Skip to main content

Research Repository

Advanced Search

Microbial fuel cells and their electrified biofilms (2021)
Journal Article
Greenman, J., Gajda, I., You, J., Mendis, B. A., Obata, O., Pasternak, G., & Ieropoulos, I. (2021). Microbial fuel cells and their electrified biofilms. Biofilms, 3, Article 100057. https://doi.org/10.1016/j.bioflm.2021.100057

Bioelectrochemical systems (BES) represent a wide range of different biofilm-based bioreactors that includes microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial desalination cells (MDCs). The first described bioelectrical b... Read More about Microbial fuel cells and their electrified biofilms.

Electrosynthesis, modulation, and self-driven electroseparation in microbial fuel cells (2021)
Journal Article
Gajda, I., You, J., Mendis, B. A., Greenman, J., & Ieropoulos, I. A. (2021). Electrosynthesis, modulation, and self-driven electroseparation in microbial fuel cells. iScience, 24(8), Article 102805. https://doi.org/10.1016/j.isci.2021.102805

Microbial electrosynthesis (MES) represents a sustainable platform that converts waste into resources, using microorganisms within an electrochemical cell. Traditionally, MES refers to the oxidation/reduction of a reactant at the electrode surface wi... Read More about Electrosynthesis, modulation, and self-driven electroseparation in microbial fuel cells.

Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species (2020)
Journal Article
Gajda, I., Obata, O., Greenman, J., & Ieropoulos, I. A. (2020). Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species. Scientific Reports, 10, Article 5533. https://doi.org/10.1038/s41598-020-60626-x

This work presents a small scale and low cost ceramic based microbial fuel cell, utilising human urine into electricity, while producing clean catholyte into an initially empty cathode chamber through the process of electro-osmostic drag. It is the f... Read More about Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species.

Long-term bio-power of ceramic microbial fuel cells in individual and stacked configurations (2020)
Journal Article
Gajda, I., Obata, O., Jose Salar-Garcia, M., Greenman, J., & Ieropoulos, I. A. (2020). Long-term bio-power of ceramic microbial fuel cells in individual and stacked configurations. Bioelectrochemistry, 133, Article 107459. https://doi.org/10.1016/j.bioelechem.2020.107459

© 2020 The Authors In order to improve the potential of Microbial Fuel Cells (MFCs) as an applicable technology, the main challenge is to engineer practical systems for bioenergy production at larger scales and to test how the prototypes withstand th... Read More about Long-term bio-power of ceramic microbial fuel cells in individual and stacked configurations.

Long Term Feasibility Study of In-field Floating Microbial Fuel Cells for Monitoring Anoxic Wastewater and Energy Harvesting (2019)
Journal Article
Cristiani, P., Gajda, I., Greenman, J., Pizza, F., Bonelli, P., & Ieropoulos, I. (2019). Long Term Feasibility Study of In-field Floating Microbial Fuel Cells for Monitoring Anoxic Wastewater and Energy Harvesting. Frontiers in Energy Research, 7, https://doi.org/10.3389/fenrg.2019.00119

© Copyright © 2019 Cristiani, Gajda, Greenman, Pizza, Bonelli and Ieropoulos. In the present work different prototypes of floating MFCs have been tested in anoxic water environments of wastewater plants in Italy, over a period of 3 years. Several con... Read More about Long Term Feasibility Study of In-field Floating Microbial Fuel Cells for Monitoring Anoxic Wastewater and Energy Harvesting.