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1. Introduction 

 

In regression analyses the concept of lack-of-fit may be paraphrased as the 

“need to have different regression equations in different parts of the 

regression space to adequately model a response variable, Y”.  The Chow 

test (Chow, 1960) is often used to determine whether a regression model 

can be improved upon by incorporating a structural break; if such a break is 

warranted then the analyst may choose to proceed with separate regression 

equations or incorporate a break in the model by a judicious use of dummy 

variables. Andrews (1993), Hansen (1992), Inder and Hao (1996) and 

Greene (1999) have suggested alternative methods to identify structural 

changes.  

 

This paper presents an alternative approach to modelling structural breaks 

through the use of what may be termed a “broken stick” model and is 

applied to EU GDP per capita data. Broken stick regression is the modelling 

of two or more intersecting straight lines with the break points forming the 

piecewise linear regression.  We consider the statistical significance of the 

parameters of a broken stick model both when the nodes (break points) are 

pre-specified based on prior reasoning and also when they identified from 

an examination of the data.  

 

 

2. Broken Stick Models 

 

Let X denote an explanatory variable of a response Y.  Define 
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and consider 

 

22110 XXY . 

 

where  denotes a random error component.  When kX  the structural 

part of the above model reduces to XY 10 .  When kX  the 

structural part of the model reduces to XkY 2210 )( .  If 

xkX , 0x then in the limit as ,0x XY 10 .  This 

model specification is piecewise continuous and 1  indicates the rate of 

change of X with Y for kX and 2  indicates the rate of change of 

X with Y for kX . If 21  then the model reduces to a simple linear 

relationship between X and Y. 

 

A model formulation allowing a double “break” at X= 1k  and at X= 2k (with 

12 kk ) is 

 

3322110 XXXY  
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where 1  denotes the rate of change of X with Y for 1kX ; 2  indicates 

the rate of change of X with Y for 21 kXk  and 3  indicates the rate of 

change X with Y for X > 2k .  More generally a model comprising B broken 

sticks with break points bk  ( 1,,,1 Bb  ), bb kk 1 , is defined by  
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where the general terms are defined by 
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3.  Data 

 

We applied the above models to EUROSTAT-sourced GDP per capita (in 

1995 prices) data for the 1980–2008 period. The observations are raw 

averages for all countries included in the sample for each year. The data 

includes Cyprus, Czech Republic, Estonia, Hungary, Lithuania, Latvia, 

Malta, Poland, Slovenia and Slovak Republic from 1990 onwards only. The 

early 1990s was plagued by severe structural changes including declines in 

output and high inflation rates, the advent of The Maastricht Treaty and 

EMU. These events may be associated with a structural change in GDP per 

capita suggesting the possibility of at least one important break point in this 

dataset; see Figure 1. 
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Figure 1 GDP per capita in Euros for EU 
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4. Applying the Single Break Model   

 

Consider a broken stick model with a single break at X=k and structural 

specification Y= 0 + 11 X + 22 X .  Consider GDP per capita to be the 

dependent variable (Y) and code the years (1980, 1981, …, 2008) with the 

values X=1,2,…,29.  Table 1 summarises the coefficient of determination 
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( 2R ) for each OLS estimation for each possible single break point for the 

sample data.  Under this approach the value of k that minimises the within 

sample error sum of squares is k=16, corresponding to the year 1996. 

Estimated parameters ( 026,14ˆ
0 ; 1

ˆ =79.4; 2
ˆ =312.0) and a summary of 

standard tests of significance ( 0:0 jH ) is given in Table 2.   

 

Table 1. R
2
s 

Break 2R  )(2 adjR   Break 2R  )(2 adjR   Break 2R  )(2 adjR  

           

1 0.829 0.823  10 0.850 0.838  19 0.900 0.892 

2 0.831 0.818  11 0.865 0.855  20 0.893 0.884 

3 0.832 0.819  12 0.880 0.871  21 0.885 0.876 

4 0.832 0.819  13 0.893 0.884  22 0.878 0.869 

5 0.832 0.819  14 0.903 0.896  23 0.868 0.858 

6 0.833 0.820  15 0.909 0.902  24 0.863 0.852 

7 0.834 0.821  16 0.911 0.905  25 0.856 0.845 

8 0.837 0.824  17 0.910 0.904  26 0.849 0.837 

9 0.841 0.829  18 0.906 0.899  27 0.840 0.828 

 

 

Table 2: Summary of standard tests of significance 
 No Break One Break  

(k = 16) 

Two Break 

(k1 = 9, k2 = 14) 

          

Effect Coef t p Coef t p Coef t p 

          

Intercept (b0) 13192 47.91 <0.001 14026 53.16 <0.001 13050 57.16 <0.001 

Gradient b1 183.58 11.45 <0.001 79.4 3.27 0.003 296.9 7.91 <0.001 

Gradient b2    312.0 10.89 <0.001 -250.1 -5.27 <0.001 

Gradient b3       330.8 20.14 <0.001 

          
2R  82.9%   91.1%   96.8%   
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5.   Assessing Significance of the Single Break Model 

 

Standard tests of significance, such as those reported in Table 2, do not state 

whether the inclusion of a single breakpoint provides a real improvement in 

overall fit compared with a simple linear specification.  Such an 

improvement would only be apparent if 21 .  Bootstrap procedures 

(Davidson and Hinkley, 1997) provide a means to validly answer this 

question. 

 

A first stage in the bootstrap assessment of significance of a single break 

model is to fit a simple linear model and to obtain the predicted values ( iŷ ) 

and sample residuals ( ie ).  A new bootstrap data set adhering to a simple 

linear specification is obtained by sampling the residuals with replacement 

to create bootstrap residuals ir  and to form a new data set ( iii ryx ˆ, ), 

i=1,….,n.  This newly created sample is used to fit the single break model 

and a measure of overall model fit ( 2R ) is recorded. Repeating this process 

with B bootstrap samples produces an empiric distribution for which the 

corresponding observed sample statistic ( 2R ) may be judged against.   

 

To assess the statistical significance of the one-break model, two versions 

of the bootstrap algorithm have been implemented.  In the first case (Case 

A1) we consider the breakpoint to be fixed at k=16 and in the second case 

we consider the value of k to be determined by the data (Case A2).  

Algorithmically, for Case A1,  

(1a) generate a bootstrap sample using the simple linear (no break) 

model 

(2a) for the given bootstrap sample fit the one break model with k=16  

(3a) record the 2R   

 

Steps (1a), (2a), (3a) are repeated B times.  The proportion of times that the 
2R  values from bootstrap samples exceed the corresponding value of 2R for 

the sample data is recorded.  This proportion gives a bootstrap estimate of 

the p-value for testing 210 :H  against 211 :H  assuming k=16.   
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In the second case, Case A2, the algorithm implemented has the form 

(1b) generate a bootstrap sample using the simple linear (no break) 

model 

(2b) fit the single break model using the given bootstrap sample; let k be 

bootstrap sample dependent and choose the value of k to be that 

value which maximises the goodness-of-fit, 2R  

(3b) record the 2R  value 

 

Steps (1b), (2b), (3b) are repeated B times.  The proportion of times that the 
2R  values from bootstrap samples exceed the corresponding value of 2R  

for the sample data is recorded.  This proportion gives a bootstrap estimate 

for testing 210 :H  against 211 :H  without a pre-specification of 

k. 

 

Table 2 summarises the fitted simple linear regression model used to 

generate the bootstrap samples and also summarises the single break model 

using k=16 (corresponding to 1996). All effects are statistically significant; 

the positive sign for the coefficients indicates that under this formulation the 

rate of change up to 1996 is positive (79.39 euros per capita per year) and 

this increases to 311.83 euros per capita per year.  Application of Case A1, 

using B=5,000 bootstrap samples, provides an estimated p-value of 0.019 

(97 of the 5,000 bootstrap samples had 2R  values that exceeded the 

observed sample 2R  (91.1%) statistic).  Application of Case A2, using 

B=5,000 bootstrap samples, provides an estimated p-value of 0.146 

(approximately fifteen percent of the bootstrap samples produced an 2R  

value that exceeded the observed sample value of 2R =91.1%, when k was 

determined by maximizing the bootstrap sample of 2R ).      

 

6. Applying the Two Break Model   

 

Consider a broken stick model with a breaks at 1kX  and at 2kX and 

with structural specification Y= 0 + 11 X + 22 X + 33 X .  All possible pairs 

of values for 1k  and 2k  are considered and 2R  obtained.  Figure 2 plots the 

values of 2R .  The “top” five models, in terms of within sample goodness-
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of-fit, are ( 1k , 2k , 2R )=(10,11,98.1),  ( 1k , 2k , 2R )=(10,12,97.9),  

( 1k , 2k , 2R )=(10,13,97.4), ( 1k , 2k , 2R )=(9,13,97.0) and 

( 1k , 2k , 2R )=(9,14,96.7).  Taken at face value the differences in the 2R  

values between these models seem quite minimal. From the possibilities 

listed a potential criticism of the first four models is the relatively small gap 

between breakpoints which may reflect local minima arising as chance 

random patterns in the data and on this basis the fifth model will tentatively 

be taken as a good two-break model. 

 

Figure 2: Contour plot 
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7. Assessing Significance of the Double break model 
 

The double break model Y= 0 + 11 X + 22 X + 33 X  reduces to the simple 

linear model when 1 = 2 = 3 .  Bootstrapping may be used to test the null 

hypothesis :0H 1 = 2 = 3  against 1H :“At least two values of j differ”.    

 

If break points can be considered to be pre-specified then the bootstrap 

algorithm for these hypotheses would be: 

 

(1c) generate a bootstrap sample using the simple linear (no break) 

model 

(2c) for the bootstrap sample fit the double break model with 1k =9 and 

2k =14 

(3c) record the 2R  value 

 

Steps (1c), (2c), (3c) are repeated B times.  The proportion of times that the 
2R  values from bootstrap samples exceed the corresponding value of 2R  is 

recorded.  This proportion gives a bootstrap estimate for testing 

:0H 1 = 2 = 3  against 1H :“At least two values of j  differ”. 

 

The above bootstrap algorithms have been applied (B=5000 in both 

instances).  The derived values of R
2
 for the bootstrapped two break models 

never exceeded the sample R
2
 value (96.7%) for the given two break model.  

Accordingly, the two-break model provides a statistically significant 

improvement over the simple linear (no break) specification irrespective of 

whether k1 and k2 are considered fixed with value 9 and 14 respectively or 

whether they are considered as values uncovered from the data under a 

position of ignorance.   

 

Is the double break model an improvement on the single break model?  The 

double break model Y= 0 + 11 X + 22 X + 33 X  reduces to the single break 

model when 1 = 2  or when 2 = 3 .  Bootstrapping may be used to test 

the null hypothesis :0H 1 = 2  or 2 = 3  against 1H : 1 2  and 
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2 3 .  In this set of bootstrap model the best fitting single break model 

will be used to generate the predicted values and residuals.  A comparison 

of the given two break model (k1=9;  k2=14) against similar two break 

bootstrap models with the null hypothesis specified by the best one break 

model (k1=16) indicates that the given two break model is a statistically 

significant improvement over the one break model (p<0.001).  Similarly a 

comparison of the given two break model (k1=9; k2=14) against the best 

possible two break model for each bootstrap sample with the null 

hypothesis specified by the best one break model (k1=16) has been 

undertaken.  In these cases 30 bootstrap samples out of 5000 bootstrap 

samples give a higher R
2
 than the given sample R

2 
value (96.7%), 

suggesting that even after allowing for chance effects from “over analysing 

the data” the given two break model may be deemed to be a significant 

improvement over the one break model (p=0.0006). 

 

8. Conclusion 

 

The broken stick method has the property of retaining continuity and this 

may be advantageous when modelling a continuous process.  Standard 

regression tests of significance do not directly assess whether gradient 

coefficients differ from one another, however these potential differences 

can be assessed using the bootstrap.   

 

In some instances, prior reasoning or a theoretical position may suggest that 

a different rate of change in the dependent will occur at a pre-specified 

value of a predictor.  In other cases, exploratory data mining may indicate a 

point for a different rate of change of a dependent variable with a predictor 

variable.  The two possibilities (i.e. a pre-specified node, or a data 

discovered node) reflect different research positions but the bootstrap is 

sufficiently flexible to adjust for these two positions and permit the 

construction of valid tests of significance.   

 

The method under investigation has been illustrated using output data 

across the EU. Prior to data collection there were no pre-conceived ideas 

concerning the number of breaks and location of breaks to model the data.  

Inspection of Figure 1 is highly suggestive of two structural breaks.  The 
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bootstrap procedure provides evidence that a two break model is 

appropriate in this case even after allowing for the data discovery of these 

breaks.    
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