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We report on the synthesis and characterization of a colloidal graphitic carbon nitride (g-C3N4)
system exhibiting complex memfractance behavior. The g-C3N4 colloid was prepared through ther-
mal polymerization of urea, followed by dispersion in deionized water. X-ray diffraction and scan-
ning electron microscopy confirmed the successful synthesis of g-C3N4. Electrical characterization
revealed non-pinched hysteresis loops in current-voltage curves, indicative of memristive behavior
with additional capacitive components. The device demonstrated stable resistive switching between
high (∼50 kΩ) and low (∼22 kΩ) impedance states over 500 cycles, as well as synaptic plasticity-like
conductance modulation. To capture these complex dynamics, we employed a generalized memfrac-
tance model that interpolates between memristive, memcapacitive, and second-order memristive
elements. This model, employing fractional-order derivatives, accurately fitted the experimental
data, revealing the device’s memory effects. The emergence of memfractance in this colloidal sys-
tem opens new avenues for neuromorphic computing and unconventional information processing
architectures, leveraging the unique properties of liquid-state memory devices.

I. INTRODUCTION

In the current Industry 4.0 paradigm, local distributed
processing and memory have become integral compo-
nents. Particularly, machine learning tasks such as nat-
ural language processing, classification, and time-series
processing rely on large memory and heavy processing
of information [1]. Conventional storage and process-
ing techniques are not energy-efficient, drawing a lot of
power to implement data-intensive applications, contra-
dicting the requirements of Internet of Things (IoT) edge
devices or battery-operated devices [2–4]. To effectively
operate these devices, new memory and computing tech-
nologies must be created and utilized. A new paradigm
that could offer unprecedented energy efficiency is that
of colloidal computing, which leverages the complexity
of physical configurations that can be accessed in a sus-
pension of nanoparticles within a liquid medium [5]. In-
teresting properties of colloids include learning [6, 7], in-
memory computing [8] and logic gating [9].

Memristive systems and devices have unique proper-
ties such as nonlinear dynamics and a history-dependent
response to inputs. Interestingly, memristors can nonlin-
early transform input signals even in the absence of tra-
ditional neuronal units. Researchers have proposed dy-
namic reservoirs based on these advantageous properties
using memristive systems and devices [10–12]. These de-
vices come in various forms with different current-voltage
characteristics, but they can be classified as a special
class of dynamical systems, as originally described by
Chua in 1971 [13] and extended by Chua and Kang in
1976 [14]. A typical representation of a current-driven
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memristor with time-invariant characteristics is as fol-
lows

v = R(w, i)i, (1)

dw

dt
= f(w, i), (2)

where t represents continuous time, v is the voltage, R is
the time-varying resistance, i is the current, and w is a
vector representing the internal state of the system. The
function f determines the evolution of the internal state
depending on the input current.
Several studies have explored the use case of mem-

ristors for storage [15–17], exploring the effects of the
resistive switching behavior of the materials for binary
data storage. Neuron-like synapses were also imple-
mented for neuromorphic computing [18–21]. More re-
cently, the concept of memristors has been extended to
include charge-dependent capacitors [22], inductors [23],
and fractors [24].
In this study, we implemented a colloidal-based mem-

fractor using graphitic carbon nitride (g-C3N4). The
choice of g-C3N4 is motivated by its excellent thermal
and chemical stability [25], as well as its well-documented
photochemical, photophysical properties [26], and opto-
electronic applications [27]. Colloids present an unpar-
alleled flexibility in materials and design [28]. Colloidal
approaches for memresistive systems can pave the way
for autonomous microrobots capable of sensing, memory
storage, and actuation at the micrometer scale [29].
Our results demonstrate the successful implementation

of resistive switching in the colloidal suspension, enabling
the emulation of neuron-like synapses in the material. In-
terestingly, the voltage and current characteristics of the
colloidal suspension exhibit the linear combination of a
memcapacitor, a memristor, and a second-order mem-
ristor. This behavior, which we refer to as memfractor
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behavior, serves as the basis for our system model.

II. SYNTHESIS OF G-C3N4

Graphitic C3N4 (g-C3N4) was synthesized by adding
25 g of powdered urea inside a covered alumina crucible.
The sample was calcinated at 550 ◦C for 3 h at a heat-
ing rate of 28 °C/min. The as-prepared yellow g-C3N4

was then hand-milled using an agate mortar and pes-
tle [30–32]. A 1mgml−1 suspension of g-C3N4 in deion-
ized water (Millipore Milli-DI® Water Purification sys-
tem, 15MΩcm) was prepared and sonicated for 20min
using a DK Sonic Ultrasonic Cleaner at 40 kHz [33, 34].

III. CHARACTERIZATION

The crystal structure of the prepared sample was an-
alyzed using powder X-ray diffraction (PXRD) on a
Philips X-beam diffractometer using CuKα radiation
(λ = 0.154 nm). The surface structure of the samples
was examined by scanning electron microscopy (SEM,
Philips XL30 SERIES). Electrical characterizations were
conducted with the help of a Keithley 2450 sourcemeter
and two platinum/iridium coated stainless steel probes
(Spes Medica, Italy). All electrical measurements were
carried out at room temperature in the air.

IV. STRUCTURAL PROPERTIES

The diffraction pattern of the sample is presented in
Fig. 1. The XRD pattern confirms the presence of
a graphitic-like layered structure of C3N4 (JCPDS No.
87E1526). The observed peak at around 12.6◦ corre-
sponds to the in-plane packing motif of tri-s-triazine
units, as seen in graphite and illustrated in Fig. 2, and
is indexed as the (100) peak [35]. The peak at around
27.7◦ corresponds to the stacking of the conjugated aro-
matic system and is indexed as the (002) peak [36]. SEM
(scanning electron microscopy) analysis was performed
to assess the g-C3N4 nanosheets’ surface morphology and
microstructure details. As seen in Fig. 3 C3N4 nanosheets
are produced homogeneously, resulting in the usual lam-
inated structure[37, 38].

V. MEMFRACTANCE CURVES

Fig. 4a shows the current-voltage (I−V ) curve of the g-
C3N4 colloidal suspension under the sweeping DC voltage
of 0V → 5V → 0V → −5V at a 0.125V s−1, 0.25V s−1,
0.5V s−1, and 1V s−1 scan rates. The measured I − V
curves show a hysteresis loop that closes down as the
sweep rate increases, which is a fingerprint of a circuit
including an element with memory [39–41]. Also, the

FIG. 1: X-ray diffraction patterns of g-C3N4. The peaks
corresponding to (100) and (002) are marked. Adapted

from [34].
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FIG. 2: Tri-s-triazine structure of g-C3N4.

current peaks became larger, suggesting that an inhib-
ited charge transfer controlling electrode reactions had
taken place [42]. When a positive bias is applied to the
colloidal suspension, the current increases in a nonlinear
fashion, and the resistance state of the device is changed
from a high impedance state to a low impedance state,
known as a set operation. Conversely, when a negative
bias is applied to the suspension, a decrease in current
occurs and the resistance state is returned from the low
impedance value to the high impedance state, known as
a reset operation. This indicates that the device’s con-
ductivity can be modulated accordingly with a positive
or negative sweep bias, exhibiting a bipolar switching be-
havior. Under repeated measurements, the device’s ab-
solute current decreases as the number of sweep cycles in-
creases, as shown in Fig. 4b. The average hysteresis loop
over 500 cycles is also plotted in Fig. 4b showing that the
overall shape of the loop is retained over the cycles. The
consequence of these results is that the continuous de-
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FIG. 3: Scanning electron images of the g-C3N4

nanosheets

crease in current during the voltage bias sweep indicates
that the device resistance can effectively be controlled.

The endurance/stability performance of the device was
evaluated by implementing the sweeping voltage at a
readout voltage of + 0.5 V, as in Fig. 4c, showing that
the device can be operated stably and uniformly be-
tween high and low impedance states during set/reset
operation over 500 cycles. The histograms shown as
insets in Fig. 4c point out that the low (22 kΩ) and
high (50 kΩ) resistance values are stable over the cycles
with a rather low standard deviation. The results sug-
gest the possibility of using the colloidal device as resis-
tive random-access memory (RRAM) in complementary
applications (or substitute) complementary metal-oxide-
semiconductor (CMOS)-based memory circuits such as
static random-access memory (SRAM) [43].

The presence of a nonsymmetric hysteresis is possi-
ble due to the mechanisms of oxidation and reduction
present in the aqueous suspension of g-C3N4, that are
not symmetrical [44–46], in particular, it appears that
the mechanism of reduction (with an increase of OH–

ions) is more effective in increasing the ionic presence on
the dispersoids’ surface and reducing the electrical re-
sistance. These ions are introduced into the suspension
either electrochemically during forming or set/reset cy-
cles [47]. A possible reason for this is due to the band
structure of g-C3N4 and the platinum/iridium probes.

From literature, the work function of g-C3N4 is Φs ≈
4.5 eV [48] and bandgap is Eg ≈ 2.97 eV [49]; and the
work function of platinum/iridium is Φm ≈ 5.5 eV [50].
When the g-C3N4 nanoparticles contacts with the plat-
inum/iridium probe, the free electrons of g-C3N4 can
now transfer to the metal until the Fermi levels of the
two materials are aligned, leading to an interface elec-
tric field orienting from g-C3N4 to platinum/iridium as
shown. Being a n-type semiconductor,g-C3N4 has up-
ward band bending after contact with platinum/iridium.
By creating a Schottky barrier at the interface between
the graphitic carbon nitride nanoparticles and plat-
inum/iridium, the hydrogen production efficiency [51].
The band structure of the interface between the g-C3N4

nanoparticles and platinum/iridium probes is shown in

Fig. 5.
To investigate the neuromorphic computing capabil-

ities of our device, potentiation, and depression tests
were conducted to assess its artificial synapse capabili-
ties. Fig. 6 displays the measured conductance values
when 20 consecutive set and reset pulses were applied in
the suspension. It shows that the device can effectively
be potentiated (conductance gradually increases) and de-
pressed (conductance gradually decreases). To activate
the potentiation and depression features in the device,
the pulse amplitude was set to +5 V (set) and -5 V (re-
set), and the pulse width was set to 50ms. The conduc-
tance was measured using a +0.5 V pulse of 50 ms. The
results show that our device can emulate the potentiation
and depression features of a biological synapse.
Short-term plasticity of the biological synapse is a fun-

damental property of our neural system [52]. In this pro-
cess, Ca2+ ions enter the nerve terminals, trigger the
rapid release of neurotransmitters, and then induce a
short-lived increase in synaptic strength [53]. After the
enhancement, the Ca2+ ions return to resting levels, and
the spike returns to its resting potential. This process
can be emulated in the colloid, as shown in Fig. 7. After
approximately 3500 pulses (corresponding to a biological
stimulus) have been applied to the material, the conduc-
tance values decrease, reaching lower peak levels.

VI. MODELING OF THE MEMFRACTOR

As can be seen in the I − V curves shown in Figs. 4a
and 4b, the curves do not have the typical “pinched”
hysteresis loop of a classical memristor [13, 14]. Over
the years, research was done to extend the concept of
memristive systems to include charge-dependent induc-
tors, called meminductors [23, 54], and capacitors, called
memcapacitors [55–57]. However, if the device shows
a mixed response, encompassing the characteristics of
a memristor, a memcapacitor, and a meminductor, the
element behaves analogously as a so-called fractor [58],
where it exhibits fractional order impedance properties,
implementing a fractional calculus operation device re-
lating current and terminal voltage.
The concept of local fractional calculus (also called

fractal calculus), based on the Riemann-Liouville frac-
tional derivative [59–61], has been applied to solve non-
differentiable problems in engineering and machine learn-
ing [62–66]. The definition of the fractional derivative
and integral proposed in the literature is the so-called
Riemann-Liouville definition, which reads as follows:

Definition 1. Let f : R → R denote a continuous func-
tion. The fractional derivative of f of order α ∈ (0, 1) is
defined by

Dα
a f(t) =

1

Γ(1− α)

d

dt

∫ t

a

f(τ)

(t− τ)α
dτ, (3)

where Γ is the extended factorial function. Likewise, the
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(a) (c)

FIG. 4: (a) I − V curves from -5 to 5 V at a 0.125V s−1, 0.25V s−1, 0.5V s−1, and 1V s−1 scan rates. (b) Evolution
of the I − V curve in 500 cycles at a 0.125V s−1 scan rate, the inset shows the average of all cycles. (c) Endurance
test of the colloidal sample for 500 cycles, indicating the stability of the high/low impedance states with a readout
voltage of +0.5 V. The insets show the histogram of the data for high and low impedance states, indicating a low

standard deviation.
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FIG. 5: Bandstructure of a junction between g-C3N4

and platinum/iridium at equilibrium. The flow of
negative charges is shown to indicate the transfer

occurred during the Fermi level alignment.

fractional integral of order α is defined by

Iαa f(t) =
1

Γ(α)

∫ t

a

f(τ)

(t− τ)1−α
dτ. (4)

We also define D−α = Iα.

Remark. For simplicity of notation, we will denote Dα
0

as Dα.

Here, we will use the definition of a memfractor as
presented in [24]

Definition 2 (Memfractor). A memfractor with mem-
fractance Fα1,α2

M is defined as an element that satisfies

the following relationship:

Dα1ϕ(t) = Fα1,α2

M Dα2q(t), (5)

where α1 and α2 are arbitrary scalars in (0, 1), ϕ(t) =∫ t

0
v(τ) dτ is the flux linkage, and q(t) =

∫ t

0
i(τ) dτ is the

transferred charge at time t.

The memfractor, as defined above, follows the gener-
alized Ohm’s law, which was initially described in [24],
and is presented here for the sake of completeness.

Theorem 1 (Generalized Ohm’s Law). The voltage
across a memfractance element can be expressed as

v(t) = D1−α1
[
Fα1,α2

M Dα2−1i(t)
]
. (6)

The memfractance can be considered a linear combi-
nation of four memory elements, namely, a memristor, a
memcapacitor, a meminductor, and a second-order mem-
ristor, and it can be expressed as

Fα1,α2

M = aα1,α2C
−1
M +bα1,α2RM+cα1,α2LM+dα1,α2R2M ,

(7)
where CM is the memcapacitance, RM is the memris-
tance, LM is the meminductance, R2M is the second-
order memristance, and aα1,α2 , bα1,α2 , cα1,α2 , dα1,α2 are
coefficients that satisfy the following conditions:

1. α1 = 0∧ α2 = 0 =⇒ dα1,α2 = 1, aα1,α2 = bα1,α2 =
cα1,α2 = 0,

2. α1 = 0 ∧ α2 = 1 =⇒ cα1,α2
= 1, aα1,α2

= bα1,α2
=

dα1,α2
= 0,

3. α1 = 1 ∧ α2 = 0 =⇒ aα1,α2 = 1, bα1,α2 = cα1,α2 =
dα1,α2 = 0,

4. α1 = 1 ∧ α2 = 1 =⇒ bα1,α2
= 1, aα1,α2

= cα1,α2
=

dα1,α2
= 0.
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FIG. 6: Induced potentiation and depression of the conductance in the colloidal suspension using ±5V set and reset
pulses with 50ms of period. The conductance was estimated using a + 0.5V pulse of 50ms. The red dashed square

points out the similarity between the conductance waveform of a neuronal action potential.

Short-term Plasticity 

FIG. 7: Short-term plasticity of the conductance in the colloidal suspension using ±5V set and reset pulses with
50ms of period. The conductance was estimated using a ±0.5V pulse of 50ms.

Fundamentally, memcapacitance, meminductance,
memristance, and second-order memristors are charge-
dependent circuit elements whose values dynamically
change based on the amount of electric charge that has
flown through them, representing a paradigm shift in
electrical circuit theory by introducing memory effects
into passive components. Memcapacitors have a capaci-
tance that depends on the charge history, meminductors
have an inductance that depends on the current history,
memristors have a resistance that depends on the charge
history, and second-order memristors exhibit more com-
plex, higher-order dependencies on charge or flux linkage,
all of which can be mathematically described by relation-
ships involving charge, voltage, current, and their respec-

tive memory-dependent parameters [24, 67, 68]

C−1
M (t) = C−1

M0 + CM1σ(t), (8)

LM (t) = LM0 + LM1q(t), (9)

RM (t) = RM0 +RM1q(t) +RM2q(t)
2, (10)

R2M (t) = R2M0 +R2M1σ(t) +R2M2σ(t)
2, (11)

where {CMi, LMi, RMj , R2Mj}i=0,1;j=0,1,2 are scalar co-
efficients that are dependent on the problem and real-

ization of the memfractance and σ(t) =
∫ t

0
q(τ)dτ . The

initial charge is assumed to be q(0) = 0. In Fig. 8, the
relations between all variables and memory elements are
shown.
Using the measured current and voltage characteristics

of the colloidal suspension at a scan rate of 0.125V s−1

(as seen in Fig. 4b), we applied the memfractance model
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2ρ σ

qϕ

ϕ(t) =
t

0
v(t)dt

σ(t)=
t0
q(t)dtρ(

t)
=

t 0
ϕ(
t)
dt

q(t) =
t

0
i(t)dt

α1

α2

FIG. 8: Relations between a memristor, a second-order
memristor, a memcapacitor, and a meminductor. The

interpolated memfractor is also displayed.

as described in Eqs. (7) to (11) to fit the experimental
data. The fitting process yielded a set of parameters,
which are summarized in Table I. Also, the fitted model
is shown against the measured and averaged I −V curve
of 500 cycles in Fig. 9 and, as can be seen, the mem-
fractor model seems to capture the characteristics of the
voltammetry curves.

Interestingly, the analysis revealed that our device ex-
hibited an interpolated response that combines the char-
acteristics of a memristor, a second-order memristor, and
a memcapacitor. There was no indication of meminduc-
tive characteristics in the fitted model. This absence of
inductive behavior is consistent with previous observa-
tions of capacitive-like behavior in graphitic carbon ni-
tride (g-C3N4) materials [58, 69]. The capacitive nature
of g-C3N4 is believed to be linked to the transport of
ions in the colloidal suspension [70]. The movement and
accumulation of these ions at the electrode-suspension in-
terfaces can give rise to a dynamic, history-dependent ca-
pacitance, which is captured by the memcapacitive com-
ponent in our model.

Furthermore, the memristance values obtained from
our model fitting appear to closely follow the measured
values observed for the switching behavior of the de-
vice, as illustrated in Fig. 4c. This correlation suggests
that the memfractance model accurately captures the dy-
namic resistive switching behavior of our colloidal sus-
pension. The memristive and second-order memristive
components in the model likely represent the nonlinear,
hysteretic current-voltage characteristics often associated
with resistive switching phenomena. The presence of a
second-order memristive component is particularly in-
triguing. It indicates that the device’s memory effects
are not solely dependent on the charge or flux but on
their integrals [71, 72] and it has been seen on inductive
systems [73].

TABLE I: Estimated Parameters for the Memfractor

Parameter Fitted Value
α1, α2 0.69, 0.43
CM0, CM1 5.6, 3.25×103

LM0, LM1 0, 0
RM0, RM1, RM2 4.64 ×103, 9.96 ×103, 5 ×103

R2M0, R2M1, R2M2 0, 1.15 ×103, 9.96 ×102

FIG. 9: Comparison of fitted memfractor model against
the measured and averaged I − V curve of 500 cycles.

VII. CONCLUSIONS

In this work, we demonstrate the synthesis and char-
acterization of a graphitic carbon nitride (g-C3N4) col-
loidal suspension that exhibits unique memfractance be-
havior. Electrical measurements revealed that the mate-
rial exhibited resistive switching and conductance modu-
lation characteristics, with no pinched hysteresis current-
voltage curves. These characteristics could not be accu-
rately modeled by classical memristor theory. Instead,
the observed behavior was best captured by a general-
ized memfractance model that interpolates memristors,
memcapacitors, and second-order memristive elements.
The fitting of the experimental data enabled the extrac-
tion of the fractional orders and circuit parameters that
govern the complex device dynamics.

The emergence of memfractance in the g-C3N4 colloid
suggests potential applications in low-power neuromor-
phic computing and unconventional memory and data
processing architectures. As a colloid, the device’s na-
ture offers the potential for low-cost fabrication and high
adaptability to a multitude of environments, which could
facilitate its use in a variety of applications. This work
paves the way for further exploration of memfractance-
based reservoirs and liquid computing.
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Appendix: Proof of 1

Proof. First, let us prove that Dα
[∫ t

0
f(τ)dτ

]
=

Dα−1f(t). From the definition of the Riemann–Liouville
derivative

Dα

[∫ t

0

f(τ)dτ

]
1

Γ(1− α)

d

dt

∫ t

0

(t− τ)−α

∫ τ

0

f(ξ)dξdτ.

(A.1)
From Fubini’s theorem [74] we can write

1

Γ(1− α)

d

dt

∫ t

0

∫ τ

0

(t− τ)−αf(ξ)dξdτ, (A.2)

and invert the integration order so that

1

Γ(1− α)

d

dt

∫ t

0

f(ξ)

∫ τ

ξ

(t− τ)−αdτdξ. (A.3)

Solving first the integral over τ , we find

1

Γ(1− α)

d

dt

∫ t

0

f(ξ)
(t− ξ)1−α

1− α
dξ. (A.4)

Since Γ(z + 1) = zΓ(z)),

1

Γ(1− (α− 1))

d

dt

∫ t

0

f(ξ)(t− ξ)1−αdξ = Dα−1f(t).

(A.5)

From the properties of the fractional derivative and
the Riemann-Liouville integral, we have IαDαf(t) =
D0f(t) = f(t) (see [75] for more details) and are finally
able to write the generalized form of Ohm’s law

Dα1

[∫ t

0

v(τ)dτ

]
= Fα1,α2

M Dα2

[∫ t

0

i(τ)dτ

]
, (A.6)

Dα1−1v(t) = Fα1,α2

M Dα2−1i(t), (A.7)

Iα1−1
[
Dα1−1

]
v(t) = Iα1−1

[
Fα1,α2

M Dα2−1i(t)
]
. (A.8)

Since α1 ∈ (0, 1), we can write Iα1−1 as D1−α1 and

v(t) = D1−α1
[
Fα1,α2

M Dα2−1i(t)
]
, (A.9)

as we wanted to demonstrate. ■
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J.-O. Müller, R. Schlögl, and J. M. Carlsson, Journal of
Materials Chemistry 18, 4893 (2008).

[36] S. Mahzoon, S. M. Nowee, and M. Haghighi, Renewable
Energy 127, 433 (2018).

[37] S. Ghattavi and A. Nezamzadeh-Ejhieh, Composites Part
B: Engineering 183, 107712 (2020).

[38] S. Ghattavi and A. Nezamzadeh-Ejhieh, International
Journal of Hydrogen Energy 45, 24636 (2020).

[39] M. Gur, F. Akar, K. Orman, Y. Babacan, A. Yesil, and
F. Gul, Circuits, Systems, and Signal Processing 42, 6481
(2023).

[40] M. E. Fouda, A. S. Elwakil, and A. G. Radwan, Micro-
electronics Journal 46, 834 (2015).

[41] N. R. Kheirabadi, A. Chiolerio, N. Phillips, and
A. Adamatzky, Neurocomputing 557, 126710 (2023).

[42] T. Tsuruoka, I. Valov, C. Mannequin, T. Hasegawa,
R. Waser, and M. Aono, Japanese Journal of Applied
Physics 55, 06GJ09 (2016).

[43] S. Pal, V. Gupta, W. H. Ki, and A. Islam, IET Circuits,
Devices & Systems 13, 548 (2019).

[44] Z. Jin, N. Murakami, T. Tsubota, and T. Ohno, Applied
Catalysis B: Environmental 150–151, 479 (2014).

[45] M. A. Qamar, M. Javed, S. Shahid, M. Shariq, M. M.
Fadhali, S. K. Ali, and M. S. Khan, Heliyon 9, e12685
(2023).

[46] C. Li, X. Li, X. Zhang, X. Yang, L. Wang, and W. Lü,
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