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Abstract 

This study investigated the development of an analytical model using the energy method and 

Castigliano's second theory to evaluate the equivalent mechanical properties for a bone-inspired 

cellular structure of a glass fiber-reinforced Polylactic Acid (PLA) composite material. The 

bone-inspired cellular structure was fabricated using a Fused Deposition Modeling (FDM) 3D 

printing technique. The fabricated specimens were subjected to compression testing. The digital 

image correlation technique was employed for obtaining stain and displacement contours in 

experimental tests. Furthermore, a finite element numerical model was developed to evaluate the 

mechanical properties of the bone-inspired composite cellular structure. The comparison of the 

experimental and numerical results with the outcomes of analytical model revealed that the 

proposed analytical model can correctly determine the mechanical properties of the composite 

bio-inspired cellular structure. The results showed that by reinforcing the cellular structure with 

continuous fiber, significantly higher mechanical properties can be obtained. A comprehensive 

parametric study has also been performed to investigate the effect of geometric parameters on 

equivalent mechanical properties. 
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lamination theory (CLT), energy method 
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1.Introduction 

Cellular structures have significant mechanical properties and are widely used in lightweight 

applications. These structures are often used in aerospace, civil engineering, transportation, 

medical engineering, and sports engineering because of their useful properties [1],[2]. Their 

applications include energy absorption [3], heat exchangers[4], acoustic[5], vibration 

damping[6], and bio-implant design[7]. Today, with the development of 3D printers, it is 

possible to fabricate complex cellular structures and perform experimental tests to evaluate the 

performance of analytical and numerical results. 

 Various methods for studying the mechanical properties of two-dimensional and three-

dimensional cellular structures have been used in several studies. Naghavizadeh et al. [8], [9] 

evaluated in-plane mechanical properties in a novel 2D dimensional fish cell structure, using 

Castigliano's second theorem and energy method. They assessed the analytical model using a 

numerical method based on homogenization and performed an experimental test. Babaee et al. 

[10] employed the energy method to obtain the in-plane elastic modulus in the open rhomboidal 

dodecahedron unit cell analytically. Then, they analyzed the results of the analytical model using 

finite element analysis. Harakati et al. [11] investigated the multi-entrant structure's in-plane 

mechanical properties analytically and employed the finite element analysis based on 

homogenization to investigate the accuracy of the analytical model. The finite element analysis 

results showed a good agreement with the theoretical model. Lira et al. [12] analyzed the out-of-

plane shear properties in the novel multi-re-entrant honeycomb cell structure based on Voigt and 

Reuss bounds. Masters and Evans [13] developed an analytical model to obtain the mechanical 

properties of honeycomb structure under bending, tensile, and hinge deformation. Lu et al. [14] 

developed an analytical model for obtaining the Poisson's ratio and Young's modulus in a novel 

structure inspired by the conventional honeycomb and re-entrant cellular structures. The results 

showed that the proposed structure has high Young's modulus than conventional structures. Liu 

et al. [15] theoretically presented the in-plane mechanical properties of the corrugated cosine cell 

structure, then validated their results using a numerical simulation based on periodic boundary 

conditions. Rong and Zhou [16] investigated the in-plane mechanical properties of the cruciform 

honeycomb structure analytically and experimentally. Li et al. [17] presented an analytical model 

based on four different geometric parameters in the three-dimensional re-entrant lattice structure 
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under compressive loading to obtain the Poisson's ratio, failure mode, failure strength, and 

effective modulus.  Results showed that the analytical model has good agreement with the 

experimental tests and numerical analysis. Torre et al. [18] have investigated the effective 

parameters in printing polymeric elements in FFF 3D printers. The results demonstrated that a 

100% linear infill reduced the anisotropy response of printed components.  

Some studies considered the effect of cell topologies on the mechanical performance of 

honeycomb structures using a titanium alloy and a flexible polymer []. Also, the surface quality 

is investigated as the important key in their research. Results demonstrated that the gradual 

change in the topology of the honeycomb unit cell can result in a higher deformation energy. 

Oftadeh et al. [19] proposed a theoretical model based on Castigliano's second theorem for the 

hierarchical honeycomb structure. Using the presented model, they obtained the elastic modulus, 

Poisson's ratio, shear modulus, and plastic collapse strength and evaluated their results using a 

numerical method. Liu et al. [20] studied the two-dimensional chiral structure, which consists of 

four V-shaped elements. The analytical model was done using the energy method, and the finite 

element analysis was employed to validate the results. Huang et al. [21] presented the in-plane 

mechanical properties of the novel honeycomb core with a zero Poisson's ratio theoretically 

based on Castigliano's second theorem. The obtained results were evaluated using numerical 

simulation and experimental tests. Wang and Deng [22] presented the in-plane mechanical 

properties in the x and y directions, including Young's modulus and the Poisson's ratio in the 

irregular honeycomb cell structure using Castigliano's theorem. Mukhopadhyay and Adhikari 

[23] extended an analytical model for obtaining the equivalent in-plane mechanical properties in 

an auxetic honeycomb structure with special irregularity and investigated the effect of 

irregularities in the proposed structure on the Poisson's ratio, shear modulus, and elastic 

modulus. Liu et al. [24] proposed a novel cellular structure for morphing structures application. 

They studied the in-plane and out-of-plane mechanical properties of structure, analytically and 

numerically. Gong et al. [25] proposed another novel honeycomb structure applicable for 

morphing structures. They presented in-plane and out-of-plane mechanical properties using 

Castigliano's theorem and investigated the results by using finite element analysis. Balawi and 

Abot [26] studied the in-plane mechanical properties in the honeycomb structure with curved 

struts. They used the energy method to obtain the mechanical properties analytically and 

assessed the results by employing the finite element method. Harkati et al. [27] extended an 
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analytical theory to obtain the in-plane elastic properties of the honeycomb structure with curved 

struts. In the proposed model, they applied Castigliano's second theorem and validated the results 

using the finite element analysis. Employing the Euler-Bernoulli beam theory, Gao et al. [28] 

extended an analytical model to obtain the mechanical properties of the cylindrical double 

arrowed honeycomb structure (DHS). They used the finite element method to validate the 

proposed theoretical model. The results show that the proposed model in a large radius cannot 

correctly calculate the elastic mechanical properties. Ghazlan et al. [29][30] presented the elastic 

modulus of a bone-inspired cellular structure using the stiffness matrix method. They assessed 

their results using experimental tests. Hedayati et al. [31] extended two analytical models based 

on Euler-Bernoulli and Timoshenko beam theory and compared them in six different unit cells. 

Results showed that the Timoshenko beam theory is more consistent with finite element analysis 

results than the Euler-Bernoulli beam theory. 

Torre et al. [32] have investigated the behavior of short-length PLA 3D printed samples under 

compression with a specific focus on the buckling. The square polymeric columns were 

produced by Fused Filament Fabrication (FFF) and utilized in experimental tests. The 

compression of the specimens was monitored using a single-camera Digital Image Correlation 

(DIC) system, and the slenderness ratio at which the elements started to buckle was identified. 

The experimental results were compared with analytical, linear, and non-linear Finite Elements 

(FE) models.  

Quan et al. [33] fabricated the re-entrant structure, which was reinforced with Kevlar fibers using 

FDM technology, and studied the in-plane compression behavior. They also performed an 

analytical model for obtaining the elastic modulus and Poisson's ratio. They validated their 

analytical and numerical results using experimental tests. Veisi and Farrokhabadi [34] presented 

a new analytical model based on the classical lamination theory (CLT) to evaluate the in-plane 

mechanical properties of the fiber-reinforced re-entrant structure. They compared their results 

with the available finite element analysis and experimental tests mentioned in previous studies. 

The results showed that the proposed analytical model has good agreement with numerical and 

experimental results. Farrokhabadi et al. [35] studied the fiber-reinforced cruciform unit cell. 

They studied the mechanical properties of the proposed structure under tensile loading. 

Castigliano's second theorem and energy method were employed in their theoretical model. They 
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evaluated their results using experimental tests and numerical analysis. Farrokhabadi et al. [36] 

presented a novel analytical model to evaluate the mechanical properties of the fiber-reinforced 

U-type unit cell. They have used experimental tests and numerical analysis under tensile loading 

to validate the proposed theoretical model.  

Reviewing the previous studies, it can be understood that the bone-inspired unit cell has better 

mechanical properties than conventional honeycomb and re-entrant structures[30]. This feature 

can be employed for design of  lightweight structures. In this study, a novel composite bone-

inspired cellular structure is designed for lightweight applications. This composite structure is 

fabricated with a continuous glass fiber and polylactic acid using the FDM 3D printer. 

Furthermore, an analytical model based on the energy method and classical lamination theory 

(CLT) is proposed to investigate the equivalent mechanical properties in a bone-inspired cellular 

structure with composite struts. This novel approach provides an equivalent model that use the 

geometric parameters of the composite bone-inspired unit cell as variables and calculates 

equivalent mechanical properties. The analytical model is validated using numerical simulation 

and experimental tests. In addition, Digital Image Correlation (DIC) technique has been used to 

investigate the in-plane strains. Finally, the effect of geometrical parameters of the cellular 

structure on equivalent mechanical properties is studied.  

2. The bone-inspired cellular structure 

Bone is made up of cancellous and cortical tissue (Fig.1). Cancellous bone consists of 

interconnected rods and plates. These features create the unique low-weight and high-strength 

properties of bone.  

 

Figure1. Cancellous bone structure.  
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The structural arrangement in cancellous bone created a porous area that can indicate different 

cellular structure patterns including concave, convex, or hybrid cells (Fig. 1). In the bone, which 

has osteoporosis condition the porosity of this area becomes bigger and the cells may have 

different sizes. The bone-inspired cellular structure is introduced based on the hybrid design of 

cancellus bone in [29], [30] and contained two different sub-cells. Fig.2 represents a schematic 

architecture of a bone-inspired cellular structure and the geometrical parameters of its unit cell. 

For a composite bio-inspired cellular structure, the isotropic and orthotropic mechanical 

properties in different directions are calculated based on the following sections. 

 

 

Figure 2. (a) The bone inspired unit cell with geometrical parameters and (b) a bone-inspired cellular 

structure. 

 

3. Elastic properties 

3.1. Elastic properties in an orthotropic ply with unidirectional fibers 

The energy method and Castigliano's second theorem have been used to calculate the in-plane 

elastic properties of the orthotropic laminated cellular structure shown in Fig.3. According to the 
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classical lamination theory (CLT), the constitutive equation of an orthotropic ply in the global 

coordinate system is extracted as Eq.1 under the plane stress condition. 

[

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦

] = [

�̅�11 �̅�12 �̅�16

�̅�12 �̅�22 �̅�26

�̅�16 �̅�26 �̅�66

] [

𝜀𝑥𝑥
0 + 𝑧𝜅𝑥𝑥

0

𝜀𝑦𝑦
0 + 𝑧𝜅𝑦𝑦

0

Υ𝑥𝑦
0

+ 𝑧𝜅𝑥𝑦
0

] 

 

(Eq. 1) 

 

Where [�̅�] is the transformed reduced stiffness matrix, 𝜀𝑥𝑥
0 , 𝜀𝑦𝑦

0  and Υ𝑥𝑦
0  are midplane strain 

components and 𝜅𝑥𝑥
0 , 𝜅𝑦𝑦

0  and 𝜅𝑥𝑦
0  are the midplane curvatures. Fig.3 shows the axial forces and bending 

moments resultants in an orthotropic ply, in which the fiber is align with the x-direction. The total strain 

energy in an orthotropic ply is obtained as Eq.2. 

 

Figure 3. Forces and moments resultants in an orthotropic ply  

 

𝑈𝑡𝑜𝑡 = 𝑈𝑎𝑥𝑖𝑎𝑙 + 𝑈𝑏𝑒𝑛𝑑𝑖𝑛𝑔 (Eq. 2) 
 

 

Under the presented applied loading, the axial strain energy of an orthotropic ply can be written 

as Eq.3. 

𝑈𝑎𝑥𝑖𝑎𝑙 =
1

2
∫ (𝜎𝑥𝑥𝜀𝑥𝑥 + 𝜎𝑦𝑦𝜀𝑦𝑦

𝑉

) 𝑑𝑉 
(Eq.3) 

 

Where 𝜎𝑥𝑥 and 𝜀𝑥𝑥 are axial stress and strain in the x-direction, 𝜎𝑦𝑦 and 𝜀𝑦𝑦 are the axial stress 

and strain in the y-direction. Forces and moments resultants in Fig.3 can be obtained as Eqs.4a-d. 
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𝑁𝑥 = ∫ 𝜎𝑥𝑥 𝑑𝑧

ℎ
2

−
ℎ
2

 

(Eq.4-a) 

𝑁𝑦 = ∫ 𝜎𝑦𝑦 𝑑𝑧

ℎ
2

−
ℎ
2

 

(Eq.4-b) 

𝑀𝑥𝑥 = ∫ 𝜎𝑥𝑥𝑧𝑑𝑧

ℎ
2

−
ℎ
2

 

(Eq.4-c) 

𝑀𝑦𝑦 = ∫ 𝜎𝑦𝑦𝑧𝑑𝑧

ℎ
2

−
ℎ
2

 

(Eq.4-d) 

 

It is worth noting that midplane curvatures are zeros in the axial loading, so by considering Eq.3 

and employing Eqs.4a-d, the axial strain energy can be obtained as Eq.5.  

𝑈𝑎𝑥𝑖𝑎𝑙 =
1

2
∫ (𝜎𝑥𝑥𝜀𝑥𝑥

0 + 𝜎𝑦𝑦𝜀𝑦𝑦
0

𝑉

)𝑑𝑉 =
1

2
∫ ∫ (𝑁𝑥

𝑏

0

𝑙

0

𝜀𝑥𝑥
0 + 𝑁𝑦𝜀𝑦𝑦

0 )𝑑𝑥𝑑𝑦 

 

(Eq.5)  

 
 

The force resultants are defined as 𝑁𝑥 =
𝐹𝑥

𝑏
 and 𝑁𝑦 =

𝐹𝑦

𝑙
 .  

To obtain the bending strain energy relation, the strain components are defined as Eqs.6a and b. 

𝜀𝑥𝑥 = 𝑧𝜅𝑥𝑥
0 = 𝑧

𝑀𝑥𝑥

𝐸11𝐼𝑦𝑦
 

(Eq. 6-a) 

𝜀𝑦𝑦 = 𝑧𝜅𝑦𝑦
0 = 𝑧

𝑀𝑦𝑦

𝐸22𝐼𝑥𝑥
 

 

(Eq.6-b) 

Where, 𝐼𝑥𝑥 and 𝐼𝑦𝑦 are second moment of inertia about x and y axes, respectively. The resultant 

moments are considered as 𝑀𝑥 =
𝑀𝑥𝑥

𝑏
 and 𝑀𝑦 =

𝑀𝑦𝑦

𝑙
 , so the bending strain energy is obtained as 

Eq.7.  

𝑈𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =
1

2
(∫

𝑀𝑥𝑥
2

𝐸11𝐼𝑦𝑦

𝑙

0

𝑑𝑥 + ∫
𝑀𝑦𝑦

2

𝐸22𝐼𝑥𝑥

𝑏

0

𝑑𝑦) 
(Eq.7) 

 

As a result, for an orthotropic ply, the total strain energy in a global coordinate system can be 

derived as Eq.8. 
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𝑈𝑡𝑜𝑡 =
1

2
(∫

𝐹𝑥
2𝑙

𝐴𝑥𝐸11
𝑑𝑥 + ∫

𝐹𝑦
2𝑏

𝐴𝑦𝐸22

𝑏

0

𝑑𝑦 + ∫
𝑀𝑥𝑥

2

𝐸11𝐼𝑦𝑦

𝑙

0

𝑑𝑥 + ∫
𝑀𝑦𝑦

2

𝐸22𝐼𝑥𝑥

𝑏

0

𝑑𝑦)
𝑙

0

 
(Eq.8) 

 

3.2. Calculation of elastic properties in the x-direction 

Using the theory presented in the previous section and Castigliano's second theorem, the elastic 

properties of the bio-inspired unit cell in the x-direction are calculated in this section. The 

deformation of the unit cell is investigated by applying x-direction tensile loading to the 

tessellation, which is constructed by several unit cells. By observing the deformation in the 

tessellation, boundary conditions for a unit cell are extracted. Due to symmetry, half of the unit 

cell has been studied. The free diagram of the bio-inspired unit cell is shown in Fig.4. 

 

Figure 4. Free digram of half of the unit cell under loading x-direction 

 

In this figure, R1 and R2 are reactions forces, P2 and P3 are the forces acting in the x-direction, P1 

indicates the virtual force acting in the y-direction to obtain lateral displacement, and M1, M2 and 

M3 represents the reaction moments at points K, I, J. While, the lengths of the struts KF, FG, GB, 

BC, and CH are considered L, the length of KI = B1, GJ = B2, FE = C1, and CA = C2 are 

considered L/2. In addition, 𝛼 = 2𝛽, 𝛾 = 2𝛽, 𝜑𝐹𝐺 = 2𝛽, 𝜑𝐶𝐾 = 3𝛽. The internal forces and 

moments are obtained by writing the equilibrium equation at each strut of the unit cell and 

presented in Eqs.9a, and b.  
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𝐹𝐾𝐼 = −𝑅1 

𝐹𝐾𝐹 = 𝑃1 𝑠𝑖𝑛𝛼 − 𝑅1 𝑐𝑜𝑠𝛼 

𝐹𝐹𝐸 = 𝑃2 

𝐹𝐹𝐺 = 𝑃1 𝑠𝑖𝑛𝜑𝑓𝑔 + (𝑅1 + 𝑃2)𝑐𝑜𝑠𝜑𝑓𝑔 

𝐹𝐺𝐽 = −𝑅2 

𝐹𝐺𝐵 = 𝑃1 𝑠𝑖𝑛𝛽 − (𝑅1 + 𝑃2 + 𝑅2 )𝑐𝑜𝑠𝛽 

𝐹𝐵𝐶 = 𝑃1 𝑠𝑖𝑛𝛾 + (𝑅1 + 𝑃2  + 𝑅2)𝑐𝑜𝑠𝛾 

𝐹𝐶𝐴 = 𝑃3 

𝐹𝐶𝐻 = 𝑃1 

 

 

𝑀𝐾𝐼 = 𝑀2 

𝑀𝐾𝐹 = 𝑀1 − 𝑀2 + (𝑃1𝑐𝑜𝑠𝛼 + 𝑅1𝑠𝑖𝑛𝛼)𝑥 

𝑀𝐹𝐸 = 0 

𝑀𝐹𝐺 = 𝑀1 − 𝑀2 + (𝑃1𝑐𝑜𝑠𝛼 + 𝑅1𝑠𝑖𝑛𝛼)𝐿 + ((𝑅1 + 𝑃2)𝑠𝑖𝑛𝜑𝑓𝑔 − 𝑃1𝑐𝑜𝑠𝜑𝑓𝑔)𝑥  

𝑀𝐺𝐽 = 𝑀3 

𝑀𝐺𝐵 = 𝑀1 − 𝑀2 − 𝑀3 + ((𝑃1𝑐𝑜𝑠𝛼 + 𝑅1𝑠𝑖𝑛𝛼) + (𝑅1 + 𝑃2)𝑠𝑖𝑛𝜑𝑓𝑔 − 𝑃1𝑐𝑜𝑠𝜑𝑓𝑔) 𝐿 + (𝑅1𝑠𝑖𝑛𝛽 +

(𝑃1 + 𝑃2 + 𝑅2)𝑐𝑜𝑠𝛽)𝑥  

𝑀𝐵𝐶 = 𝑀1 − 𝑀2 − 𝑀3 + ((𝑃1𝑐𝑜𝑠𝛼 + 𝑅1𝑠𝑖𝑛𝛼) − 𝑃1𝑐𝑜𝑠𝜑𝑓𝑔 + (𝑅1 + 𝑃2)𝑠𝑖𝑛𝜑𝑓𝑔 + 𝑅1𝑠𝑖𝑛𝛽 + 

(𝑃1 + 𝑃2 + 𝑅2)𝑐𝑜𝑠𝛽)𝐿 

+((𝑅1 + 𝑃2 + 𝑅2)𝑠𝑖𝑛𝛾 − 𝑃1𝑐𝑜𝑠𝛾)𝑥  

𝑀𝐶𝐴 = 0 

𝑀𝐶𝐻 = 𝑀1 − 𝑀2 − 𝑀3 + (𝑃1𝑐𝑜𝑠𝛼 + 𝑅1𝑠𝑖𝑛𝛼) − (𝑃1𝑐𝑜𝑠𝜑𝑓𝑔 + (𝑅1 + 𝑃2)𝑠𝑖𝑛𝜑𝑓𝑔 + 𝑅1𝑠𝑖𝑛𝛽 +

(𝑃1 + 𝑃2 + 𝑅2)𝑐𝑜𝑠𝛽 − 𝑃1𝑐𝑜𝑠𝛾 + (𝑅1 + 𝑃2 + 𝑅2)𝑠𝑖𝑛𝛾)𝐿 + (𝑅1 + 𝑃2 + 𝑅2 + 𝑃3)𝑥  

 

 

By calculating the internal forces and moments in each strut of the unit cell and substituting them 

in Eq.8, the axial and bending strain energies are obtained as Eqs.10a and b. While the located 

fibers in diagonal struts are not capable to transform the applied compressive loading, the 

mechanical properties of the pure PLA are assigned for these struts. Meanwhile, for all the 

straight struts, the elastic modulus is considered E11. For the straight struts, the thicknesses are 

(Eqs.9a) 

(Eqs.9b) 
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double and their cross-section area and moment of inertia are considered as A2t and I2, 

respectively. For other struts, the cross-section area and moment of inertia are considered as At 

and I1, respectively. 

 

𝑈𝑎𝑥𝑖𝑎𝑙 =
1

2𝐸𝑠𝐴𝑡
[ ∫ 𝐹𝐾𝐹

2 + ∫ 𝐹𝐹𝐺
2 + ∫ 𝐹𝐺𝐵

2 + ∫ 𝐹𝐵𝐶
2𝐿

0

𝐿

0

𝐿

0

𝐿

0
+ ∫ 𝐹𝐶𝐻

2𝐿

0
]  𝑑𝑥 +

1

2𝐸11𝐴2𝑡
[∫ 𝐹𝐾𝐼

2 +
𝐿

2
0

∫ 𝐹𝐺𝐽
2

𝐿

2
0

+ ∫ 𝐹𝐹𝐸
2 + ∫ 𝐹𝐶𝐴

2
L

2
0

𝐿

2
0

 ]  𝑑𝑥  

 

(Eq. 10a) 

𝑈𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =
1

2𝐸𝑠𝐼1
[∫ 𝑀𝐾𝐹

2 + ∫ 𝑀𝐹𝐺
2 + ∫ 𝑀𝐺𝐵

2 + ∫ 𝑀𝐵𝐶
2𝐿

0

𝐿

0

𝐿

0

𝐿

0
+ ∫ 𝑀𝐶𝐻

2𝐿

0
 ] 𝑑𝑥 +

1

2𝐸11𝐼2
[∫ 𝑀𝐾𝐼

2 + ∫ 𝑀𝐺𝐽
2

𝐿

2
0

𝐿

2
0

]  𝑑𝑥  

(Eq. 10b) 

 

By calculating the axial force and bending moment using Eqs.9a and b and substituting them into 

Eqs.10a and b, the total strain energies can be calculated. The displacement in the x-direction 

(δx ) is obtained by applying the total strain energy and Castigliano's theorem at the P2 or P3. The 

equivalent elastic modulus in the x-direction is obtained using Hooke's law and presented in 

Eq.11. Supplementary equations can be found in Maple file provided for the calculations in x-

direction. 

𝐸𝑥 = 𝐹(𝐸𝑠, 𝐸11, 𝐿, 𝐻, 𝑊, 𝐷, 𝑡, 𝛽) (Eq.11) 

3.3. Calculation of elastic properties in the y-direction 

In this section, same as the x-direction, Castigliano's second theorem theory was used to 

calculate the elastic properties of the bio-inspired unit cell in the y-direction. By applying a 

tensile load in the y-direction in tessellation, the deformation of a unit cell is obtained, and the 

boundary conditions are extracted. Due to symmetry, half of the unit cell was considered. The 

free diagram of half the unit cell is shown in Fig.5. 
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Figure 5. Free digram of half of the unit cell under loading y-direction 

 

 In this figure R1 and R2 are considered as the reaction loads, P2 and P3 indicate the virtual forces 

acting in the x-direction to obtain lateral displacement, P1 is the force acting in the y direction, 

and M1, M2, M3, M4, M5 represent the reaction moments at points B, A, E, I, J, respectively. The 

length of the struts BC, CK, KF, FG, GH are considered L and the length of struts CA = B1, FE = 

B2, KI = C1 and GJ = C2 are considered L/2. In addition, it is considered that 𝛼 = 2𝛽, 𝛾 = 2𝛽, 

𝜑𝐹𝐺 = 2𝛽, 𝜑𝐶𝐾 = 3𝛽. Internal forces and moments are obtained by writing the equilibrium 

equation in every strut from the unit cell and presented in Eqs.12a and b. 

 

𝐹𝐵𝐶 = 𝑃1𝑠𝑖𝑛𝛾 

𝐹𝐶𝐴 = −𝑅1 

𝐹𝐶𝐾 = 𝑃1 + 𝑅1𝑐𝑜𝑠𝜑𝑐𝑑 

𝐹𝐾𝐼 = 𝑃2 

𝐹𝐾𝐹 = 𝑃1𝑠𝑖𝑛𝛼 + (𝑅1 + 𝑃2)𝑐𝑜𝑠𝛼 

𝐹𝐹𝐸 = −𝑅2 

𝐹𝐹𝐺 = 𝑃1𝑠𝑖𝑛𝜑𝑓𝑔 − (𝑅1 + 𝑃2 + 𝑅2)𝑐𝑜𝑠𝜑𝑓𝑔 

𝐹𝐺𝐽 = 𝑃3 

𝐹𝐺𝐻 = 𝑃1𝑠𝑖𝑛𝛽 + (𝑅1 + 𝑃2 + 𝑅1 + 𝑃3)𝑐𝑜𝑠𝛽 

 

(Eqs.12a) 
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After calculating the internal forces and moments in each strut of the unit cell, the axial and 

bending strain energies can be written as Eqs.13a, and b. In the diagonal struts, the mechanical 

properties are assumed to be Es, and in the remain straight struts, it is considered to be E11. In the 

straight struts, the thicknesses are double. Furthermore, cross-section area and moment of inertia 

in the straight struts are considered A2t and I2, respectively. In other struts, they are considered At 

and I1, respectively. 

 

𝑈𝑎𝑥𝑖𝑎𝑙 =
1

2𝐸𝑠𝐴𝑡
[ ∫ 𝐹𝐵𝐶

2 + ∫ 𝐹𝐶𝐾
2 + ∫ 𝐹𝐾𝐹

2 + ∫ 𝐹𝐹𝐺
2L

0

L

0

𝐿

0

𝐿

0
+ ∫ 𝐹𝐺𝐻

2𝐿

0
]  𝑑𝑥 +

1

2𝐸11𝐴2𝑡
[∫ 𝐹𝐶𝐴

2 +
𝐿

2
0

∫ 𝐹𝐹𝐸
2

𝐿

2
0

+ ∫ 𝐹𝐾𝐼
2 + ∫ 𝐹𝐺𝐽

2
𝐿

2
0

𝐿

2
0

 ]  𝑑𝑥  

 

(Eq.13-a) 

𝑈𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =
1

2𝐸𝑠𝐼1
[∫ 𝑀𝐵𝐶

2 + ∫ 𝑀𝐶𝐾
2 + ∫ 𝑀𝐾𝐹

2 + ∫ 𝑀𝐹𝐺
2𝐿

0

𝐿

0

𝐿

0

𝐿

0
+ ∫ 𝑀𝐺𝐻

2𝐿

0
 ] 𝑑𝑥 +

1

2𝐸11𝐼2
[∫ 𝑀𝐶𝐴

2 + ∫ 𝑀𝐹𝐸
2

𝐿

2
0

𝐿

2
0

]  𝑑𝑥  

(Eq.13-b) 

 

The y-direction axial forces and bending moments which are evaluated using Eqs.12a and b are 

substitute in Eqs.13a and b to obtain the total strain energy. The displacement in the y-direction 

(δy ) can be obtained by applying the total strain energy and Castigliano's theorem at the P1. 

Accordingly, the equivalent elastic modulus in the y-direction is obtained using Hooke's law and 

𝑀𝐵𝐶 = 𝑀1 − 𝑃1𝑥𝑐𝑜𝑠𝛾 

𝑀𝐶𝐴 = 𝑀2 

𝑀𝐶𝐾 = 𝑀1 + 𝑀2 − 𝑃1𝐿𝑐𝑜𝑠𝛾 − 𝑅1𝑥 

𝑀𝐾𝐼 = 𝑀4 

𝑀𝐾𝐹 = 𝑀1 + 𝑀2 − 𝑀4 − (𝑃1𝑐𝑜𝑠𝛾 + 𝑅1)L + (𝑃1𝑐𝑜𝑠𝛼 − (𝑃2 + 𝑅1)𝑠𝑖𝑛𝛼)𝑥 

𝑀𝐹𝐸 = 𝑀3 

𝑀𝐹𝐺 = 𝑀1 + 𝑀2 + 𝑀3 − 𝑀4 − (𝑃1𝑐𝑜𝑠𝛾 + 𝑅1 − 𝑃1𝑐𝑜𝑠𝛼 + (𝑃2 + 𝑅1)𝑠𝑖𝑛𝛼)𝐿 − (𝑃1𝑐𝑜𝑠𝜑𝑓𝑔 +

(𝑅1 + 𝑃2 + 𝑅2)𝑠𝑖𝑛𝜑𝑓𝑔)𝑥  

𝑀𝐺𝐽 = 𝑀5 

𝑀𝐺𝐻 = 𝑀1 + 𝑀2 + 𝑀3 − 𝑀4 − (𝑃1𝐿1𝑐𝑜𝑠𝛾 + 𝑅1 + 𝑃1𝑐𝑜𝑠𝛼 + (𝑃2 + 𝑅1)𝑠𝑖𝑛𝛼 + 𝑃1𝑐𝑜𝑠𝜑𝑓𝑔 +

(𝑅1 + 𝑃2 + 𝑅2)𝑠𝑖𝑛𝜑𝑓𝑔)𝐿 + (𝑃1𝑐𝑜𝑠𝛽 − (𝑅1 + 𝑅2 + 𝑃2)𝑠𝑖𝑛𝛽)𝑥  

 

(Eqs.12b) 
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presented in Eq.14. Supplementary equations can be found in Maple file provided for the 

calculations in y-direction. 

𝐸𝑦 = 𝐹(𝐸𝑠, 𝐸11, 𝐿, 𝐻, 𝑊, 𝐷, 𝑡, 𝛽) (Eq.14) 

 

Poisson’s ratio is defined as the ratio of lateral strain to longitudinal strain. To obtain the 

Poisson’s ratio, virtual loads i.e., P2 and P3 are imposed for lateral displacement (Fig.5). The 

lateral displacement in the x-direction is calculated using Castigliano’s second theorem and 

differentiation of the total strain energy to the P2 or P3. Having the displacement in the y-

direction the major Poisson’s ratio (𝜐𝑥𝑦) can be evaluated as Eq.15. 

𝜐𝑥𝑦 = −
𝜀𝑥

𝜀𝑦
 (Eq.15) 

Furthermore, 𝜐𝑦𝑥 can be obtained using the Maxwell theory, as Eq.16. 

𝜐𝑦𝑥 =
𝜐𝑥𝑦𝐸𝑦

𝐸𝑥
 

(Eq.16) 

4. Experimental method 

4.1. Materials and samples fabrication 

For experimental testing, composite specimens were manufactured using an FDM 3D printer. 

Polylactic acid (PLA) filament (the matrix material) and continuous E-glass fiber (the reinforcing 

material) were used. Fig.6a shows a composite bio-inspired cellular structure manufactured using 

the FDM 3D printer. As shown in Fig 6, a continuous glass fiber is located in the direction of the 

struts of the unit cell and comes out of the nozzle with the PLA matrix simultaneously. 

The mechanism of the manufacturing method is shown in Fig.6b. A special nozzle has been 

designed for the simultaneous impregnation system. The glass fiber enters the melting chamber 

through its inlet on the side surface of the nozzle, and the impregnated fibers are guided out of 

the nozzle and placed on the building plate. The printing speed of the samples was 10 mm/s, and 

the nozzle temperature and the printing bed were set to 200° C and 60 mm/s, respectively. 
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(a) 

 

 

(b) 

  Figure 6. (a) Printing bio-inspired cellular structure with a continuous fiber, (b) Printing process[37] 

 

4.2. Experimental test 

The fiber-reinforced cellular structure was subjected to uniaxial compression testing to validate 

the proposed analytical model. A minimum of three samples were tested in the x and y directions 

(Figs.7). A SANTAM machine was used to perform the uniaxial compression testing, and a fixed 

crosshead speed of 5 mm/min was used. The load-displacement were obtained for analyzing, and 
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the nominal stress and the nominal strain were obtained to calculate modulus of elasticity. A 

high-resolution camera was also used to investigate the deformation and failure in samples 

(Fig.8). Important geometric parameters in the composite bone-inspired unite cell with 

20mm×20mm×20mm dimensions are presented in Table1. 

 

  

                  a                             b 

  Figure 7. (a) Compression test; x-direction, (b) y-direction 
 

 

 

Figure 8. compression test machine with DIC camera 

 

 

 



17 
 

Table 1. Geometrical parameters of bio-inspired unit cell  

Values variables values variables 

20 mm L 3.8 mm BC 

20 mm W 5 mm CA 

1mm t 5 mm CK 

20mm D (Extrusion depth) 5 mm KI 

63.43˚ 𝛼 5 mm KF 

25˚ 𝛽 2.76 mm FE 

41.14˚ 𝛾 7.07 mm FG 

90˚ 𝜑𝑐𝑑 2.24 mm GJ 

45˚ 𝜑𝑓𝑔 5.92mm GH 

 

4.3. Digital image correlation (DIC) 

Digital image correlation (DIC) is a 3D full-field, optical non-contact method to analyze the 

stress and strain of materials. This method compares images taken of the material before and 

after loading, so called reference and deformed images, respectively [40]. This technique uses a 

speckle pattern on the surface of material to increase the image's contrast. This method is also 

called digital speckle photography which is based on the computerization of the speckle pattern 

method by photographing a material exposed to white light in which the surface has a random 

speckle pattern to measure the displacement field and strain. A high-resolution camera captured 

the speckle pattern before and after the in-plane deformation to obtain a high-accuracy 

displacement field [41][42]. Various studies are utilized the DIC technique. Some studies 

employed this technique to obtain the stress intensity in polymeric materials such as PMMA 

[43]. Also, this system is used in some studies to assess Poisson's ratio of the cellular structures 

[1], [44] and also in biomedical research, such as crack growth in the bone [45] or mechanical 

properties of the cortical bone [46]. In aerospace engineering, it is performed to obtain strains 

and displacements in the crack growth length in the parts [47] or strain fields in carbon-epoxy 

composite plates [48]. 

In this study, the DIC technique was used to obtain Poisson's ratio by recording a speckle pattern 

on the surface of the bone-inspired cellular structure, as shown in Fig.9a. The speckle pattern on 
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the surface of the structure generated by scattering white paint. A compression test was 

conducted at a displacement rate of 5 mm/min and images were captured every second during 

the experimental procedure. All of the captured images imported in digital image analysis 

software GOM correlate. In this software, local deformations were calculated based on detecting 

the spackle pattern in two consecutive images. 

The value of Poisson's ratio is estimated by defining longitudinal distance (AB) and transverse 

distance (CD). The elastic region was chosen to investigate the Poisson's ratio value. Fig.9b 

shows a typical example of images to obtain the Poisson's ratio. 

 

(a) 
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(b) 

Figure 9. (a) Images processed by GOM Correlate software, the first image of strain field, (b) the 

image is selected for calculating Poisson's ratio 

 

5.Finite element simulation 

In this section numerical method is explained to assess mechanical properties in an orthotropic 

bone-inspired unit cell. ABAQUS software version 2017 was used for the simulation. Also, an 

explicit solver was employed in numerical simulation. The bio-inspired cellular structure was 

made of fiber-reinforced PLA. The orientation of the fibers in each unit cell strut was determined 

in the longitudinal direction of the strut. Fig.10 indicates the orientations in each strut that a local 

coordinate system was defined for each strut of the bone-inspired unit cell. In the defined local 

coordinate system, the x-axis was located along the struts and the y-axis was located 

perpendicular to the x-axis. The equivalent mechanical property of fiber-reinforced PLA was 

assigned to each strut of the unit cell. 
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Figure 10. Fiber orientations in the bone-inspired unit cell 

 

The proposed structure was subjected to compressive loading in both the x and y directions in the 

numerical analysis, and the structure was placed between two rigid plates. A displacement 

control condition was considered in the simulation. Boundary conditions applied to the cellular 

structure under loading in the y-direction are shown in Fig.11. The bottom rigid plate was 

completely fixed, and the upper rigid plate was set to move only in the y-direction and in other 

directions was set to be fixed. 

 

 

Figure 11. Boundary condition applied in numerical simulation 
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 A mesh convergence analysis was also implemented, a mesh size of 0.5 mm was chosen, and the 

C3D8R element was utilized to mesh the model (Fig.11). Also, the general contact was applied 

to the cellular composite structures to model the structure contact behavior and contact properties 

were defined with a coefficient of friction equal to 0.2 for all surfaces. 

For the simulation of non-linear behavior, the VUSDFLD subroutine was employed to assign the 

material behavior of a composite bone-inspired structure. Due to damage growth, several field 

variables were defined to simulate decreasing mechanical properties in the composite cellular 

structure. The struts of the unit cell were modeled as orthotropic material, and the ultimate 

tensile stress of the PLA and Fiber-reinforced PLA was chosen as 60 MPa, and 157 MPa, 

respectively. In the VUSDFLD subroutine, the maximum stress criteria were employed to assess 

decreasing mechanical properties of the fiber-reinforced bio-inspired structure. According to the 

assumption in this criterion, shear stress was not considered. According to this algorithm, the 

stress in the fiber and perpendicular to fiber directions were compared with the ultimate stresses 

to assign decreasing the mechanical properties in each element. 

The mechanical properties of PLA and fiber-reinforced-PLA have been obtained in a previous 

study by current authors [49]. Due to the different filament brands used, the rule of mixture 

equation was used to get the E1 property and presented in Table 2. In 3D printing processes, the 

parts go under the repeated cycles of heating and cooling that can lead to residual stress. In 

addition, the layers can have different stiffnesses due to printing parameters and the heat 

dissipation. It is worth noting that in this study, the effects of these parameter were considered 

globally and at the macro-level using 3D printing of standard tensile testing samples. These 

samples were used in tensile testing and the equivalent mechanical properties were assigned to 

the simulated model. 

The numerical analysis results are used to compare with experimental and analytical results. 
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Table 2. Mechanical properties of the Fiber-reinforced-PLA 

Specimen E1 (GPa) 

 

E2 & E3 (GPa) 

 

 

G12, G13 & G23 (GPa)* 

 

12, 13 & 23* 

Fiber-reinforced-PLA 9.574 3.3 0.8 0.18 

*These parameters are assumed. 

 

6. Results and discussion 

6.1. Validation of the analytical model: Experimental and Numerical 

For experimental compression testing and numerical modeling, force-displacement diagrams in 

both directions are shown in Fig.12. 

Fig.12a shows the force-displacement diagrams of the composite bone-inspired structure under 

loading x-direction numerically and experimentally. According to this figure in the experimental 

diagram, the amount of force is reached the maximum value of 4kN. After that, the force 

distributes almost uniformly while the structure collapses, and the plateau stress region appears. 

After this region the structure completely collapses, and the force increases sharply. In the 

numerical diagram, the amount of peak force is ~ 3.7 kN. After reaching the peak force, the 

plateau stress region appears which is close to the experimental diagram, and the force increases 

with the similar pattern to the experimental results. In general, the numerical simulation has good 

agreement with the experimental results in predicting the structure behavior under loading x-

direction. 

Fig.12b indicates the force-displacement diagrams under loading y-direction numerically and 

experimentally. The diagram of the experimental testing shows the amount of force reaches the 

maximum value of ~2kN, and after that, by collapsing the structure, the force increases upwards. 

The numerical simulations shows a similar trend in comparison with the experimental 

measurements for the peak force and the failure behavior of the structure. 
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In general, by comparing the results of x-direction and y-direction loading, it cand be concluded 

that that the composite structure has a higher amount of peak force in the x-direction, and the 

structure has a higher capacity to bear the loading. 

 

(a) 

 

(b) 

Figure 12. Force-displacement curves obtained by experimental and numerical methods, (a) under 

loading in the x-direction, (b) under loading in the y-direction 
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Energy absorption (EA) is an important parameter for assessing cellular structures. Specific 

Energy Absorption (SEA) of the bone-inspired unit cell with isotropic struts is compared with 

conventional honeycomb and re-entrant cellular structures in [30]. The results showed a 29% 

improvement in the energy absorption capability of the bone-inspired structure. In this study by 

adding the continuous glass fiber to the printed structure, the EAs at the displacement of 40mm 

are 108J and 122J in x and y directions, respectively. Compared to the bone-inspired unit cell 

with isotropic struts, the composite bioinspired structure shows a 250% improvement in energy 

absorption of the structure in the x-direction and an increase of 262% in energy absorption of the 

y-direction. 

The amounts of young’s modulus and Poisson's ratio have been extracted for the diagrams in 

both x and y directions. The gradient of force-displacement curves was used to extract young’s 

modulus. Poisson ratio was also obtained based on  DIC technique using transverse strain to axial 

strain. The analytical model was also used to calculate young’s modulus and Poisson's ratio. 

Fig.13a compares young’s modulus values obtained from analytical, numerical, and 

experimental methods. The difference between the experimental and the theoretical calculations 

in the x and y directions are 2.7% and 6.16%, respectively. Compared to results from the 

numerical modeling, the values from the analytical model show are a small difference of 1.7% in 

the x-direction and a moderate difference of 12% in the y-direction. These results indicate that 

that the developed analytical model can predict the elastic properties with high accuracy. 

Furthermore, Young’s modulus in the x-direction is significantly higher compared to young’s 

modulus in the y-direction. In the x-direction, fibers are oriented in the loading direction, but in 

the y-direction, the fibers are perpendicular to the loading direction. Therefore, the amount of 

stiffness in the x-direction is significantly higher compared to the y-direction. 
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(a) 

 

(b) 

Figure 13. Comparison between the theoretical and experimental test; (a) Young’s modulus, (b) 

Poisson’s ratio 

 

Fig.13b compares the values of Poisson's ratio (𝜐𝑥𝑦) obtained from the analytical calculation, 

numerical modeling and experimental measurements using DIC technique. The calculated 

Poisson’s ratio from the analytical method shows a moderate difference of 12% compared to the 



26 
 

results obtained from the numerical modeling. However, there is a large difference of 20% 

between the experimental and the calculated Poisson’s ratio from the analytical method. 

Poisson’s ratio has a high sensitivity to the angles of cells [50]. It is very difficult to manufacture 

the angles and their dimensions the same as the ones used in the modeling. Thus, they cause 

differences between the experimental and numerical results. 

The numerical modeling has been used to investigate the effect of adding  fiber on mechanical 

properties of cellular structures. Fig.14 compares young’s modulus of the bio-inspired cellular 

structures for a glass fiber-reinforced PLA (continuous glass fiber) and a pure PLA. 

 

     Figure 14. Effect of fiber in elastic properties in x and y directions 

 

In the orthotropic honeycomb structure, young’s modulus in the x and y directions are increased 

by 73% and 64%, respectively for a glass fiber-reinforced PLA. Therefore, continuous glass fiber 

plays an effective role on the enhancement of the mechanical properties of the bone-inspired unit 

cell. 
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6.2. Parametric study 

For a composite bio-inspired unit cell, the effects of geometrical parameters (as shown in Fig.2) 

on elastic modulus and Poisson's ratio have been studied in both x and y directions. These 

properties have been investigated based on effective angles and lengths. The unit cell with the 

geometrical parameters of Table 1 is selected for the parametric study. 

Figs.15 shows the effect of unit cell geometrical parameters on the elastic modulus in the x-

direction. Fig.15a displays the effect of changes of B1 and B2 on the elastic modulus. This 

parametric study only considered B1 and B2, and other parameters have constant values, 

according to Table 1. In this Figure with increasing B1 and B2, the elastic modulus decreases.   In  

Fig. 15b, B1 and 𝛽 are considered and other geometrical parameters are constant. This figure 

shows with increasing the angle 𝛽, the elastic modulus decreases, and with increasing B1, the 

elastic modulus is almost constant and slightly decreases. In the Fig.15c, B1 and 𝛾 are considered 

and values of the other parameters are constant. This figure shows that when angle 𝛾 increases, 

the amount of elastic modulus decreases, and with increasing B1 value, the elastic modulus is 

almost constant and decreases slightly. Fig.15d illustrates that as 𝛽 and 𝛾 increase the elastic 

modulus decrease. In these parametric diagrams, 𝛽 and 𝛾 are considered and other geometrical 

parameters of the unit cell are constant. 

  

       (a)    (b) 
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     ©         (d) 

Figure 15. Effect of changes of a unit cell parameter on the elastic modulus in the x-direction. 

 

Figs.16 shows the effect of unit cell geometrical parameters on the elastic modulus in the y-

direction. Fig.16a displays the effect of changes of B1 and 𝛽  on the elastic modulus. According 

to the obtained results, the elastic modulus increased with enhancing the values of B1 and slightly 

decreased with reducing the value of B1. In these parametric diagrams, B1 and 𝛽 are considered 

and other parameters have constant values, according to Table 1. Fig. 16b indicates that with 

increasing the value of B1 and B2, the elastic modulus decreases. Effect of B1 and B2 is assessed 

in this figure and other parameters have constant values. Fig.16c shows that the elastic modulus 

increases with increasing the value of  𝛼 and 𝛾 angles. 𝛼 and 𝛾 angles only considered in this 

study and other geometrical parameters have constant values. In Fig.16d, the effect of 𝛼 and 𝛽 is 

investigated and other parameters of the unit cell are considered constant values. This figure 

illustrates the effect of changes of 𝛼 and 𝛽 on the elastic modulus. The elastic modulus increased 

with enhancing the value of  𝛼 and 𝛽 angles. 
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      (a)          (b) 

  

          (c)           (d) 

Figure 16. Effect of changes of a unit cell parameter on the elastic modulus in the y-direction. 

 

Figs.17 shows the effect of unit cell geometrical parameters on the elastic modulus in the y/x-

directions. In Fig.17a shows that with increasing the 𝛼 angle, Ey/Ex enhances, while there is no 

change in Ex/Ey by changing B2 . In this parametric study, only the effect of B2 and 𝛼 are 

considered and other parameters are constant. Fig.17b indicates that with increasing the 𝛾 and 𝛼 

angles, the elastic modulus increases. This figure investigates the effect of 𝛾 and 𝛼 angles on the 

elastic modulus. Fig. 17c shows that increasing the value of  𝛼 and 𝛾 angles results in the 

enhancement in the elastic modulus. In this figure, only 𝛼 and 𝛾 angles are considered. Fig.17d 
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illustrates that the elastic modulus raises with increasing the value of  𝛼 and 𝛽 angles and other 

geometrical parameters are considered constant. 

  

  (a)       (b) 

  

        ©        (d) 

Figure 17. Effect of changes of a unit cell parameter on the elastic modulus in the y/x direction. 

 

Figs.18 demonstrates the effect of geometric parameters on the Pois’on's ratio. Fig.18a shows 

that with increasing B2 the Pois’on's ratio increases while by increasing the value of B1 the 

Pois’on's ratio decreases. Other geometrical parameters of the unit cell are considered constant 

value, according to Table 1. Fig. 18b displays that the value of Poisson’s ratio increases with 

increasing the value of 𝛼 , while it decreases with increasing the value of B1. In this parametric 

study, only 𝛼 and B1 are considered. Fig. 18c shows that with increasing the both angles the 
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Poisson’s ratio increases and other geometrical parameters in the bio-inspired unit cell have 

constant values. In Fig.18d, it is obvious with increasing the 𝛼  and 𝛽 angle the value of 

Poisson’s ratio increases. 𝛼  and 𝛽 angles are only considered and other parameters are assumed 

constant. 

  

         (a)         (b) 

  

        (c)         (d) 

Figure 18. Effect of changes of a unit cell parameter on the Poisson’s ratio. 
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Conclusion 

In this study, the total strain energy in an orthotropic ply is obtained by using classical 

lamination theory (CLT) to evaluate the mechanical properties in the proposed orthotropic 

cellular structure. Subsequently, Castigliano's second theorem was used to calculate the elastic 

properties in both x and y directions. Composite bio-inspired cellular structures were made using 

an FDM 3D printing method and subjected to a compression test to validate the proposed 

analytical model. The DIC technique was also implemented to estimate Poisson's ratio by 

measuring strain and displacement contours. The results of the theoretical model and 

experimental tests showed a good agreement. Numerical simulations have also been employed 

for further studies. The numerical analysis showed that the amount of stiffness in the x-direction 

in the fiber-reinforced cellular structure has increased by 73% compared to the structure without 

fiber. In addition, the amount of stiffness in the y-direction in the fiber-reinforced cellular 

structure has increased by 64% compared to the structure without fiber. Finally, a parametric 

study was performed to investigate the effects of geometric parameters on the mechanical 

properties. The bio-inspired cellular structure has various geometrical parameters. Therefore, the 

proposed analytical model can be utilized to optimize cellular structures for various applications 

such as energy absorber structures in vehicles or bio-implant designs using biomaterials.  
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