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Abstract. Training a model using batch learning requires uniform data storage in a repository. This approach is intrusive, as 

users have to expose their privacy and exchange sensitive data by sending them to central entities to be preprocessed. Unlike the 

aforementioned centralized approach, training of intelligent models via the federated learning (FEDL) mechanism can be carried 

out using decentralized data. This process ensures that privacy and protection of sensitive information can be managed by a user 

or an organization, employing a single universal model for all users. This model should apply average aggregation methods to 

the set of cooperative training data. This raises serious concerns for the effectiveness of this universal approach and, therefore, 

for the validity of FEDL architectures in general. Generally, it flattens the unique needs of individual users without considering 

the local events to be managed. This paper proposes an innovative hybrid explainable semi-personalized federated learning 

model, that utilizes Shapley Values and Lipschitz Constant techniques, in order to create personalized intelligent models. It is 

based on the needs and events that each individual user is required to address in a federated format. Explanations are the 

assortment of characteristics of the interpretable system, which, in the case of a specified illustration, helped to bring about a 

conclusion and provided the function of the model on both local and global levels. Retraining is suggested only for those features 

for which the degree of change is considered quite important for the evolution of its functionality. 

Keywords: Decentralized Learning, Federated Learning, Privacy-Preserving Architecture, Explainable ΑΙ, Local and Global 

Interpretability, Shapley Values, Lipschitz Constant 

1. Introduction 

The complete transformation of supply chain (SC) 

in a truly integrated and fully automated process 

assumes the continuous and endless collection of 

digital information from every stage of the production 

[1]. Following this idea, the history of services and 

products per stage of the supply chain, can be 

investigated. The emerging continuous need of 

connectivity, raises serious concerns for the 

protection of personal data and for digital security as 

a whole [2].  

At the same time, the heterogeneity of the systems 

included in the supply chain as well as the non-

conventional interoperability, in terms of hardware 

and software, results to even more serious concerns 
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related to the security and protection of these systems 

[3], [4].  

Recently, the authors developed and presented a 

specialized and technologically up-to-date framework 

for the protection of digital security, privacy and 

industrial confidentiality. Specifically, the developed 

framework is related to an advanced adaptive 

federated auto metalearning mechanism (AFAMM), 

which operates on a blockchain and applies advanced 

encryption techniques, to fully ensure privacy and 

industrial secrecy [5]. The security and privacy 

focused architecture of this framework, has three 

main characteristics, namely: a) no sensitive data is 

transmitted through communication channels b) the 

data is not stored in a central point of attack and c) the 

learning algorithms are constantly upgrading their 

predictability [2], [5].  



  

An intelligent control mechanism has been 

developed to detect malfunctions in the processes of a 

communication network running under an Industry 4.0 

environment [6]. This system is based on the analysis 

of network traffic and on the development of an 

automatic intelligent neural network for the control 

and detection of abnormalities. The training and 

updating of the model were performed using federated 

learning and the communication of all involved parts 

was done through blockchain methods. The modules 

of this architecture are illustrated in Figure 1 below. 

 
Fig. 1. The blockchained adaptive federated auto 

meta-learning architecture  

 

Under this framework, when a device wants to 

communicate with another, the proposed intelligent 

mechanism is activated, implementing a network 

traffic control to detect anomalies. In the first phase, 

the features of the network’s traffic are exported in 

order to form the input vectors to a Neural Network 

(ΝΝ) that is automatically developed following the 

Neural Architecture Search technique. The model is 

initially trained on the host server with some initial 

data, in order for the training process to begin. Then, it 

is encrypted with homomorphic encryption and it is 

sent via blockchain (BLCH) to nodes that will use it. 

The nodes in question receive the model and improve 

it by exploiting the data at their disposal [7] [8], [9]. 

The obtained enhanced version is encrypted and 

returned via blockchain to the host server. In this stage, 

the best models are aggregated, and the weighted 

average is selected using the Grid Search Weighted 

Average Ensemble method. The final model is 

returned back to the nodes using BLCH. If the traffic 

is characterized as normal, further communication is 

allowed. Otherwise, communication is forbidden and 

an alarm is sent to the control center, for further 

analysis of the transaction [10]. 

The federated module allows remote devices to 

download and run the original trained machine 

learning model that is developed by the neural search 

approach. This is populated with local data, improving 

its accuracy, and then it is sent back to the federated 

module, which summarizes the changes using the 

Dynamic Weighted Average technique. The updated 

version, is fed back to the network nodes, through the 

blockchain module [11], [12]. 

Based on this architecture, the initial experiments 

give the impression that there is a continuous 

improvement of the intelligent model, and that end 

users can have constant access to an ever-upgraded 

NN. After extensive observation, it was demonstrated 

that learning a single universal model by aggregating 

the best models and selecting the weighted average via 

Dynamic Weighted Average (DWA), could not satisfy 

the local needs of the users. This is due to the fact that 

the events they had to deal with, were significantly 

different in terms of the data threats they process. For 

example, mobile users face different threats than the 

Internet of Things’ (IoT) devices or SCADA industrial 

network terminals [10], [13]. 

While constant upgrade increases generalization, it 

raises serious concerns for its efficiency at local level. 

Figure 2 shows the noticeable decrease of the local 

model’s accuracy, compared to the global and to the 

original ones. 

 
Fig. 2. Local vs Global models’ accuracy  

 

As it can be seen after the first 30 iterations, the 

local model has significantly higher accuracy than the 

global one. This is explained by the fundamental 

hypothesis related to the development of any 

supervised machine learning model (MLM), 

according to which, the data under considerarion, 

mimic real-world cases. No matter how accurate the 

MLM, the predictions are correct only if the used data 

is identical or statistically equivalent to the training 

vectors. Minor changes (drifts) that a realistic problem 

is capable of bringing to the data [14], [15], might 

result in a reduction of the classification accuracy, as 

it is shown in Figure 2.  



  

In this research paper, a drift analysis has been 

performed to identify the response of local models to 

changes in the data, and to estimate how they affect the 

properties of the classes that the learning system is 

trying to discover. In cases where changes occur (drift) 

a sensitivity analysis can provide accurate information 

about the quality of the universal model, produced by 

the federated learning system [16].  

Initially, p-values [17] were calculated to detect 

changes in the data and to estimate how likely is that 

the data will not change (null-hypothesis). The 

resulting p values for each feature were less than 0.05, 

which proves strong evidence against null-hypothesis, 

as there is less than a 5% probability that null-

hypothesis is correct. Therefore, the null-hypothesis is 

rejected, and an alternative hypothesis is adopted, i.e., 

that there is a drift in our data. To this regard, the 

Exponentially Weighted Moving Average (EWMA) 

algorithm was used, which renews the estimation of a 

variable by combining the most recent estimates of all 

previous measurements based on the following 

equation 1 [18]:  

𝑋𝑡 = 𝑎𝑧𝑡 + (1 − 𝑎)𝑋𝑡−1 → 

𝑋𝑡 = 𝑋𝑡−1 + 𝑎(𝑧𝑡 − 𝑋𝑡−1) 
(1) 

where 𝑋𝑡  is the moving average, 𝑧𝑡  is the last 

measurement and 𝛼 is the weight in the interval [0,1], 

given by the last measurement. The target of the 

algorithm is to generate an estimate that gives more 

weight to recent measurements, assuming that they are 

more likely to be relevant. Based on the performed 

EWMA tests, 95.45% of the dataset’s features (63 out 

of 66) appear to be drifted, as shown in the following 

figure 3. 

 
Fig. 3. Drift data by classes 

 

A specific example of the BwdPacketLengthMax 

feature and its dispersion, appears in the following 

figures 4 and 5 below. 

 
Fig. 4. Drift data in BwdPacketLengthMax future 

 
Fig. 5. Drift data in BwdPacketLengthMax future by 

classes  

 

From the above analysis it was concluded that 

there are three options that can be followed to 

effectively address the problem [3], [18], [19]:  

1. The first is retraining the system. This 

approach is characterized by high 

computational costs that are considered 

unacceptable, while in practice, this 

methodology did not perform well. 

2. The second is the use of Adaptive Learning 

methods [20] that are capable to follow 

changes presented by the data stream. The 

methodology in question is first checked for 

the accuracy of the categorization it can 

produce. It also requires mechanisms that 

forget outdated examples and therefore 

address the problem of catastrophic 

forgetting. Finally, it develops requirements 

for the model to be reviewed on an ongoing 

basis, which creates serious computational 

costs, while its utilization would be preferable 

for data flow analysis.  

3. The third is detecting changes and retraining 

only those features of the model for which the 

degree of change is considered sufficiently 

significant. The methodology in question, 

requires strategies to detect and quantify 

potential changes in the data that modify their 

distribution over time. It also needs a reliable 

model for identifying those features of the 

model that require retraining.  

This paper follows the third option as the 

preferable methodology, in order to explore the 

personalization potential of federated learning for each 

user.  Thus, only the necessary characteristics of the 

model are retrained, based on the respective needs and 

the events that it is called to face. 

2. Related Research 

The methodology of the federated learning 

technique, has been of great interest to the research 

community. In this section related work will be 

presented.  



  

For example, in [11] it is presented a 

comprehensive study with an experimental analysis 

of federated deep learning approaches for cyber 

security in IoT applications. Specifically, it is 

provided an exploratory analysis of federated learning 

model with three deep learning approaches, namely, 

Recurrent Neural Network (RNN), Convolutional 

Neural Network (CNN), and Deep Feedforward 

Neural Network (DNN). For each deep learning 

model, the performance of centralized and federated 

learning under three real IoT traffic datasets is 

studied. Furthermore, the article aims to provide 

important information on federated deep learning 

approaches with emerging technologies for cyber 

security. In addition, it demonstrates that federated 

deep learning approaches outperform the 

classic/centralized versions of machine learning (non-

federated learning) in assuring the privacy of IoT 

device data and providing higher accuracy in 

detecting attacks. 

However, since adversaries can track and derive 

participants' privacy from the shared gradients, 

federated learning is still exposed to various security 

and privacy threats. In [21], the authors consider two 

major issues in the training process over deep neural 

networks: 1) how to protect user's privacy (i.e., local 

gradients) in the training process and 2) how to verify 

the integrity (or correctness) of the aggregated results 

returned from the server. Several approaches focusing 

on secure or privacy-preserving federated learning 

have been proposed and applied in diverse scenarios 

to solve the above problems. However, it is still an 

open problem enabling clients to verify whether the 

cloud server is operating correctly while guaranteeing 

users' privacy in the training process. Therefore, a 

model named VerifyNet is proposed which is a 

privacy-preserving and verifiable federated learning 

framework. Specifically, the authors presented a 

double-masking protocol to guarantee the 

confidentiality of users' local gradients during the 

federated learning. Then, a cloud server is required to 

provide proof about the correctness of its aggregated 

results to each user. Also, it is claimed that it is 

impossible that an adversary can deceive users by 

forging evidence unless it can solve the NP-hard 

problem adopted in their model. In addition, 

VerifyNet is also supportive of users dropping out 

during the training process. The extensive 

experiments conducted on real-world data also 

demonstrate the functional performance of the 

proposed scheme. 

Due to lacking effective incentives and trust, data 

from different operators cannot be shared directly. In 

[22], the authors proposed an approach on 

blockchain-based federated learning for 

implementing asynchronous collaborative machine 

learning between distributed agents that own data. 

This method performs distributed machine learning 

without a trusted central server. The blockchain smart 

contract is used to realize the management of the 

entire federated learning. Using the historical data 

collected from real systems, the learning agent in the 

federated learning method adopts a support vector 

machine (SVM) based, intelligent control model. The 

authors optimize classic SVM, by assigning different 

penalty factors to the majority and minority classes to 

deal with the imbalanced data. The data sets are 

mapped to a high dimension using kernel functions to 

make it linearly separable. Also, they construct a 

mixing kernel function composed of polynomial and 

radial basis function (RBF) kernel functions, which 

uses a dynamic weight factor to improve the model 

accuracy. The simulation results demonstrate the 

efficiency and accuracy of their proposed intelligent 

control method. 

On the other hand, because the outcomes of attack 

detection are critical to cybersecurity, every decision 

should be supported by compelling arguments. Deep 

learning methods can extract valuable features 

directly from original data. However, this model is 

complex and considered a "black box," resulting in 

low model interpretability. As a result, interpretability 

has become a bottleneck for deep learning methods 

used in attack detection. The authors of [23] proposed 

a deep learning method that can be interpreted based 

on spatial domain attention. The model can detect and 

locate feature strings in packets, providing a 

meaningful semantic explanation for the detection 

results. The authors conducted qualitative and 

quantitative experiments on the following datasets 

DARPA1998, UNSW-NB15, and CIC-IDS-2017. 

The experimental results show that our method's 

interpretability outperforms state-of-the-art 

interpretable models in quantifiable criteria while 

retaining comparable classification accuracy. 

In addition, to balance Transient Stability 

Assessment (TSA) accuracy and transparency, this 

paper [24] proposes an interpretable DL-based TSA 

model. The proposed method combines a deep neural 

network's strong nonlinear modeling capability with 

the interpretability of a Decision Tree (DT). The 

proposed interpretable DL-based TSA method can 

visually explain the TSA decision-making process by 

regularizing the DL-based model with the average DT 

path length during the training process. The 

simulation results show that the proposed method can 



  

produce highly accurate TSA results and interpretable 

TSA decision-making rules, which can be used to 

design preventive control actions. 

Finally, the feed forward (FF) designed 

convolutional neural network (FF-CNN) is a network 

that can be interpreted. The model's parameter 

training does not necessitate backpropagation (BP) or 

Stochastic Gradient Descent optimization algorithms 

(SGD). The entire network is built on the previous 

layer's statistical data, and the current layer's 

parameters are obtained in a single pass. Because FF 

design reduces network complexity compared to the 

BP algorithm, FF-CNN outperforms the BP training 

method in semi-supervised learning, ensemble 

learning, and continuous subspace learning. 

However, the FF-CNN training process or model 

release results in leakage of training data privacy. The 

authors of this paper [25] analyze and demonstrate 

that an attacker can obtain the private information of 

the original training data after mastering the FF-CNN 

training parameters and partial output responses. As a 

result, training in data privacy protection is critical. 

However, because of the unique characteristics of the 

FF-CNN, existing deep learning privacy protection 

technology is inapplicable. To protect the training 

data in FF-CNN, the authors are proposing a 

differential privacy subspace approximation 

technique with adjusted bias (DPSaab). They design 

the privacy budget allocation based on the ratio of the 

eigenvalues and allocate a larger privacy budget to the 

filter with a significant contribution, and vice versa, 

based on the different contributions of the model 

filters to the output response. Extensive experiments 

on MNIST, Fashion-MNIST and CIFAR-10 datasets 

show that the DPSaab algorithm outperforms existing 

privacy protection technologies in terms of utility. 

3. Methodology 

The proposed methodology uses Shapley Values 

[26] [27] to generate global and local interpretabilities 

capable of explaining why the model reaches a 

specific decision. Respectively, it can detect how the 

Lipschitz Constant [28], [29] evolves during the 

training of the individual characteristics of the 

intelligent model, in order to evaluate the 

methodology [30], [31]. 

Thus, by combining these two methods, a 

completely transparent model is realized, capable to 

reveal the following [32]:  

a) the actual source of the data b) the implemented 

training strategy c) the type of the employed 

intelligent model d) the hyperparameters used for the 

training and testing data sets e) the features introduced 

to the model and the analysis of obvious and hidden 

existing correlations f) the characteristics of the 

model with the highest predictability g) the influence 

of each characteristic on the final prediction in both 

training and testing and in the accurate measurement 

of the model’s performance by evaluating unknown 

data [33]–[35]. 

3.1. Shapley Values 

A thorough approach using the Global and Local 

Interpretability methodology was performed to obtain 

a holistic picture of the network, in terms of how it 

makes decisions, what are its most important features, 

and what interactions are taking place between the 

features in this methodology [36].  

Global interpretability provides an overview of 

the model, while Local interpretability focuses on 

explanations from a small data area, which analyzes a 

single instance of the data set and explains why the 

model has reached a specific decision. This is because 

in small areas of data, the prediction may depend only 

linearly or monotonously on certain features of the 

model, rather than having a more complex 

dependence on them. Thus, the global and local 

interpretabilities of the model’s features could be 

identified. Moreover, this could determine the 

parameters that would be part of the local or the global 

model [37].  

Shapley values are a very effective way of 

generating explanations on how a model works. Its 

mathematical background comes from the 

Cooperative/Coalitional Game Theory, where the 

payoff/gain of a cooperative game’s players, is 

realized by a real function which gives values to sets 

of players [26].  

Specifically, the problem of a neural network’s 

architectural structures is considered as a cooperative 

game, whose players are the characteristics of the data 

set, the profit function is the NN' model under 

consideration, and the predictions are the 

corresponding winnings [38], [39].  

In this content, the Shapley values show the 

contribution of each feature and therefore the 

explanation why the model made a specific decision.  

More specifically, the Shapley value of a NN’ 

characteristic i, is given by the following relation [26], 

[32], [37]:  



  

𝜑𝑖 = ∑
|𝑆|! (𝑀 − |𝑆| − 1)!

𝑀!
𝑆∈𝐹\{𝑖}

[𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖})   (2)

− 𝑓𝑆(𝑥𝑆)] 

where F is the set of attributes, S is a subset of F and 

Μ = |𝐹| the absolute number of attributes. This 

relation measures the weight of each attribute by 

calculating its contribution when it is present in the 

forecast and then subtracts it when it is absent.  

More specifically: 

1. 𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}): is the output when the i∞ 

characteristic is present.  

2. 𝑓𝑆(𝑥𝑆): is the output when the i∞ 

characteristic is absent.  

3. ∑
|𝑆|!(𝑀−|𝑆|−1)!

𝑀!𝑆∈𝐹\{𝑖} : is the weighted 

average of all the potential subsets of S in F. 

The Shapley method uses the linear correlation of 

the independent and dependent variables which is 

measured by calculating the Pearson R correlation 

table. The proposed architecture, is considering the 

inability of the Pearson’s method to detect nonlinear 

correlations such as sinus wave, quadratic curve. It 

uses the Predictive Power Score (PPS) technique to 

summarize the predictive data between available 

forecasts [40]. More specifically, it explains how 

variable A informs variable B, more than variable B 

informs variable A. Technically, scoring is a 

measurement in the interval [0, 1] of a model's success 

in predicting a variable target with the help of an off-

sample variable prediction. This practically means 

that this method can increase the efficiency and 

transparency of finding hidden patterns in the data, 

and thus it can facilitate the selection of appropriate 

prediction variables [41]. The use of the PPS method 

also focuses on the fact that a local explanation of the 

model's parameters must be obtained. As a result, this 

data should be ultimately capable of operating 

without retraining and of course without being 

reinforced in the second phase of training. For the 

calculation of PPS in numerical variables the metric 

of Mean Absolute Error (MAE) was used, which is 

the measure used for the quantification of the error 

between the estimated and the observed values. It is 

calculated by the following formula [17]: 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑓𝑖 − 𝑦𝑖| =

1

𝑛
∑|𝑒𝑖|

𝑛

𝑖=1

𝑛

𝑖=1

    (3) 

where 𝑓𝑖 is the estimated value, whereas the 𝑦𝑖  is the 

actual value. The average of the above absolute 

differences of these values is defined as the absolute 

error of their relation |𝑒𝑖| = |𝑓𝑖 − 𝑦𝑖|.  

Moreover, the F-Score the Recall and the 

Precision indices were used: 

𝐹𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
     (4) 

3.2. Lipschitz Constant 

Lipschitz Constant (LIPC) [28] was used to 

evaluate and confirm the final efficiency of the local 

model, that was obtained by the application of the 

Shapley methodology. Using LIPC the behavior of the 

Scattering Transformation can be studied, when a set 

with similar inputs are entered as inputs. This 

transformation can approach the operation of a simple 

neural network architecture, allowing the study of 

how neural networks succeed in solving difficult 

problems that require multistage extraction of features 

[42], [43]. At the same time, the properties of this 

transformation can explain the way in which a neural 

network can achieve immutability in the displacement 

of the input, as well as in small deformations of the 

input, as in cases of elastic deformation [29]. 

Specifically, new inputs are generated, when we 

add at the input ℎ a very small change 𝑝 which results 

in a new input ℎ + 𝑝, which is classified differently 

than the original input, using a properly selected input 

function 𝑝 as follows [32], [44]:  

‖𝑆[𝑚]( ℎ + 𝑝) − 𝑆[𝑚]( ℎ)‖ ≤ ‖𝑝‖ 

It turns out that the output for a new variable input 

is no different from the original input more than ‖𝑝‖. 

So, if the transformation follows the constraints of the 

Scattering transformation, i.e.:  

∑|𝜓̂(𝑖,𝑗)(𝜔)|
2

≤
𝐶2

𝑁
,

𝛮

𝑖=1

|𝜑̂(𝜔)|
2

≤ 𝐶2   (5) 

Thus, for a value 𝐶, the following condition applies: 

‖𝑆[𝑚]( ℎ + 𝑝) − 𝑆[𝑚]( ℎ)‖ ≤ 𝐶𝑚+1‖𝑝‖ 

This means, that the C constant is a determinant of 

how vulnerable the transformation is to input changes 

of 𝑝.  

As the Lipschitz constant determines the 

classifier's ability to correspond to new inputs, it is 

proposed its use in order to detect how this constant 

evolves during the training of a neural network’s local 

parameters [32]. In particular, let the input of a 

Convolutional Neural Network (CNN) be in the form 

of a vector. Let 𝑓(𝑥𝑖𝑛 , 𝑐) be the output of the network 

for class 𝑐 and 𝑥𝑖𝑛 the input. Let 𝑦𝑖𝑛 , ℎ𝑖𝑛 two different 

input vectors with respective output 𝑓(𝑦𝑖𝑛 , 𝑐), 

𝑓(ℎ𝑖𝑛 , 𝑐) and 𝑦𝑖𝑘 , ℎ𝑖𝑘 the output of the kth layer in 

channel 𝑖 for each one of the two inputs. The CNN 

comprises of convolution layers, pooling layers and 



  

ReLU activation functions [45]. Thus, for each of the 

three layer-types we have [3], [19]:  

1) Let 𝑘 layer be a convolution layer. As we express 

inputs as one-dimensional vectors, convolution 

with a two-dimensional core 𝜓𝑖𝑗𝑘 , connecting 𝑖𝑡ℎ 

output channel with the 𝑗𝑡ℎ input channel υ, is 

done by multiplying the input vector with a table 

𝐴𝑖𝑗𝑘 that is produced by the initial core such as:  

𝑥𝑖𝑘 = ∑ 𝐴𝑖𝑗𝑘𝑥𝑗(𝑘−1)   𝑖 = 1,2, … , 𝑀𝑘

𝑁𝑘

𝑗=1

   (6) 

where 𝑁𝑘 is the number of the input channels and 

𝑀𝑘 is the number of the output channels of the 

Convolutional layer 𝑘. Thus: 

‖𝑦𝑖𝑘 − ℎ𝑖𝑘‖2 = ‖∑ 𝐴𝑖𝑗𝑘𝑦𝑗(𝑘−1)

𝑁𝑘

𝑗=1

− ∑ 𝐴𝑖𝑗𝑘ℎ𝑗(𝑘−1)

𝑁𝑘

𝑗=1

‖

2

= ‖∑ 𝐴𝑖𝑗𝑘(𝑦𝑗(𝑘−1) − ℎ𝑗(𝑘−1))

𝑁𝑘

𝑗=1

‖

2

≤ ∑‖𝐴𝑖𝑗𝑘(𝑦𝑗(𝑘−1) − ℎ𝑗(𝑘−1))‖
2

𝑁𝑘

𝑗=1

≤ ∑ ‖𝐴𝑖𝑗𝑘‖
2

‖𝑦𝑗(𝑘−1)

𝑁𝑘

𝑗=1

− ℎ𝑗(𝑘−1)‖
2

(13) 

 
⇒ ‖𝑦𝑖𝑘 − ℎ𝑖𝑘‖2 ≤ ∑ ‖𝐴𝑖𝑗𝑘‖

2
‖𝑦𝑗(𝑘−1)

𝑁𝑘

𝑗=1

− ℎ𝑗(𝑘−1)‖
2

    (7) 

2) Let 𝑘 be the Pooling Layer in which there is no 

overlapping of the areas: 

‖𝑦𝑖𝑘 − ℎ𝑖𝑘‖2 ≤ ‖𝑦𝑗(𝑘−1) − ℎ𝑗(𝑘−1)‖
2

   (8) 

3) Let 𝑘 be the ReLU layer, then the output layer has 

the form: 

𝑥𝑖𝑘 = [

𝑥𝑖𝑘(1)

𝑥𝑖𝑘(2)
⋮

𝑥𝑖𝑘(𝑚)

]    (9)  

The output 𝑥𝑖𝑘(𝑡) is obtained as follows:  

𝑥𝑖𝑘(𝑡) = max (0, 𝑥𝑖(𝑘−1)(𝑡)) 

 

‖𝑦𝑖𝑘 − ℎ𝑖𝑘‖2
2 = ∑ |max (0, 𝑦𝑖(𝑘−1)(𝑡))

𝑚

𝑡=1

− max (0, ℎ𝑖(𝑘−1)(𝑡))|
2

≤ ∑|𝑦𝑗(𝑘−1)(𝑡) − ℎ𝑗(𝑘−1)(𝑡)|
2

𝑚

𝑡=1

= ‖𝑦𝑗(𝑘−1) − ℎ𝑗(𝑘−1)‖
2

2

 
⇒ ‖𝑦𝑗𝑘 − ℎ𝑗𝑘‖

2

≤ ‖𝑦𝑗(𝑘−1) − ℎ𝑗(𝑘−1)‖
2

    (10) 

where |max(0, 𝛼) − max(0, 𝛽)| ≤ |𝛼 − 𝛽|. 
Using the above equations, the constant 𝐿𝑖𝑘  can 

be estimated, for which the following condition 

should be met: 

‖𝑦𝑗𝑘 − ℎ𝑗𝑘‖
2

≤ 𝐿𝑖𝑘 ‖𝑦10 − ℎ10‖2   (11) 

The constant is defined recursively, as 𝐿𝑖𝑘 = 1.  For 

any type of layer, we have the following:  

1) Convolution layer: 

𝐿𝑖𝑘 = ∑ ‖𝐴𝑖𝑗𝑘‖
2

𝐿𝑗(𝑘−1)    (12)

𝑁𝑘

𝑗=1

 

2) Pooling layer: 

𝐿𝑖𝑘 = 𝐿𝑖(𝑘−1)    (13) 

3) ReLU function: 

𝐿𝑖𝑘 = 𝐿𝑖(𝑘−1)    (14) 

If the network has 𝑝 layers the Lipschitz constant that 

satisfies the following relation: 
‖𝑓(𝑦𝑖𝑛 , 𝑐) − 𝑓(ℎ𝑖𝑛 , 𝑐)‖2 ≤ 𝐿𝑐𝑝 ‖𝑦𝑖𝑛 − ℎ𝑖𝑛‖2   (15) 

Having developed the method for finding a Lipschitz 

constant for the network, this research studied how it 

evolves during the training of a NN. 

The following layers were included:  

1. Embedding layer with hyperparameters that 

indicate the dimensions of the emerging 

integrations.   

2. Dropout layer with hyperparameters 

indicating the dropout rate. 

3. 1D Convolution layer with hyperparameters’ 

filters and kernel size that define the number 

of the output channels and the width of the 

1D core respectively.  

4. bi-LSTM layer με with hyperparameters that 

indicate the size of the output dimensions of 

the lst layer. 

5. Dense layer with two outputs and Sigmoid 

activation function. 

This network is characterized by its simplicity, as 

it uses 1D Convolution and a bi-LSTM layer that are 

stacked one after the other, in scalable depth. Overall, 



  

the hyperparameters of the model are presented 

below: 

1. embedding_size = [32, 128] 

2. dropout = [0.01, 0.1] 

3. filters = [16, 32, 64] 

4. kernel_size = [3, 5, 7] 

5. pool_size = [2, 4] 

6. lstm_output_size = [16, 64] 

7. batch_size = [8, 16, 32] 

The network comprises of 5 layers with two 

different outputs in the last layer, one for each class, 

namely: Distributed Denial of Service (DDoS), and 

Benign. The average value of the constants 𝐿𝑖5 

symbolized as 𝐿𝑜𝑢𝑡 was recorded  

𝐿𝑜𝑢𝑡 =
1

2
∑ 𝐿𝑖5    (16)

2

𝜄=1

 

Following the experimental validation of the 

proposed method, the network was trained using 70% 

of the available data vectors [46], [47]. At the end of 

each training season, the constant 𝐿𝑜𝑢𝑡 was recorded. 

The evolution of the NN during the training process 

was studied thoroughly [48], [49]. The hardware used, 

was based on the GPU chipset, optimized for the free 

deep learning TensorFlow library. 

A collaborative network of three federated 

partners namely: domain_alpha, domain_bravo and 

domain_charlie that communicate with each other 

through optical fibers, was simulated in order to 

implement the Federated Learning (FEL) scenario. 

The FEL Server (FLS) is located in the Demilitarized 

Zone (DMZone). Its task is to initiate model’s 

training, with some initial data and to apply the 

algorithmic process of aggregating the optimal 

models and selecting the weighted average, via the 

Dynamic Weighted Average method [2], [5], [6], [9], 

[32]. The overall architecture is presented in figure 6. 

 
Fig. 6. Architectural modeling of the Federated 

Learning Partners  

4. Dataset, Scenarios and Results 

The interconnected heterogeneous industrial 

systems of specialized mechanical equipment 

exchange huge amounts of data in the unit of time. 

The analysis, and classification of data traffic, is one 

of the most serious tasks for the monitoring of large-

scale attacks, as well as for the study of cybercrime 

[13], [16].  

The substantive evaluation of the proposed 

intelligent system was carried out on the 

CICDDoS2019 [50], which is one of the most 

comprehensive web traffic analysis datasets, 

developed under the supervision of the Canadian 

Institute for Cybersecurity, with an emphasis on 

DDoS attacks’ detection. The DDoS are very well-

organized types of attacks in which the identity of the 

attacker, remains hidden using the legitimate 

component of a third party [51].  

The set includes modern DDoS attacks, which 

have been detected in real incidents, and have been 

identified based on attack indicators. Specifically, the 

web traffic packages included in this dataset are sent 

to the reflector servers by intruders with source IP 

address set to target victim IP address, in order to 

crush the victim’s system with response packets.  

The attacks are performed through the application 

layer using transport layer protocols. The malware 

spectrum includes: TCP-based (Transfer Control 

Protocol) attacks such as MSSQL, SSDP, UDP-based 

(User Datagram Protocol) attacks such as CharGen, 

NTP, and TFTP, and more complex ones, that can be 

performed either with TCP or with UDP, such as DNS 

(Domain Name Server), LDAP (Lightweight 

Directory Access Protocol), NETBIOS (Network 

Basic Input/Output System) and SNMP (Simple 

Network Management Protocol). Moreover, there are 

TCP based attacks (e.g., MSSQL, SSDP) UDP based 

ones (e.g., CharGen, NTP and TFTP). More 

complicated attacks can be executed either via TCP or 

via UDP, e.g., DNS, LDAP, NETBIOS and SNMP.  

There are also UDP flood attacks, where UDP 

packets are sent at a very high rate to random ports on 

the victim's system, resulting in depleted network 

bandwidth, degraded performance, and system 

crashes.  

SYN (short for Synchronization) flood attacks 

constitute a serious threat, where attackers are forcing 

the victim's system to consume server resources 

continuously, until it malfunctions or crashes. This is 

achieved by sending repetitive SYN packets misusing 

the TCP-three-way handshake. Finally, the set 



  

includes UDP-Lag attacks that disrupt the connection 

between clients and servers using hardware resources 

or a software program that runs on the network and 

uses other users' bandwidth. More details can be 

found at [51].  

After data preprocessing, the dataset comprised of 

66 features, 11,856,972 instances and 2 classes 

namely Distributed Denial of Service (DDoS) and 

Benign. Initially, during the training process an 

attempt was made to interpret the data in their original 

raw form. Specifically, the diagram of parallel 

coordinates was employed, to represent the 

dimensions of the features by parallel axes, one per 

dimension. Thus, each multivariate point is modeled 

as a polyline that connects the corresponding 

dimensions. At the same time, this diagram encodes 

the correlation between the data dimensions, so that 

the line intersections indicate inverse correlations. 

The following figure present a graph of parallel 

coordinates during training.  

 
Fig. 7. A parallel coordinates plot developed in the 

training process (appendix 1) 

 

Extensive tests were performed with data batches, 

the size of which varied, to identify local 

interpretabilities. Local interpretabilities provide 

explanations that come from a small data area, which 

analyzes a relatively small batch of data and explains 

why the model made a specific decision for that 

particular batch [52]. This is due to the fact that in 

small areas of data, the prediction may depend only 

linearly or monotonously on certain features of the 

model, rather than having a more complex 

dependence on them [20]. Thus, in this way the global 

and local interpretabilities of the model’s 

characteristics can be identified. Also, the parameters 

of the local model can be distinguished from the ones 

of the global [53]. An example of a graph of parallel 

coordinates during the detection of global 

interpretabilities, is shown in the figure below. 

 

 
Fig. 8. A parallel coordinates’ plot from global 

interpretabilities  

 

Unfortunately, there isn't another comparable 

model to use as a benchmark. Consequently, to avoid 

bias or incorrect impressions, we present the 

performance of the proposed model without making 

any comparisons with any other alternative models. 

The evaluation of the values of the variables in the 

way they contribute to the prediction and the 

explanation of each decision of the global 

interpretabilities, were carried out, using the Shapley 

values. Figure 9 shows the classification of the 

records, used in a summary beeswarm plot which is a 

simple way to capture the relative effect of all the 

features on the whole data set. Attributes are sorted 

based on the sum of Shapley values in all samples in 

the set. 

 
Fig. 9. Summary beeswarm plot 

 

 The most important features of the model are 

shown from top to bottom. Each attribute of the set is 

symbolized by dots, while the color of the dot 

symbolizes the value of the attribute (blue 

corresponds to a low value, while red to a high value). 

The position of the dot on the horizontal axis depends 

on its Shapley value.  

It is clear that the attribute FwdPacketLengthMax 

has the most important contribution for the 



  

determination of the model’s forecasts., The Shapley 

price is also high for its high values (red dots), so it 

has a great positive effect globally. In contrast, for 

low values (blue dots) the Shapley value is low, so it 

has a negative effect on the forecast, i.e. it increases 

the probability that the global model is not affected 

[54].  

An example of a graph of parallel coordinates 

during local interpretability detection is shown in 

Figure 10 below. 

 
Fig. 10. A parallel coordinates plot from local 

interpretabilities 

 

Figure 11 below, is using a chosen sample from 

the dataset, in order to represent the typical values of 

the attributes. Then, ten samples are used to estimate 

the Shapley values for a given prediction. This 

experiment, requires 10x1=10 assessments of the 

model in order to obtain the final conclusion.  

 
Fig. 11. Explanation of a single prediction - 10 

evaluations  

 

This figure shows a local explanation, where the 

base_value refers to the average value of the model's 

forecasts, (i.e., in this case the model predicts that the 

batch of data being analyzed does not affect the local 

model with a probability of 7%). For this package, the 

forecast price is 95.92%, so the Shapley prices show 

the change from the average forecast to the specific 

forecast. The red arrows push the prediction to the 

right, that is, they help to increase the probability that 

the local model will be affected in the specific batch 

of data, while the blue arrows push to the left, helping 

to reduce the corresponding probability.  

The length of each arrow symbolizes the 

magnitude of the respective effect on the prediction.  

After the global and local interpretabilities were 

identified, Partial Dependence Plots (PDPs) were 

used to confirm the process, showing the marginal 

effect that each characteristic has on the predicted 

result of the model. A typical example of the process 

is shown in Figure 12.  

 
Fig. 12. Partial Dependence Plot 

 

The number of input features of interest must be 

limited (usually to one or two in order to accommodate 

the limitations of human perception); As a result, the 

input features of interest are typically selected among 

the essential features. Figure 13 below depicts a one-

way partial dependence plot for the dataset under 

consideration. 

One-way dependence plots provide information 

about the interaction between the target response of a 

particular input and a feature of interest (e.g., linear, 

non-linear). The contribution to the prediction 

probability is depicted in the above figure. When the 

average prediction accuracy is 96.7%, we can see a 

linear relationship. In a similar manner, we could 

investigate the impact of various dataset parameters. 

As a result, these interpretations are marginal, 

considering each feature one at a time. 

Finally, the results of 𝐿𝑜𝑢𝑡 while testing federated 

partners using local and global models are presented 

in the diagram of figure 13 below. 

 
Fig. 13. 𝐿𝑜𝑢𝑡 plot from three federated partners  

 

The 𝐿𝑜𝑢𝑡 can be an essential importance measure 

and it defined as the deviation of the value of each 

unique feature from the average curve: 

𝐼(𝑥𝑆)

= √
1

𝐾 − 1
∑  

𝐾

𝑘=1

(𝑓𝑆(𝑥𝑆
(𝑘)

) −
1

𝐾
∑  

𝐾

𝑘=1

𝑓𝑆(𝑥𝑆
(𝑘)

))

2

  (17) 

 



  

The 𝑥𝑆
(𝑘)

 are the k unique values of feature 𝑥𝑆. 

Respectively, the results of the federated partner 

of domain_charlie are presented in the figures 14 and 

15.  

 
Fig. 14. Performance evaluation of federated partner 

domain_charlie_I 

 

 
Fig. 15. Performance evaluation of federated partner 

domain_charlie_II 

 

Each figure is a summary of prediction results on 

the classification problem. The correct and incorrect 

predictions are summarized with count values and they 

are broken down by each class. 

Furthermore, the precision for each class is the 

number of true positives (i.e., the number of items 

correctly labeled as belonging to the positive class) 

divided by the total number of elements labeled as 

belonging to the positive class (i.e., the sum of true 

positives and false positives, which are items 

incorrectly labeled as belonging to the class). 

Furthermore, in this context, recall is defined as the 

number of true positives divided by the total number 

of elements that belong to the positive class (i.e., the 

sum of true positives and false negatives, which are 

items that were not labeled as belonging to the positive 

class but should have been). 

5. Conclusion 

In this work a novel hybrid explainable semi-

personalized federated learning model was proposed, 

utilizing the Shapley Values and Lipschitz Constant 

techniques to create personalized intelligent local 

models. This is achieved based on the needs and 

events that each user is required to address locally. In 

particular, the system in question provides clear 

explanations as to why the model made a specific 

decision on locally handled data. Then, it detects how 

the training of the intelligent model evolves, by 

dictating the hyperparameters that should be trained 

locally. This results in a model that responds 

optimally to the local problems it is called to face.  

This cutting-edge research proposal has never 

been proposed before in the relevant literature, and we 

believe that it has the potential to considerably extend 

the state-of-the-art in the field of explainable artificial 

intelligence. 

As demonstrated experimentally with this 

technique, an understanding is gained of how the 

model makes decisions and what interactions are 

performed between the features used, in order to 

achieve correct or incorrect classification. The model 

provide information about the interaction between the 

target response of a particular input and a feature of 

interest. Respectively, it allows for the 

personalization of the federated learning model for 

each user, so that only the necessary characteristics of 

the model are retrained, based on the respective needs 

and the events that it is called to respond. Thus, it 

offers the ability to manage, control and explain how 

to handle multiple intermediate representations, as 

well as more advanced features that may be related to 

the hierarchical organization of a neural system. 

The progressive classification and investigation of 

the intermediates of the input data along the levels of 

the hierarchical architecture, even if all the levels 

share the same weight values, creates clear indications 

- evidence of how the final decision is made. The 

combination of Lipschitz and Shapley clearly 

captures the transitions of internal representations of 

input signals, even for problems that require long 



  

internal memory intervals. The proposed system 

achieves a result with high accuracy with a white-box 

algorithm that is interpretable in itself. This is 

especially important in domains like medicine, 

defense, finance, and law where it is crucial to 

understand the decisions and build up trust in the 

algorithms. 

This uniqueness methodology focuses mainly on 

the development of an automated optimization of the 

appropriate parameters, so that an even more efficient, 

accurate and faster explanation process is achieved, in 

a simple and robust way. Additionally, this paper 

proposes the utilization of the introduced hybrid 

technology [55] in recommendation systems, in a 

completely clear and transparent way. Finally, it 

would be important to study in the future, the 

expansion of this system for the implementation of a 

real-time data flow control framework. 
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