
 

 

 
1. Introduction 

 
Generally, shells are curved structures which exhibit 

significant stiffness against forces and moments. Shells often 
used as the basic process component in various structural and 
engineering applications such as pressure vessels, military, 
aerospace and turbo machinery (Sofiyev, et al. 2003).    
Scientists have paid an enormous amount of attention to 
shells, resulting in numerous theories about their behavior. 
Truncated conical shells have widely been applied in many 
fields such as space flight, rocket, aviation, and submarine 
technology (Nejad, et al. 2014). In most of these 
applications, the cone has to operate under severe mechanical 
and thermal loads, causing significant creep and thus 
reducing its service life. The consequence of creep failure of 
a component in-use can be tragic and expensive. There are 
many cases of engineering disasters resulting in loss of life 
and property due to creep. Therefore, the analysis of creep 
deformations and prediction of strain rates and fracture time 
is very important in these applications. 

The aim of ‘‘creep modeling for structural analysis’’ is 
the development of methods to predict time-dependent 
changes of stress and strain states in engineering structures 
up to the critical stage of creep rupture (Altenbach et al. 
2008). 
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Shear deformation theory is a suitable method for the 
purpose of calculation of stresses and displacements in 
axisymmetric thick shells (Eipakchi et al. 2003; Ghannad et 
al. 2009; Ghannad and Nejad 2010; Ghannad et al. 2012; 
Nejad et al. 2017; Van Dung and Chan 2017; Abdelaziz et 
al. 2017; Hachemi et al. 2017; Jandaghian and Rahmani 
2017; Sekkal et al. 2017). This kind of structures, with 
different geometries, different loadings and different 
boundary conditions, with even variable pressure, could be 
more easily solved by this method (Ghannad et al. 2013). 
Making use of FSDT and plane elasticity theory (PET), 
thermo-elastic stresses in thick cylindrical and conical shells 
made of homogeneous and functionally graded materials 
(FGMs) under thermal loading have been analyzed 
extensively in the past years (Foroutan et al. 2012; Ghannad 
and Nejad 2013; Ghannad et al. 2013; Fatehi and Nejad 
2014; Mehditabar et al. 2014; Nejad et al. 2014; Ahmed and 
Wahab 2015; Jabbari et al. 2015; Nejad and Fatehi 2015; 
Nejad et al. 2015b; Jabbari et al. 2016; Mazarei et al. 2016; 
Afshin et al. 2017; Gharibi et al. 2017; Nejad et al. 2017; 
Sofiyev et al. 2017; Sofiyev and Osmancelebioglu 2017, 
Sofiyev 2017, Sofiyev 2018). Sofiyev (2018) presented the 
buckling analysis of functionally graded materials (FGMs) 
sandwich truncated conical shells (STCSs) under hydrostatic 
pressure was solved using the modified form of FSDT. Most 
of these works show that the FSDT is a suitable method for 
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elastic analysis of shells. Using Galerkin`s method, Sofiyev 
and Aksogan (2002) investigated the dynamic stability of an 
orthotropic elastic conical shell, with elasticity moduli and 
density varying in the thickness direction. In this paper, the 
shell is subject to a uniform external pressure which is a 
power function of time. 

Over the last years, creep stresses in FGM and 
homogeneous thick-walled pressure vessels under thermal 
loading have been analyzed extensively with regard to the 
elastic material behavior (Yang 2000; You et al. 2007; 
Loghman et al. 2010; Singh and Gupta 2010; Loghman et al. 
2011; Dai and Zheng 2012; Loghman and Moradi 2013; 
Fesharaki et al. 2014; Kashkoli and Nejad 2014; Nejad and 
Kashkoli 2014; Singh and Gupta 2014; Kashkoli and Nejad 
2015; Nejad et al. 2015a; Dehghan et al. 2016; Kashkoli et 
al. 2017; Kashkoli et al. 2017; Pankaj Thakur et al. 2017; 
Kashkoli et al. 2018). In most of these studies, Norton law 
has been used to obtain history of stresses and strains in 
pressure vessels. Over the years the simple Robinson’s linear 
life-fraction rule (Robinson 1952) has been very useful in 
estimating creep life and damage under non-steady 
conditions of stress and/or temperature. Among the most 
important relationships presented by researchers for 
assessments of creep life, LMP is widely used (Nobakhti and 
Soltani 2014). The LMP describes the equivalence of time at 
temperature for a steel under the thermally activated creep 
process of stress rupture. It permits the calculation of the 
equivalent times necessary for stress rupture to occur at 
different temperatures.  

As mentioned above, to the best of the authors’ 
knowledge, no analytical study has been carried out to date 
on creep response of truncated conical shells based on FSDT.  
In this study, assuming that the creep response of the material 
is governed by Norton’s law, a semi-analytical solution is 
presented for the calculation of stresses and displacements of 
thick-walled truncated conical shell made of 304L austenitic 
stainless steel. The governing equations are based on FSDT 
that accounts for the transverse shear. The governing 
equations are derived, using minimum total potential energy 
principle. Robinson’s linear life fraction damage rule has 
been used to predict the creep damage histories during the 
life of the cone and Larson-Miller Parameter (LMP) has been 
used to obtain creep remaining life assessment. The results 
obtained for stresses and displacements are validated using 
the finite element method (FEM). Good agreement is found 
between the results. 

 
 

2. Problem formulation 
 
2.1 Thermo-elastic governing equations 

 
In the first-order shear deformation theory, the sections 

that are straight and perpendicular to the mid-plane remain 
straight but not necessarily perpendicular after deformation 
and loading. In this case, shear strains and stresses are taken 
into consideration. Geometry of a thick truncated cone with 
thickness ℎ, and length ܮ, is shown in Fig. 1. The clamped-
clamped cone is subjected to non-uniform internal pressure 
P , and also a distributed temperature field due to a steady-

state heat conduction from inner surface to outer surface of 
the cone.  

In Fig. 1, the location of a typical point m, within the shell 
element may be determined by R  and z, as: 

r R z   (1) 

where R  represents the distance of middle surface from 
the axial direction, and z is the distance of typical point from 
the middle surface. In Eq. (1), x and z must be within the 
following ranges: 

0
2 2
h hz , x L      (2) 

 

Fig. 1 Axial cross section of the thick truncated cone 
with clamped-clamped ends 

In Eq. (1), R  is: 

 
2
hR a x tan   

 
(3) 

where   is half of the taper angle as: 

  1tan a b / L    (4) 

The general axisymmetric displacement field ( xU ,U ,

zU ), in the FSDT could be expressed on the basis of axial 
and radial displacements, as follow: 

     
 
     

0
x

z

U x,z u x x z

U x,z

U x,z w x x z






  



  

 (5) 

where xU , U  and zU   are displacement components 
along the axial, circumferential and radial directions.  u x  

and  w x  are the displacement components of the middle 

surface. Also,  x  and  x  are unknown functions to 
determine the displacement field. The strain–displacement 
relations in the cylindrical coordinate system are: 
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 (6) 

In addition, the thermal stresses on the basis of 
constitutive equations for isotropic materials are as follow 
(Nejad et al. 2015b): 
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 (7) 

where T is temperature distribution and i , i  and c
i  

are the stresses, strains and creep strains in the axial, 
circumferential and radial directions, respectively. Also xz  

and xz  are the shear stress and shear strain, respectively. In 

addition,  , E  and T  are Poisson’s ratio, modulus of 
elasticity and thermal expansion coefficient, respectively.  
The normal force per unit length ( xN , N , zN ), bending 
moment per unit length ( xM , M , zM ), shearing force per 
unit length ( xQ ), and the twisting moment per unit length 
( xzM ) in terms of stress resultants are as: 
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(8) 
where K  is the shear correction factor that is embedded 

in the shear stress term. In the static state, for cylindrical 
shells, 5 6K   (Vlachoutsis 1992). 

On the basis of the principle of virtual work, the 
variations of strain energy are equal to the variations of the 
virtual work as follows: 

U W   
(9) 

where U  is the total strain energy of the elastic body and 
W  is the total virtual work due to internal pressure. The 
strain energy is: 
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The variation of the strain energy is: 
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(11) 

The virtual work is: 
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 (12) 

For axial distribution of internal pressure, the model of 
Eq. (13) is selected: 

 1 2 1
xP P P P
L

     
   

(13) 

Here 1P  and 2P  are the values of pressure at the 0x   
and x L , respectively. Applied pressure to inner surface 
includes two components as follows:  

      ,   x zP P sin P P cos    
(14) 

Where xP  and zP  are components of internal pressure 
P  along axial and radial directions, respectively. Thus, the 
variation of the virtual work is: 
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(15) 

Substituting Eqs. (6) and (7) into Eqs. (11) and (15), and 
drawing upon calculus of variation and the virtual work 
principle (Eq. (9)), we will have: 
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and the boundary conditions at the two ends of the cone 
are: 
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(17) 

Substituting the stress components from Eqs. (7) into 
Eqs. (8) and then into the equilibrium equations (16), the 
following set of differential equation for displacement is 
obtained: 
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where the coefficients matrices  4 4iB


, and force vector 

 4 1
F

  have been defined in the Appendix A.   
   
 

2.1.1 Semi-analytical solution with multilayered method 
 
Eq. (18) is the set of non-homogenous linear differential 

equations with variable coefficients. An analytical solution 
of this set of differential equations with variable coefficients 
seems to be difficult, if not impossible, to obtain. Hence, in 
the current study, a semi-analytical method for the solution 
of Eq. (18) is presented. In this method, the truncated cone is 
divided into homogenous disk layers with constant thickness 

nt (Jabbari et al. 2016), (Fig. 2 (a)). 

 
(a) 

 
(b) 

Fig. 2 (a) Division of thick truncated cone into 
homogenous disks with constant thickness (b) Geometry 

of an arbitrary homogenous disk layer. 
Therefore, the governing equations convert to 

nonhomogeneous set of differential equations with constant 
coefficients.  kx  and   kR  are length and radius of middle 
of disks. The length of middle of an arbitrary disk (Fig. 2 (b)) 
is as follows: 
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where Ln  is the number of disks and k is the 
corresponding number given to each disk. The radius of 
middle point of each disk is as follows: 
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The terms of pressure applied to each disk are as follows: 
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Considering shear stress and based on FSDT, 
nonhomogeneous set of ordinary differential equations with 
constant coefficient of each disk is obtained as follows: 
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(24)  

 
 

2.1.2 Heat conduction formulation 
 
In the steady-state case and in the absence of heat 

generation, the heat conduction equation for the one-
dimensional problem in polar coordinates simplifies to 
(Obata and Noda 1994): 

(25) 0T
d dTk r
dr dr
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where Tk  is thermal conductivity of the cone. By 

considering r R z  , Eq. (25) can be written as follows: 
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Solving the differential Eq. (26), finally the terms of 
temperature gradient are derived as follows: 
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where  
1

kg  and  
2

kg  are constants of integration which 
obtained from boundary conditions (See Appendix B). refT  
is the reference temperature where in this study assumed that 

ref oT T . If the prescribed surface temperature imposed on 
inner and outer surfaces of the cone, temperature gradient 
distribution is obtained as: 
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2.1.3 Thermo-elastic solution 

 
For thermo-elastic analysis of thick truncated cone the 

creep strains ( c
x , c

 , c
z ) are ignored. The total solution for 

Eq. (24) is: 
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where iC  are unknown values and may be determined 
from boundary and continuity conditions. In addition, im  
and  i

V  are eigenvalues and eigenvectors, respectively.  
 
 

2.1.4 Boundary and continuity conditions  
 
Given that the two ends of the cone are clamped, then: 
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Because of continuity and homogeneity of the cone, at the 
boundary between two layers, forces, stresses and 
displacements must be continuous. Given that shear 
deformation theory applied is an approximation of one-order 
and also all equations related to the stresses include the first 
derivatives of displacement, the continuity conditions are as 
follows: 
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2.2 Governing equations for creep 
 
For isotropic cone with creep behavior, the relations 

between rates of stress and strain are: 
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where i , i  and c
i  are stress rates, strain rates 

and the creep strain rates in the axial, circumferential and 
radial directions, respectively. In addition, xz  and xz  
are the shear stress rate and shear strain rate, respectively. 
Creep strain rates are related to the stresses and the material 
uniaxial creep constitutive model by the well known 
Prandtle-Reuss equations as (Loghman et al. 2010): 
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 (33) 

Where, c
e  and e  are the effective strain rate and 

effective stress, respectively. The Norton's creep constitutive 
model for the effective strain rate is (Loghman et al. 2010): 

c n
e eA   (34) 
Substituting the Norton's law into Prandtle-Reuss 

equations, the relations between rates of creep strain and 
stresses may be as: 
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where A  and n  are material constants for creep. Using 
Eqs. (16) and considering the pressure to be constant with 
time, the equilibrium equation for creep analysis is: 
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Considering the temperature field to be steady, the 
following set of differential equations for displacement rates 
is obtained as follows: 
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where the force vector  4 1cF
  has been defined in the 

Appendix C: 
 

 
2.2.1 Solution for Creep 

 
The total solution for Eq. (37) is: 
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where iD  are unknown values. When the stress rate is 

known, the calculation of stresses at any time it  should be 
performed iteratively (Yang 2000): 
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The solution of 0it   corresponds to that for thermo-

elastic material behavior. To calculate    i
ij ir,t , the 

stresses at the time 1it   used. 
 
 

3. Creep life assessment 
 
The most used method for creep damage calculating is 

Robinson’s linear life-fraction rule. According to this method, 
the fracture under variable load and temperatures can be 
predicted adding the creep life fractions consumed at each 
condition until their sum reaches the value of unity. The 
calculation of accumulated creep damage is performed at the 
end of each time increment it  by using the following 
equation: 

(40) 
1

in
i
f i

i r

tD
t



  

where i
fD  is creep damage and i

rt  is the creep fracture 
time at i-th time increment and at the equivalent stress and 
temperature of that point in the radial direction of the 
truncated cone. At rupture, 1i

fD  , which is the rupture 
criteria. The time to rupture is calculated using LMP.  

In contrast to the conventional creep tests, which take a 
long time, the LMP can be obtained using some sort of quick 
tests at high temperature and stress level and then 
extrapolating the results for prediction of the required 
parameters. The LMP is a grouping concept between rupture 
time ( rt ) and temperature (T ) for a particular stress level 
(Tahami et al. 2010). The Larson-Miller extrapolation 
parameter is in the following form: 

(41)   10L M rP T. C log t  
 

In this equation T  is in Kelvin, rt  is rupture time in 
hours and C  is a physical parameter which has been 
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assumed to be 20. This value is an accepted amount for most 
engineering materials and steels (Larson and Miller 1952) 
and therefore, has been used in this study to estimate the 
creep behaviour of the material. The LMP can be easily used 
to creep fracture data extrapolation, in which for any constant 
stress level the combination of rupture time and test 
temperature, the LMP will remain constant (Tahami et al. 
2010). The LMP variation with stress is shown in Fig. 3. The 
remaining life at any point in the radial direction of the 
truncated cone is then given by: 

(42)  1i i i
f rRL D t   

 

Fig. 3 Variation of stress versus Larson–Miller parameter 
for the 304L SS (Tahami et al. 2010) 

 
 

4. Numerical results and discussion 
 
In this section, numerical results are presented and 

discussed for verifying the accuracy of the present theory in 
predicting creep stress responses of truncated cone. The 
geometrical characteristics of cone are assumed as 

40 mma  , 20 mmb   and 1000 mmL  . 304L Austenitic 
Stainless Steel (304L SS) is being used in this paper as 
material due to its excellent creep resistance. Type 304L is an 
extra low-carbon variation of type 304 with 0.03% maximum 
carbon content that eliminates carbide precipitation due to 
welding. The following data for loading and material 
properties for type 304L are used in this investigation 
(Tahami et al. 2010): 

179 GPaE  , 0 3.  , 6 o16 9 10  C.   , 
o16 2 W m CTk . , 1 60 MPaP  , 2 20 MPaP  , 

43 -n -17 18 10  Pa sA .   , 5 7278n . . 
Creep will occur in any metal subjected to a sustained 

load at a temperature slightly about its recrystallization 
temperature. At this temperature, the atoms become quite 
mobile. As a result, time-dependent alterations of the metal’s 
structure occur. It is often stated that “elevated temperature” 
for creep behavior of a metal begins at about one-half the 
melting temperature mT , of a metal (Bores and Schmidt 
2003; Naumenko and Altenbach 2007). Therefore, in this 
study, the boundary conditions for temperature are taken as 

o800 CiT   and o700 CoT   (304L SS melting 

temperature range is 1399 C-1454 Co o ). The results are 

presented in a non-dimensional form. In order to normalize 
stresses, we define the mean internal pressure parameter as 
follows: 

(43)  1 2 2P P P   
The number of disk layers have significant effect on the 

results. In order to show the effectiveness of disk layers, 
variation of normalized radial displacement and effective 
stress along the number of disks is shown in Fig. 4(a) and 
(b). It could be observed that if the number of disk layers is 
more than 60, there will be no significant effect on radial 
displacement and effective stress and other results. In the 
present study, 80 disks are used. 

 
(a) 

 
(b) 

Fig. 4 Variation of normalized radial displacement and ef
fective stress along the number of disk layers after 

10000 hr of creeping in middle layer (x=L/2) 

For meshing of finite element model, it has been used of 
800 elements. Fig. 5 illustrates a valid range for using 
number of elements in calculating the effective stress after 
10000 hr of creeping in middle layer. It could be observed 
that if the number of elements is more than 800 elements, 
there will be no significant effect on effective stress. 
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Fig. 5 Variation of normalized effective stress along the 
number of elements after 10000 hr of creeping in middle 

layer (x=L/2) 

In order to show the effectiveness and accuracy of the 
approach suggested here, a comparison between responses of 
the present theory and FEM can be made. In FEM, a thick 
truncated cone was modeled using ANSYS®. The PLANE 
223 element in axisymmetric mode, which is an element with 
eight nodes with up to four degrees of freedom per each node, 
was used for discretization. There is a good agreement 
among numerical results based on FSDT and FEM. Fig. 6 
illustrates the finite-element model is established with 
ANSYS® after 10000 hr of creeping. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 6 Finite-element model for the truncated cone (a) 
Finite-element mesh (b) Temperature gradient (c) Radial 
displacement (d) Radial stress (e) Circumferential stress 

distribution in the truncated cone after 10000 hr of 
creeping 

In Fig. 7, displacement and stress distributions at 
different layers are obtained using multilayer method, and 
compared with the solutions of FEM, and are presented in the 
form of graphs. Fig. 7 show that the disk layer method based 
on FSDT has an acceptable amount of accuracy when one 
wants to obtain radial displacement, radial stress, 
circumferential stress, and shear stress. 
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(a) 

 
(b) 

 
(c) 

 

 
(d) 

Fig. 7 Variation of normalized creep displacement and 
stresses along the dimensionless axial direction after 

10000 hr of creeping in middle layer 

Fig. 7(a) shows that the radial displacement at points 
away from the boundaries depends on radius and length. 

According to Fig. 7(a), the change in radial displacement in 
the lower boundary is greater than that of the upper boundary 
and the greatest radial displacement occurs in the outer 
surface (ݖ = +ℎ/2). It can be seen from Fig. 7(b) that, at points 
away from the boundaries, the absolute minimums of radial 
creep stress occur at the outer surface of the cone. Also Fig. 
7(c) shows that, at points away from the boundaries the 
absolute maximums of circumferential creep stress occur at 
the outer surface. Fig. 7(d) shows the distribution of shear 
stress at different layers. The shear stress at points away from 
the boundaries at different layers is the same and trivial. 
However, at points near the boundaries, the stress is 
significant, especially in the outer surface, which is the 
greatest. 

Histories of normalized radial displacement and radial 
stress from initial solution at zero time up to 70000 hr in 
middle layer are shown in Fig 8. It is clear from these figures 
that the absolute value of radial displacement increases with 
time during creep process of the truncated cone, but the 
absolute values of radial stress decreases. 

 
(a) 

 

(b) 

Fig. 8 Variation of normalized radial displacement and 
radial stress along the dimensionless axial direction from 

initial solution at zero time up to 70000 hr 

Histories of radial and circumferential creep strains are 
plotted in Fig. 9. It could be observed that the change in radial 
and circumferential creep strains in the lower boundary is 
greater than that of the upper boundary. As far as the creep 
time increases, the absolute value of both radial and 
circumferential creep strains increase. 
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(a) 

 

(b) 

Fig. 9 Variation of radial and circumferential creep strains 
along the dimensionless axial direction up to 70000 hr 

Creep damage and effect of internal pressure on creep 
damage histories are illustrated in Fig. 10(a) and (b). Fig. 
11(a) and (b) also show the remaining life and effect of 
internal pressure on remaining life histories along the 
dimensionless radial direction of the truncated cone at 

2x L . Maximum damages and the minimum remaining 
lives are located at the inner surface of the truncated cone as 
illustrated in Figs. 10 and 11. It can be seen from Fig. 10(b) 
and 11(b) that with increasing internal pressure, creep 
damages increase and remaining lives decrease. 

 

(a) 

 

(b) 

Fig. 10 (a) Variation of creep damage along the 
dimensionless radial direction. (b) Effect of internal 
pressure on creep damage distribution after 50000 hr of 
creeping 

 

(a) 

 

(b) 

Fig. 11 (a) Variation of remaining life along the 
dimensionless radial direction. (b) Effect of internal 

pressure on remaining life distribution after 50000 hr of 
creeping 

 
 
5. Conclusion 

 
Creep response of isotropic thick-walled truncated 

conical shells subjected to the temperature gradient and 
internal non-uniform pressure made of 304L austenitic 



 
Time-dependent creep analysis and life assessment of 304L austenitic stainless steel thick pressurized truncated conical shells 

stainless steel has been investigated in the present study by 
taking into account the creep behavior, as described by 
Norton’s model. The governing equations are based on FSDT 
that accounts for the transverse shear. Using multilayered 
method, the thick conical shell is divided into disks with 
constant height. Considering continuity between layers and 
applying boundary conditions, the governing set of 
differential equations with constant coefficients are solved. 
The creep damage obtained by Robinson’s linear life fraction 
damage rule and LMP is used to obtain creep remaining life 
assessment. The results obtained for stresses and 
displacement are compared with the solutions carried out 
through the FEM. Good agreement was found between the 
analytical solutions and the solutions carried out through the 
FEM. 

 General observations of this study could be summarized 
as follows: 

 Shear deformation theory, is a popular model in 
structural analysis. In shear deformation theory, any 
changes in the axial direction of a thick shell as 
geometry parameters and boundary conditions, 

cause variable coefficients in the governing 
differential equations. The system of differential 
equations with variable coefficients can be changed 
to a set of differential equations with constant 
coefficients by multilayered method.   

 The results show that the multilayered method 
based on FSDT has an acceptable amount of 
accuracy when one wants to obtain radial 
displacement, radial stress, circumferential stress, 
and shear stress 

 The maximum creep life is located at the outer 
surface of the cone where the minimum value of 
temperature is located. 

 Increasing internal pressure have considerably 
increased creep damages and decreased the 
remaining life of the conical shell. 
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Appendix B 

General thermal boundary conditions are: 
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where    1 2 1 2k
ijC i , ; j ,   are constants which depend on the thermal conductivity and the thermal convection.  

1
kf  and 

 
2

kf  are constants which are evaluated at the inner and outer radii, respectively. By exerting the boundary conditions for the 
temperature gradient distribution, we have: 
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In the present study, constants are defined by: 
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Appendix C 
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