROS MoveIt to plan the trajectory for
all joints of the arms, and then obtained the expected values
for each joint.

Next, we used the cubic spline difference algorithm to
obtain smooth position and velocity expectations. Through
experiments, we obtained the left and right arm controller
gains K1 and K2 as shown in Table III.

0 1 2 3 4 5 6 7
Time/s

−2

−1

0

1

2

P
ar

ti
al

 T
or

q
u
e/

N
m

Left arm torques

Joint E1
Joint S1
Limit value

(a) Left arm torques

0 1 2 3 4 5 6 7
Time/s

−2

−1

0

1

2

P
ar

ti
al

 T
or

q
u
e/

N
m

Right arm torques

Joint W2
Joint E1
Limit value

(b) Right arm torques

Fig. 7: The input torques for the dual arms under PID control.

As for the gains of the RBFNN, σ is chosen as σ = 0.002,
the number of RBFNN nodes are 73, and the adaptive gain
matrix is chosen as a diagonal matrix Γ = 500INode, where
Node = 73. The disturbance gain is chosen as 19.5. The
control performance of the proposed controller (45) is shown
in Fig. 8 and Fig. 9, in which the red, green and blue lines
respectively represent the actual value, the expected value,
and the error value. From the perspective of the joint angle
tracking, under the action of the controller, it can be seen
that the actual value of the joint can follow the expected joint
value well, and the joint error value is constrained to a small
zero field. From Fig. 8(h) and Fig. 9(h), it can be seen that
the position of the end effector is basically consistent with the
desired trajectory, and a good control effect is achieved during
the grasping. From Fig. 10, it can be also seen that the joint

torque variation is not too large and does not reach the peak
torque of the joint.
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Fig. 8: The experimental results for the seven joints of the left
arm under RBFNN control.

A. The Conclusion of Experiments

Through the analysis of the above two experimental results,
it can be concluded that compared with the PID controller,
robotic systems under RBFNN controller showed better track-
ing performances in the joint and task space. The joint torque
also has a better performance. The proposed controller results
in a more accurate control and compensates for the errors
caused by the unknown model and external disturbances of
the Baxter robot during operation. Furthermore, the average
MSE obtained with different control methods when the control
program is run for 100 iterations are shown in Table IV.
From the table, it can be seen that average MSE obtained
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with proposed RBFNN controller is smaller when compared
to MSE obtained when the PID controller is used.
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Fig. 9: The experimental results for the seven joints of the
right arm under RBFNN control.

V. CONCLUSION

In this paper, the state feedback controllers that combine
RBFNN approximation and disturbance observers are de-
veloped to alleviate the problems of the unknown dynamic
model of coordinated multiple robotic manipulators under
the influence of unknown disturbances. Simultaneously, an
adaptive RBFNN controller is used to deal with the problem of
the saturation nonlinearity of the motor. Through the Lyapunov
stability analysis and experiments, the proposed controller is
proven to achieve semi-globally uniformly boundedness.

TABLE IV: Average MSE(m) obtained during the online
control (after 100 iterations)

Joints

controller left arm right arm

RBFNN PID RBFNN PID

S0 0.00029483 0.00970988 0.05624237 0.00112485

S1 0.00018958 0.01251787 0.00122080 0.04465377

E0 0.00018969 0.00333228 0.00323846 0.01046209

E1 0.00836467 0.10418332 0.00835309 0.02018356

W0 0.00024106 0.00116844 0.00586101 0.00738964

W1 0.01180708 0.02355597 0.00800097 0.02730591

W2 0.00016269 0.01787146 0.00400777 0.00290976
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Fig. 10: The input torques for the dual arms under RBFNN
cooperative control.
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