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Abstract 1 

Childhood socioeconomic position (SEP) is a major determinant of health and well-being 2 

across the entire life course. To effectively prevent and reduce health risks related to SEP, it is 3 

critical to better understand when and under what circumstances socioeconomic adversity shapes 4 

biological processes. DNA methylation (DNAm) is one such mechanism for how early life 5 

adversity “gets under the skin”. In this study, we evaluated the dynamic relationship between 6 

SEP and DNAm across childhood using data from 946 mother-child pairs in the Avon 7 

Longitudinal Study of Parents and Children (ALSPAC). We assessed six SEP indicators 8 

spanning financial, occupational, and residential domains during very-early childhood (ages 0-2), 9 

early childhood (ages 3-5), and middle childhood (ages 6-7). Epigenome-wide DNAm were 10 

measured at 412,956 CpGs from peripheral blood at age 7. Using an innovative two-stage 11 

structured life course modeling approach, we tested three life-course hypotheses for how SEP 12 

shapes DNAm profiles — accumulation, sensitive period, and mobility. We showed that changes 13 

in the socioeconomic environment were associated with the greatest differences in DNAm, and 14 

that middle childhood may be a potential sensitive period when socioeconomic instability is 15 

especially important in shaping DNAm. Top SEP-related DNAm CpGs were overrepresented in 16 

genes involved in pathways important for neural development, immune function, and metabolic 17 

processes. Our findings highlight the importance of socioeconomic stability during childhood 18 

and if replicated, may emphasize the need for public programs to help children and families 19 

experiencing socioeconomic instability and other forms of socioeconomic adversity.   20 
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Introduction 21 

Socioeconomic position (SEP) is a fundamental determinant of health and disease across 22 

the lifespan (1). As defined by Krieger et al. (1997) (2), SEP is an “aggregate concept” 23 

composed of diverse components of economic and social well-being across individual-, 24 

household-, and neighborhood-level domains, including both resources (e.g., weekly income) 25 

and rank-based characteristics (e.g., occupational prestige). SEP therefore can be measured 26 

across time by various indicators, like job stability, ability to afford basic household needs, and 27 

neighborhood quality, which are known to play related, yet distinct roles in health and life 28 

outcomes (3-5).  29 

Dozens of observational and quasi-experimental studies examining these indicators have 30 

shown that children growing-up in low SEP families have increased risk for both short- and 31 

long-term cognitive, socioemotional, behavioral, and physical/mental health deficits compared to 32 

their high SEP counterparts (6-9). Some of these SEP-related disparities are evident very early in 33 

development, starting shortly after birth (10-13). Yet, the biological mechanisms that explain 34 

these well-established SEP and health relationships remain relatively unknown, limiting our 35 

ability to disentangle specific pathways of pathophysiology and design targeted interventions. 36 

In the past two decades, epigenetic studies have exploded as a means of potentially 37 

unraveling the biological pathways through which SEP “gets under the skin”. Most epigenetic 38 

studies have focused on DNA methylation (DNAm) (14), which occurs when methyl groups are 39 

added to cytosines in the DNA sequence, typically within cytosine-guanine (CpG) dinucleotides 40 

(15). These DNA modifications do not alter the sequence of the genome, but can influence how 41 

genes are expressed in ways that can have important short and long-term health consequences 42 

(16).  43 
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Recent reviews summarizing the effects of SEP on epigenetic patterns suggest that SEP is 44 

linked to DNAm differences in childhood and adulthood (17-19). In fact, over 30 studies have 45 

found a relationship between childhood SEP and DNAm. However, less than a quarter of these 46 

studies were longitudinal by design (i.e., including repeated measures of SEP exposure across 47 

time). Further, less than half were epigenome-wide association studies (EWAS) analyzing SEP-48 

related DNAm variations. In one recent comprehensive review of the SEP-DNAm literature, the 49 

number of significant, SEP-associated CpGs reported across prior EWAS studies ranged from 1 50 

to 2,546 (median = 10), yet relatively no consistent patterns in SEP-associated DNAm changes 51 

emerged between studies (see Cerutti, Lussier, Zhu, Liu and Dunn (19)). One possible 52 

explanation for these mixed results is that studies have conflated both the type of SEP indicator 53 

measured and the timing of SEP measurement (19). Indeed, few studies have investigated the 54 

effects of SEP type and/or timing on DNAm, even though it is well known that both features of 55 

SEP can influence the extent of its impact (20).  56 

Prior studies that have analyzed the associations between multiple types of SEP 57 

indicators and DNAm have found little to no overlap in DNAm changes across SEP measures 58 

(21-23), suggesting that different SEP indicators may result in distinct biological signatures and 59 

subsequent cascading health risks. Yet, it remains relatively unknown whether exposure to 60 

distinct SEP indicators (e.g., low household income vs. neighborhood disadvantage) during 61 

childhood impacts later DNAm to a similar extent. 62 

Even fewer studies have investigated the impact of SEP timing on DNAm, likely because 63 

it is difficult to collect multiple, repeated measures across time in large, epigenetic datasets. In 64 

some notable exceptions, studies comparing the time-dependent effects of childhood SEP (24-65 

26) on DNAm have found timing differences with respect to SEP’s impact, consistent with the 66 
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idea that there may be sensitive periods of elevated plasticity during childhood when adversity-67 

induced biological changes are most likely to occur. However, whether different aspects of the 68 

socioeconomic environment across developmental stages differentially influence DNAm remains 69 

largely unexplored.  70 

The current study aimed to address this gap by utilizing a large, longitudinal birth cohort 71 

with multiple, repeated measures of socioeconomic-related hardships assessed prospectively 72 

across childhood before epigenome-wide DNAm collection at age 7. We specifically sought to 73 

assess how different indicators of the socioeconomic environment (e.g., neighborhood quality, 74 

job loss, low household income) measured repeatedly across the first seven years of life 75 

associated with child epigenetic alterations. Given that different socioeconomic domains may 76 

impact health via related, but distinct pathways (4, 27), we analyzed exposure to seven distinct 77 

socioeconomic-related hardships. Additionally, because socioeconomic adversity could have 78 

multiple time-varying effects on DNAm, we tested three commonly examined hypotheses from 79 

the life-course epidemiology literature (28) to evaluate the circumstances under which childhood 80 

socioeconomic adversity associates with DNAm changes at age 7: 1) accumulation hypothesis, 81 

where the impact of low SEP increases with the number of time periods exposed, regardless of 82 

when it occurs; 2) sensitive period hypothesis, where the impact of low SEP is larger in 83 

magnitude during a certain developmental period compared to any other; and 3) mobility 84 

hypothesis, where the impact of SEP on DNAm is driven by an upward or downward change in 85 

SEP between adjacent developmental time periods.  86 

Uncovering the dynamic relationships between SEP and DNAm across childhood will 87 

not only highlight the biological mechanisms driving the effects of SEP on long-term health, but 88 
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also will offer clearer insights to guide targeted interventions aimed at reducing the negative 89 

consequences of socioeconomic-related adversity in childhood.  90 

Results 91 

Sample characteristics and prevalence of socioeconomic adversity 92 

We analyzed data from 946 mother-child pairs from a longitudinal birth-cohort in the 93 

United Kingdom (UK). Children included in our analytic sample were mostly White (97.1%) and 94 

from both sexes (49.9% female) (Table S1). Among the six SEP indicators analyzed (i.e., job 95 

loss, income reduction, low family income, financial hardship, major financial problems, and 96 

neighborhood disadvantage), job loss was the least reported socioeconomic adversity (11.5% 97 

ever-exposed), and income reduction was the most common (73.8% ever-exposed) (Table 1). 98 

The prevalence of all adversities decreased over time (Table 1, Figure S1). The six SEP 99 

indicators were moderately correlated with each other during all three childhood periods (Figure 100 

S2), suggesting they captured distinct aspects of the socioeconomic environment.  101 

Childhood socioeconomic adversities were associated with differential DNAm at 62 CpGs  102 

We next examined possible time-dependent associations between each of the SEP 103 

indicators and DNAm at individual CpGs using a two-stage structured life-course modeling 104 

approach (SLCMA) (29-31), which identified the life-course hypothesis most supported in the 105 

observed data and estimated the associations. In this and the following three sections, we 106 

summarize 1) the top CpGs associated with socioeconomic adversity, 2) the most selected life-107 

course hypotheses, 3) the robustness of findings evaluated through a variety of sensitivity 108 

analyses, and 4) the biological relevance of findings. 109 
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We identified 62 CpGs where exposure to socioeconomic adversity explained more than 110 

3% variance in DNAm (R2>3%, Table S2). Most of the 62 CpGs were linked to the two least 111 

commonly-reported adversities in ALSPAC: neighborhood disadvantage (17 CpGs) and job loss 112 

(15 CpGs, Table 2). Only four of the 62 CpGs identified using the R2 cutoff also passed an 113 

FDR<0.05 significance threshold, all of which were associated with neighborhood disadvantage 114 

(Table 2).  115 

Of note, 61 of these CpGs showed the same direction of effect as that reported in at least 116 

two prior EWASs examining SEP and DNAm. Furthermore, 17 out of 62 (27%) CpGs showed at 117 

least a nominal (p<0.05) association in at least two prior EWASs. Of these 17 CpGs, two 118 

(cg23685969 and cg19260606) exceeded a statistical significance threshold of FDR<0.05 in at 119 

least one prior EWAS (Table S3, Figure S3).  120 

Mobility and sensitive period hypotheses were most often selected 121 

The SLCMA allowed us to determine which of the following three life-course hypotheses 122 

were most supported in the observed data: accumulation, sensitive period, and mobility (Figure 123 

1). Of the life-course hypotheses we tested, mobility and sensitive period effects showed the 124 

strongest associations with DNAm (Figure 2a).  125 

We first focused on the four socioeconomic adversities for which we tested all three life-126 

course hypotheses (low family income, financial hardship, major financial problem, and 127 

neighborhood disadvantage, Table S4). Here, 44 CpGs (R2>3%) were identified, of which four 128 

passed an FDR<0.05 threshold. The majority of CpGs reflected mobility (20 CpGs) or sensitive 129 

period (22 CpGs) relationships. The most selected life-course hypothesis varied by 130 

socioeconomic adversity. Sensitive period hypotheses were selected for all nine CpGs identified 131 

from financial hardship, with middle childhood selected for eight of them (Figure 2a). By 132 
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contrast, mobility (worsening SEP) explained more DNAm variability resulting from 133 

neighborhood disadvantage (11 of 17 CpGs) and major financial problem (4 of 5 CpGs). The 134 

time period when mobility had the greatest impact differed across SEP indicators, with very early 135 

to early childhood most often selected for neighborhood disadvantage, and early to middle 136 

childhood most selected for major financial problem (Figure 2a). Accumulation was only 137 

selected for two CpGs, linked to low family income. Of note, mobility hypotheses were selected 138 

for all four FDR-significant CpGs, with a worsening hypothesis (meaning downward mobility) 139 

selected for three of them (Table S2). Figure 2b shows at these three CpGs, children exposed to 140 

worsening SEP had the greatest shift in DNAm as compared to children with other types of SEP 141 

trajectories, including those who had persistently low SEP, worsening SEP, improved SEP, or 142 

persistently high SEP.  143 

 For our instability indicators (job loss and income reduction), which innately capture the 144 

effects of socioeconomic mobility, we only tested accumulation and sensitive period hypotheses 145 

(Table S4). The strongest evidence was again for sensitive period effects, with middle childhood 146 

(age 3-5) most selected for job loss (9 of 15 CpGs) and very early childhood (age 0-2) most 147 

selected for income reduction (2 of 3 CpGs, Figure 2a). Accumulation was only selected for one 148 

CpG linked to job loss.  149 

Overall, exposure to socioeconomic changes (captured through instability indicators or 150 

mobility hypotheses) was associated with, on average, a 3.8% difference in DNAm levels, 151 

explaining 3.4% of the variance in DNAm across CpG sites after controlling for covariates 152 

(Table S2). The same patterns were found at the epigenome-wide level, with most CpGs 153 

showing most variability in response to adversity from mobility and sensitive periods, rather than 154 

the accumulation of exposure across development (Figure S4).  155 
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SLCMA results were robust to sensitivity analyses 156 

Additional covariate adjustment had minimal impact on results   157 

To assess residual bias in the identified SEP-DNAm associations and further ensure the 158 

robustness of our findings, we additionally controlled for time-invariant SEP indicators, 159 

population substructure estimated from epigenetic data, cord blood DNAm, genetic variation, 160 

and exposure to the other five time-varying SEP indicators. After additional covariate 161 

adjustments, the life-course hypothesis selected by LARS remained the same for all 62 CpGs 162 

with R2>3% (Table S5, Table S6). Almost all CpGs remained significant at the nominal p<0.05 163 

threshold after adjusting for time-invariant SEP indicators (60 CpGs), population substructure 164 

(61 CpGs), cord blood DNAm (61 CpGs), and exposure to the other five SEP indicators (62 165 

CpGs, Table S5). The associations between socioeconomic adversities and DNAm were also 166 

independent of genetic variation previously linked to significant CpGs (Table S6). 167 

Mobility hypotheses improved our ability to identify CpGs related to SEP changes  168 

SEP mobility during childhood had never been previously tested on childhood DNAm to 169 

our knowledge. Therefore, we assessed the insights gained from adding mobility hypotheses. We 170 

re-analyzed the CpGs with an R2 >3% for low family income, financial hardship, major financial 171 

problem, and neighborhood disadvantage using only accumulation and sensitive period 172 

hypotheses. Considering only accumulation and sensitive period hypotheses, we were unable to 173 

fully detect shifts in DNAm patterns related to changes in socioeconomic environment. When 174 

mobility hypotheses were omitted from the SLCMA analyses, there were minimal changes to the 175 

main results showing effects of sensitive period on DNAm (n=22 CpGs), as the same hypothesis 176 

was selected with similar effect estimates (Table S7). However, for CpGs originally linked to 177 

mobility (n=20), there were substantial attenuations in the estimated SEP-DNAm associations: 178 
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sensitive period hypotheses were selected instead, which in turn, showed smaller R2 (ranging 179 

from 0.04-1.6%) and much larger p-values (ranging from 0.001 to 0.84, Table S7). These 180 

findings suggest that when the underlying association structure is misspecified, important DNAm 181 

signatures may not be identified.   182 

EWAS of ever-exposed vs. never-exposed failed to identify time-dependent associations  183 

To evaluate the loss (or gain) of information from the SLCMA compared to more 184 

conventional epigenetic approaches, we performed an epigenome-wide association study 185 

(EWAS) of any exposure to each type of SEP adversity before age 7 and DNAm, thus ignoring 186 

the timing or change of SEP over time. For 59 of the top 62 CpGs (including the 4 FDR-187 

significant CpGs), the effect estimates from the SLCMA were larger in magnitude than those 188 

from EWAS (Figure S5). In addition, no CpGs with an FDR<0.05 were identified using EWAS 189 

of any exposure, meaning ever-exposed vs. never-exposed. These findings suggest the SLCMA 190 

was better able to identify developmentally sensitive effects of socioeconomic adversity on 191 

DNAm profiles, whereas EWAS might fail to detect signals if the true underlying hypothesis 192 

was time-dependent (24). 193 

Biological significance of SLCMA findings 194 

DNAm at significant CpGs was weakly correlated across blood and brain  195 

To examine the relevance of SEP-related DNAm pattern identified in peripheral blood 196 

tissues to brain health, we examined the correlation of DNAm at the top 62 CpGs in blood and 197 

brain samples, using data from the Blood Brain DNA Methylation Comparison Tool 198 

(http://epigenetics.essex.ac.uk/bloodbrain) (32). Overall, DNAm was weakly, but positively, 199 

correlated between blood and brain regions (Table S8) (prefrontal cortex: ravg=0.06; entorhinal 200 

cortex: ravg=0.10; superior temporal gyrus: ravg=0.08; cerebellum: ravg=0.09). Some CpGs showed 201 

http://epigenetics.essex.ac.uk/bloodbrain
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particularly strong correlations between blood and brain (e.g., cg24938210, r=0.78 to 0.81 across 202 

brain regions). 203 

Distinct biological pathways emerged across SEP indicators   204 

The top 62 CpGs showed no significant differences in distributions of genomic features, 205 

CpG island locations, or enhancers, as compared to all tested CpGs (Chi-squared tests p>0.05, 206 

Figure S6).  207 

Gene set enrichment showed that SEP-related DNAm patterns were more likely to occur 208 

within or near genes involved in neural system regulation, developmental processes, immune 209 

functions, metabolic processes, substance localization, and membrane transport (Figure S7, 210 

Figure S8). However, there was little overlap observed in the significant gene ontology (GO) 211 

terms across SEP indicators (Figure S7), except for one GO term (morphogenesis of a branching 212 

epithelium), which emerged in the enrichment analysis for both financial hardship and major 213 

financial problem. These findings suggest different socioeconomic adversities may lead to shifts 214 

in distinct biological pathways.  215 

Discussion 216 

The main finding from this study was that changes in the socioeconomic environment 217 

may coincide with subsequent changes at a biological level as measured through DNAm 218 

signatures. Reports of a change in the socioeconomic environment, particularly worsening 219 

neighborhood quality (i.e., mobility) and parental job loss during middle childhood (i.e., 220 

sensitive period), were associated, on average, with a 3.8% difference in DNAm levels. These 221 

patterns were detected even after accounting for other dimensions of the socioeconomic 222 

environment, ancestry, DNAm levels at birth, and genetic variation. To our knowledge, this 223 
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study is the first to evaluate the role of socioeconomic changes in relation to epigenome-wide 224 

DNAm within childhood.  225 

Our study extends prior literature on the effects of childhood SEP, providing new insights 226 

about the biological embedding of the socioeconomic environment. Only three studies to our 227 

knowledge have examined the relationship between socioeconomic mobility and DNAm (22, 33, 228 

34). Each of these three studies included just two timepoints of SEP measures, one in childhood 229 

and another in adulthood, and only assessed DNAm in adulthood. Our results suggest that acute 230 

changes in children’s socioeconomic environment, compared to exposure to more stable 231 

socioeconomic adversity, might play a role in shaping DNAm profiles in childhood as early as 232 

age 7. Although our study is the first to measure the impact of exposure to socioeconomic 233 

changes on DNAm levels in childhood, our results parallel previous findings on SEP-related 234 

outcomes in the child development literature. For example, non-epigenetic studies focused on 235 

other SEP-related outcomes in childhood have shown that an episode of parental job loss may 236 

have a larger impact on child health and behavior than stable employment in low-income jobs 237 

(35-37). Indeed, the developmental literature largely suggests that children benefit from stable, 238 

predictable environments (38-40) and that changes in the socioeconomic environment can impact 239 

cognitive development and other mechanisms implicated in future risk of health and behavioral 240 

problems (35-37, 41, 42). Future studies are needed to replicate our findings and investigate how 241 

SEP-associated DNAm alterations may influence subsequent health and behavioral outcomes. 242 

Insights from such studies will be critical to discern whether SEP-related DNAm changes 243 

influence children’s vulnerability to disease and other negative health/behavioral outcomes. 244 

We found more evidence for the importance of the developmental timing of SEP on 245 

DNAm rather than its accumulation. These results parallel previous findings from the ALSPAC 246 
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cohort (24) and elsewhere (43), suggesting that sensitive period effects can be detected in the 247 

epigenome. Our results also specifically point to the importance of middle childhood as a 248 

potential sensitive period when the socioeconomic environment might be particularly impactful. 249 

SEP plays an important role during school-age years (38, 44), corresponding to our middle 250 

childhood time period findings, when children in the cohort began school. Socioeconomic 251 

disruptions during school-age years may lead to changes in parent-child interactions, afterschool 252 

care center attendance, or extracurricular activities.  253 

Consistent with prior epigenome-wide studies (21, 22), we found little overlap between 254 

the top CpGs across SEP domains, suggesting that various aspects of the SEP construct may 255 

trigger distinct mechanisms that lead to different alterations in DNAm patterns (19, 45). Across 256 

our six SEP indicators, the greatest number of detected CpGs (17 of 62) were related to 257 

neighborhood disadvantage, with 4 being the only CpGs to pass an FDR<0.05 significance 258 

threshold. These findings point to the important role that neighborhood-level indicators, 259 

including more ubiquitous social and physical exposures experienced daily by larger segments of 260 

a population, may play in shaping the epigenome during child development. For example, we 261 

found that the DNAm alterations linked to neighborhood disadvantage were more likely to occur 262 

in genes related to peroxisomes, which are a key component of the biological response to various 263 

environmental pollutants (46). By contrast, we found that experiences of financial hardship (e.g., 264 

difficulty in affording common household necessities like food, clothing, heat, and rent) and 265 

income reduction were linked to biological pathways related to diet quality, such as nutrient 266 

transport and metabolic processes. Overall, different clusters of biological pathways emerged 267 

across distinct DNAm-associated SEP domains, suggesting that socioeconomic adversities may 268 

affect child health through multiple mechanisms.  269 
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Many of the genes in which our top CpGs were located on or near have been linked to 270 

human health and disease. For example, OAS3, in which our most significant CpG (cg20102336) 271 

resides, encodes an enzyme that plays a critical role in innate antiviral response (47) has been 272 

linked with the incidence and severity of illness caused by coronavirus disease 2019 (COVID-273 

19) (48, 49). TGFBR3, the nearest gene to another significant CpG (cg08638097), encodes a key 274 

receptor in the transforming growth factor-β (TGF-β) superfamily signaling pathways and has 275 

been implied in various human cancers including prostate cancer and bladder cancer (50-53). 276 

Furthermore, one of the top CpGs showing strong evidence of replication across studies 277 

(cg24121967; same direction of effect and p<0.05 in 8 and 3 other studies, respectively) was 278 

located in a putative oncogene MYEOV whose overexpression has been documented in many 279 

cancers such as gastric cancer (54), myeloma (54), and pancreatic cancer (55). These findings 280 

suggest that early life socioeconomic adversities are associated with biological disruptions that 281 

may ultimately lead to a wide constellation of health risks later in life. 282 

While the current study uncovered many insights into SEP and DNAm associations, a 283 

major unanswered question is whether these DNAm changes are adaptive or maladaptive, in both 284 

the short- and long-term. Teicher and others have noted that early neurobehavioral changes that 285 

occur in response to experiences of childhood adversity often enhance immediate survival at the 286 

cost of long-term functioning (56). Thus, are specific epigenomic fluctuations in the face of 287 

family socioeconomic adversity reflective of increased risk, resilience, or both? Although we 288 

found DNAm differences when comparing children who were exposed vs. unexposed to 289 

socioeconomic adversity, we do not know if these SEP-induced shifts represent systemic 290 

alterations of biological functions across tissue types, which may cause key impairments that 291 

lead to behavioral changes and increase disease risks. With existing publicly available data, we 292 
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could only compare the potential implications of our findings to DNAm levels in brain tissue. 293 

Additional research comparing DNAm levels between different tissues is warranted to better 294 

understand the systemic effects of socioeconomic hardship. 295 

Should these DNAm markers of socioeconomic adversity be replicated and identified as 296 

harmful (rather than adaptive) to health, our findings suggest at least two paths forward for 297 

prevention and intervention. First, our results suggest that children and families, especially 298 

lower-income families who may lack a safety-net to draw from during times of parental job loss 299 

or other socioeconomic transitions (57), might benefit from extending policies and social 300 

programs aimed at minimizing socioeconomic instability, such as the Supplemental Nutrition 301 

Assistance Program (58) and the American Families Plan (59). Second, prevention programs 302 

aimed at promoting socioeconomic stability during childhood might benefit from adopting a 303 

multisystemic approach that considers the social determinants of health (60) at multiple levels 304 

(61). In fact, interventions at the household-level (e.g., parenting-based) and neighborhood-level 305 

(e.g., community-based) have revealed measurable biological impacts on children’s DNAm 306 

profiles (62, 63) and on other biomarkers (64-66).  307 

The current study should be interpreted in light of several limitations. First, like other 308 

epigenome-wide studies of this sample size, we identified few specific CpGs passing a stringent 309 

correction for multiple testing. However, following the recent movement to move beyond p-310 

value thresholds alone (67, 68), we explored the patterns and implications of SEP-related DNAm 311 

profiles among top CpGs passing an effect-size-based threshold. The top CpGs passing this 312 

threshold were robust to various sensitivity analyses, and there was consistent evidence for the 313 

patterns of CpGs observed, with the majority showing effects in the same direction as previously 314 

published findings and two CpGs showing significance in other studies after correcting for 315 
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multiple testing. Nevertheless, the results from individual CpGs should be interpreted with 316 

caution and validated in larger samples. Second, because this was a population-based sample, 317 

extreme cases of socioeconomic disadvantage were likely underrepresented in the ALSPAC 318 

cohort. Our results suggest that more severe forms of adversity may have more potent effects, as 319 

we identified most top DNAm CpGs (32 out of 62) from the two socioeconomic adversities that 320 

showed the lowest prevalence (job loss and neighborhood disadvantage). Future research in 321 

populations with more diverse SEP distributions capturing a wider gradient (i.e., extreme 322 

poverty) will help fully disentangle the impact of SEP on DNAm patterns. Third, the ALSPAC 323 

cohort is mostly White, which limits generalizability of these findings to other individuals and 324 

populations of non-European descent. Prior studies (see review (69)) show ancestry-related 325 

variation in DNA methylation that may lead to differences in gene regulation across populations. 326 

Thus, future replication efforts are needed in more diverse and representative populations. 327 

Finally, this study was observational and based on self-report measures of SEP, which could 328 

have been influenced by reporter bias, wherein participant responses may have been shaped by 329 

factors like social desirability or recall biases, leading to over- or under-estimates of observed 330 

associations (70). Although self-reporting bias is common among survey/questionnaire data in 331 

observational studies, previous research has shown that individual-level SEP measures like 332 

education and income, compared to more objective measures assessed at the census tract-level, 333 

can more accurately capture the impact of SEP on a number of health outcomes, such as blood 334 

pressure and height (71). Future randomized experiments will help determine the causal effect of 335 

socioeconomic adversity on DNAm. 336 

In summary, this study adds to a growing literature showing that early-life socioeconomic 337 

adversity can leave biological memories in the form of DNAm differences in childhood. 338 
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Uniquely, our findings on socioeconomic mobility and instability suggest changes in the 339 

socioeconomic environment during childhood are especially impactful and associated with 340 

epigenetic disruptions related to various health outcomes. Ultimately, these findings will enable 341 

researchers to build towards better intervention and prevention efforts aimed at reducing 342 

socioeconomic disparities and promoting health across the life course.  343 

Materials and Methods 344 

Sample and procedures 345 

Data came from the Accessible Resources for Integrated Epigenomics Studies (ARIES) 346 

(72), a subsample of 1,018 mother-child pairs from the Avon Longitudinal Study of Parents and 347 

Children (ALSPAC). ALSPAC is a prospective, longitudinal birth-cohort in the UK designed to 348 

investigate genetic and environmental determinants of health across the lifespan (73-75). Women 349 

living in the county of Avon, UK with estimated delivery dates between April 1991 and 350 

December 1992 were invited to participate. Mother-child pairs in the ARIES were randomly 351 

selected from ALSPAC based on availability of DNA samples across five waves of data 352 

collection (72). We analyzed data from 946 singletons in ARIES with blood-based DNAm 353 

profiles generated at age 7. Ethical approval for the study was obtained from the ALSPAC Ethics 354 

and Law Committee and the Local Research Ethics Committee. Please note that the ALSPAC 355 

study website contains details of all the data that is available through a fully searchable data 356 

dictionary and variable search tool (http://www.bristol.ac.uk/alspac/researchers/our-data). See 357 

Supplemental Methods for full ALSPAC details.  358 

Measures  359 

Early-life socioeconomic position (SEP)  360 



 

 

18 

 

We analyzed six SEP indicators, spanning financial, occupational, and residential 361 

domains: 1) job loss, 2) income reduction, 3) low family income, 4) financial hardship, 5) major 362 

financial problems, and 6) neighborhood disadvantage. These were the only available, time-363 

varying SEP indicators that were measured repeatedly via maternal report through mailed 364 

questionnaires during three developmental time periods (Figure 1a): very early childhood (0-2 365 

years), early childhood (3-5 years), and middle childhood (6-7 years).  366 

For each SEP indicator, children were classified as exposed or unexposed at each period, 367 

using criteria described in Supplemental Methods. With these repeated, self-reported SEP 368 

indicators, we could identify changes occurring between time-periods for indicators capturing 369 

time-varying status of SEP. For job loss and income reduction, the measures inherently captured 370 

change within a certain developmental period, because they asked about socioeconomic mobility. 371 

To distinguish job loss and income reduction from other indicators, we refer to them throughout 372 

the manuscript as “instability indicators”.  373 

DNA methylation (DNAm) 374 

DNAm was measured from peripheral blood at age 7 using the Illumina Infinium 375 

HumanMethylation450 BeadChip microarray (Illumina, San Diego, CA). DNAm wet laboratory 376 

procedures, preprocessing analyses, and quality control are described in Supplemental 377 

Methods. A total of 412,956 CpGs on autosomal chromosomes passed quality control and were 378 

included in this analysis. For each CpG, DNAm level is expressed as a ‘beta’ value (-value) 379 

ranging from 0 to 1, which represents the proportion of cells methylated at each interrogated 380 

CpG.  381 

Covariates  382 
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To adjust for baseline demographic differences in ARIES and technical variation in 383 

DNAm assessment, we controlled for the following variables measured at birth in all analyses: 384 

child age in months at blood draw, child race/ethnicity, child sex, child birthweight, maternal 385 

age, number of previous pregnancies, sustained maternal smoking during pregnancy, and cell 386 

type proportions estimated using the Houseman method (76). Details can be found in the 387 

Supplemental Methods. 388 

Data analysis  389 

All our analysis codes are available through our GitHub page: 390 

https://github.com/thedunnlab/sep-dnam.” 391 

Structured life course modeling approach 392 

We used the two-stage structured life-course modeling approach (SLCMA) (29-31) to 393 

evaluate the time-dependent effects of socioeconomic adversity on DNAm. SLCMA is a method 394 

that leverages repeated exposure data to simultaneously investigate the relationship between 395 

exposure and outcome under multiple a priori-defined life-course hypotheses. In our analyses, 396 

we tested three life-course hypotheses, described previously, which were parameterized as 397 

follows (Figure 1b).  398 

First, to test the accumulation hypothesis, we created a sum score (ranging from 0 to 3), 399 

which captured the number of time periods across the three developmental stages that children 400 

were exposed. Second, to test the sensitive period hypothesis, we created three binary variables, 401 

one for each of the three developmental periods, to classify children’s exposure status (0= 402 

unexposed during the period; 1= exposed during that period). Third, to test the mobility 403 

hypothesis, we created a pair of indicator variables for change in SEP between very early and 404 

early childhood, and a pair of indicator variables for change in SEP between early and middle 405 

https://github.com/thedunnlab/sep-dnam
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childhood. Each pair consisted of an indicator variable for worsening (1=change from unexposed 406 

to exposed, 0=other) and an indicator variable for improvement (1=change from exposed to 407 

unexposed, 0=other).  408 

We tested all three hypotheses for low family income, financial hardship, major financial 409 

problem, and neighborhood disadvantage. Only the accumulation and sensitive period 410 

hypotheses were tested for job loss and income reduction, as these two instability indicators 411 

inherently reflect SEP changes (Table S4).  412 

We performed the SLCMA in two stages: 1) life-course hypothesis model selection 413 

followed by 2) post-selection inference (Figure 1b, Supplemental Methods). In the first stage, 414 

we tested the variables described above using a Least Angle Regression (LARS) variable 415 

selection procedure (77) to identify the life-course hypothesis most supported in the observed 416 

data (i.e., explaining the most variation in DNAm). In the second stage, we used selective 417 

inference (29, 78) to test the association between the selected variable and DNAm and estimate 418 

confidence intervals.  419 

Defining CpGs of interest 420 

We used two thresholds to identify associations between SEP and CpG CpGs for further 421 

investigation. Given recent recommendations discouraging the use of p-values alone for 422 

statistical inference (67, 68), we used an effect-size-based threshold of R2 >3%, meaning that the 423 

SEP exposure explained more than 3% of the variance in DNAm. This cutoff was selected based 424 

on the effect sizes observed in previous epigenome-wide analyses of childhood adversity in 425 

ALSPAC (24, 26) and other well-established environmental exposures, including tobacco 426 

smoking (79). We also performed multiple-testing correction using the Benjamini-Hochberg 427 

method (80) at a 5% false discovery rate (FDR) to assess the significance of top CpGs.  428 
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Sensitivity analyses 429 

We conducted three sensitivity analyses to evaluate the robustness of our SLCMA 430 

results. First, we additionally controlled for 1) time-invariant SEP indicators (e.g., maternal 431 

education at baseline), 2) population substructure estimated from epigenetic data, 3) cord blood 432 

DNAm (to account for differences in DNAm that might have been present at birth), 4) genetic 433 

variation (at methylation quantitative trait loci, or mQTL), or 5) exposure to the other five time-434 

varying SEP indicators. Second, we reran the analyses of the CpGs with an R2 >3% for low 435 

family income, financial hardship, major financial problem, and neighborhood disadvantage 436 

using only accumulation and sensitive period hypotheses and compared the results from analysis 437 

with and without mobility tested. Third, we performed an EWAS of any exposure to each type of 438 

SEP adversity before age 7 and DNAm and compared the findings with SLCMA results. See 439 

Supplemental Methods for details. 440 

Secondary analyses 441 

To interpret our findings and place them in the context of prior literature, we conducted 442 

two secondary analyses. First, we compared the effect estimates of R2 >3% CpGs to those 443 

reported in previous SEP-related EWAS studies (19) (Supplemental Methods). Second, we also 444 

evaluated the biological significance of our findings by examining the correlation between 445 

DNAm in blood and brain tissue for the R2 >3% CpGs and testing for the enrichment for 446 

genomic features, regulatory elements, and Gene Ontology (GO) terms (Supplemental 447 

Methods). 448 

  449 
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Figure 1. Study design and the conceptual life-course models used in the structured life course modeling approach (SLCMA).  

(a) Measurement of childhood socioeconomic adversity (X) and DNA methylation (DNAm) over time (T). Exposure to 

socioeconomic adversities, or indicators of low socioeconomic position (SEP), were measured repeatedly across three childhood 

periods: very early (0-2 years, T1), early (3-5 years, T2), and middle childhood (6-7 years, T3). DNAm was measured around age 7.  

(b) Illustration of the life-course hypotheses tested in the SLCMA, the least angle regression (LARS) variable selection procedure, and 

selective inference test. Accumulation, sensitive period, and mobility hypotheses were examined in this study. Accumulation assumes 

that the effect of low SEP increases with the number of exposed periods. Sensitive period assumes that low SEP is particularly 

impactful during one of the three time periods. Mobility assumes that changes in SEP across specific periods is particularly impactful. 

Early worsening and early improvement refer to adversity getting worse (↓SEP) or better (↑SEP) from very early to early childhood, 

respectively; later worsening and later improvement refer to adversity getting worse or better from early to middle childhood, 

respectively. For each socioeconomic adversity, hypotheses were encoded into variables and then entered into the LARS variable 

selection procedure to identify the one explaining the most variability in DNAm at age 7 at each CpG site. We then performed post-

selection inference to test the association between the selected variable and DNAm as well as estimate confidence intervals. See 

Supplemental Methods for more details about SLCMA. 
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Figure 2. Mobility and sensitive period hypotheses were most often selected among the top 62 CpGs linked with socioeconomic 

adversity (or socioeconomic position, SEP) that explained > 3% variance in DNA methylation (DNAm).  

(a) Frequency at which each life-course hypothesis was selected among the 62 CpGs. For job loss and income reduction, we tested 

accumulation and sensitive period hypotheses, and middle childhood was the most selected hypothesis. For the other four 

socioeconomic adversities, we tested accumulation, sensitive period, and mobility hypotheses. Mobility hypotheses, specifically 

worsening SEP, were most selected. Very early, Early, and Middle refer to sensitive period hypotheses related to the three childhood 

periods: very early (0-2 years), early (3-5 years), and middle childhood (6-7 years). Early worsening/improvement refer to mobility 

hypotheses for changes between very early and early childhood, and later worsening/improvement refer to mobility hypotheses for 

changes between early and middle childhood.  

(b) For the four CpGs associated with neighborhood disadvantage at an FDR<0.05, SEP mobility group implied by the selected 

mobility hypothesis showed the greatest shift in DNAm. The distribution of DNAm by SEP mobility group is shown in boxplots, 

where the center line indicates the median, box limits indicate the 25th and 75th percentiles, whiskers extend up to 1.5 inter-quartile 

range (IQR) from the box limits, and individually plotted data points were values further than 1.5 IQR from the box limits. SEP 

mobility group was defined based on the exposure status at two consecutive childhood periods (very early and early, or early and 

middle) involved in the mobility hypothesis chosen for each CpG; persistently low SEP was defined as being exposed during both 

periods; worsening SEP was defined as being unexposed during the former period but exposed during the later period; improving SEP 

was defined as being exposed during the former period but unexposed during the later period; persistently high SEP was defined as 

being unexposed during both periods
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Table 1. Prevalence of exposure to socioeconomic adversity by developmental period in the ARIES analytic sample. 

 
Job loss 

(N=667) 

Income reduction 

(N=711) 

Low family 

income 

(N=619) 

Financial 

hardship 

(N=697) 

Major financial 

problem 

(N=710) 

Neighborhood 

disadvantage 

(N=687) 

Very early childhood 

(0-2 years) 
42 (6.3%) 458 (64.4%) 95 (15.4%) 127 (18.2%) 138 (19.4%) 83 (12.1%) 

Early childhood 

(3-5 years) 
32 (4.8%) 220 (30.9%) 79 (12.8%) 46 (6.6%) 69 (9.7%) 36 (5.2%) 

Middle childhood 

(6-7 years) 
18 (2.7%) 134 (18.9%) 55 (8.9%) 29 (4.2%) 60 (8.5%) 29 (4.2%) 

Ever-exposed a 77 (11.5%) 525 (73.8%) 130 (21.0%) 147 (21.1%) 184 (25.9%) 98 (14.3%) 

Average correlation 

 over time b 
0.49 0.34 0.87 0.70 0.50 0.80 

The first four rows present the number (%) of children who were exposed to the specific type of socioeconomic adversity at each 

developmental period or ever exposed throughout the three periods.  
a Children who were exposed during at least one period were defined as ever-exposed for the specific type of socioeconomic 

adversity.  
b Polychoric correlations were presented, characterizing the average correlation over time within the given type of exposure. The 

average within-SEP correlations were moderate, suggesting these measures were variable across time, which allowed for detecting 

differences across periods. 
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Table 2. Summary of the SLCMA results for the 62 CpGs with R2>3%. 

Adversity 
Number of 

R2>3% CpGs 
Range of R2 Range of p-values 

Number of 

FDR<0.05 CpGs 

Neighborhood disadvantage 17 3.0-4.2% 1.3×10-7 – 7.1×10-6 4a 

Job loss 15 3.1-3.7% 5.8×10-7 – 8.8×10-6 - 

Low family income 13 3.0-3.8% 1.7×10-6 – 2.5×10-5 - 

Financial hardship 9 3.0-3.7% 5.9×10-7 – 8.5×10-6 - 

Major financial problem 5 3.0-3.8% 2.6×10-7 – 4.7×10-6 - 

Income reduction 3 3.0-3.3% 1.5×10-6 – 4.5×10-6 - 

SLCMA = structured life course modeling approach; FDR = false discovery rate.  

The R2 values reflect the increase in the variance of DNA methylation explained by the first hypothesis chosen after 

accounting for covariates. P-values were calculated using selective inference, which assesses the significance of the 

increase in R2 explained. See Table S2 for the full list of the 62 CpGs.  
a Four CpGs for neighborhood disadvantage passed an FDR<0.05 significance threshold: cg20102336, cg08638097, 

cg23405172, and cg14212190. 
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