
  

  

Abstract— Dynamic Movement Primitives (DMPs) is a 

general method for learning skills from demonstrations. Most 

previous research on DMP has focused on point to point skill 

learning and training, and the skills learned are usually 

generalized based on the same tool or manipulator. There is 

rare research on skill learning and transfer between two or 

more different tools. For this problem, a new DMP-based skill 

learning and transfer framework is proposed for the use of 

multiple tools. It consists of two types of skills: Object Effective 

(OE) skills and State Switching (SS) skills. OE skills consider the 

tools' limited forcing areas that can be expressed as constrained 

inequalities, and extract skills from demonstrations. It can then 

be generalized along with changes in the shape and range of 

influence of a new tool. SS skill is used to connect OE skills and 

implement changes of contact points of the object and tool. 

Finally, the two skills are integrated and used to realize the 

transfer of skills from the demonstrated tool to the new tool. An 

experiment is conducted to verify the effectiveness of the 

proposed framework, and the procedural solutions and the final 

manipulation effect are shown in detail. 

I. INTRODUCTION 

Tools such as hammers, screwdrivers, and wrenches etc. 
are invented for various purposes and are used to help people 
accomplish various tasks. Some tools are designed with 
special functions and others are multi-functional. Enabling the 
robots to use tools to flexibly complete manipulation tasks as 
humans is always a challenge for current research. Tools can 
extend human reaches and amplify the physical strength, 
which have the same meaning for robots. But how to enable 
robots to know and use tools by itself, some previous research 
provides technical ideas.  

Brown and Sammut et. al concluded four key aspects for 
learning the task-oriented tool usages: (a) understanding the 
desired effect; (b) identifying properties of an object as a tool 
(c) determining the correct orientation of the tool prior to 
usage; and (d) manipulating the tool [1]. Some previous 
research based on artificial intelligence and computer vision 
have proposed solutions for the former three aspects, e.g. Xie 
et.al [2] discussed prior approaches of tool-use and proposed 
robotics learning methods and concluded three categories for 
analyzing the tools’ uses: analytic model-based method, direct 
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learning, and learning from demonstration (LfD). For tool’s 
understanding, some recent work has studied using geometric 
analytic model or cognitive learning methods to recognize the 
effective forcing areas and basic properties of tools, and used 
the recognized results for tools’ selection [12], performing 
task planning [15] and policy learning [11]. The main problem 
of analytic model’s is the weak scalability and accumulating 
errors that are not considered in the modelling. Compared with 
direct learning, LfD provides a more natural and easy way 
such that it draws a lot of attention in recent years [3], which 
also can provide a serious of actions for tool’s manipulations. 
Based on our previous research [9],[10], [14], this paper will 
focus on robot skill learning from demonstrations and transfer 
for multi-tool use manipulations. Although there is some 
previous research about tool use using LfD technology [16]- 
[18] , to our best knowledge, there is little research has been 
conducted on transferring skills between different tools. 

As mentioned by Brown et al. [1] and Fang et al. [10], the 
operational tools’ usages can be recognized and the tools are 
classified into T-shape and L-shape etc., but the learned skills 
in one tool are hard to be applied directly on another. However, 
as humans, we use a hammer to hit a nail (Fig. 1). If there is no 
hammer around, we can use a brick instead to achieve the 
same effect (Fig. 1), which means that we acquire the ‘pure 
skill’ of hitting, but not the skill of using hammer to hit. Thus, 
the basic idea of this paper is to learn a ‘pure skill’ from the 
demonstrations of tool’s interactions and applied the learned 
results to a new tool-use case. The proposed framework is 
based on the Dynamic Movement Primitives (DMPs), a very 
general method for robotic skill learning. It was firstly 
proposed by Ijspeert et al [4] to extract a trajectory in a similar 
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Figure 1. Mulit-tool use to achieve the same manipulation effect (the right 

figure is modified from the left for illustration) 

 

 
Figure 2.  Tools used by humans following a certain trajectory (skills) 
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form to the demonstrations without the need for kinematic 
modelling. DMP was improved and widely utilized for the 
tasks such as object movement tracking [5], handwriting [6], 
[22], and clothes manipulation [7] etc. There is some work 
using DMP for tool-use [8], [9] case, but as mentioned before, 
the skills are learned and tested using the same manipulator or 
tools.  

The proposed framework consists of two types of skills: 
The Object Effective skill (OE) and the State Switching skill 
(SS). The function of the OE skill is to move the object along 
the intended trajectory under the influence of tools. Learning 
the OE skill is to acquire a pure skill that can be changed along 
with the tools that have different shapes and effective force 
ranges. In Fig.2, the orange object is moved over the obstacle 
with line shadow to reach the target point (big red point 
circle). The motion path consists of three segments, labeled 1 
to 3. The right figure in Fig.2 shows the possible contact points 
(red dots) on two different tools (T-shape and L-shape) in each 
step to realize the manipulation effect in the left figure. The 
inversion of the contact points is completed by the SS skill 
(black arrow lines). SS skill mainly considers the influence of 
the outline of the tool and the object to reduce the possibilities 
of conflicts. Therefore, a learned SS skill can be generalized to 
adapt to tools with new shapes or change the contact regions in 
different tools.  

Fig.3 shows the diagram of the DMP-based skill Learning 
and transfer framework for multi-tool use. First, by using the 
demonstration, we decompose the actions and create two date- 
sets for the OE and SS skills, the two skills are learning using 
different methods. For a new task in a new environment with a 
different tool to the demonstrated one, we generalize the skill 
according to the starts, destinations and scalar factors and re- 
shape the trajectories considering new situations e.g. obstacles 
and tool’s special shape. Finally, both OE and SS skills are 
integrated to complete the interactions and adaptations of the 
tool to a new task. 

The reminder of this paper is organized as follows: Section 
II provides a brief introduction to the knowledge of DMP and 
illustrates the main challenges for learning and transferring 
skills in handling multiple tools by using the original DMP 
through a preliminary experiment. In section III, two 
subsections independently introduce the skills OE and SS. In 
section IV, we conduct an experiment on a small platform 
consisting of a Phantom Omni joystick, a Kinect, and two 
homemade tools and an object to test the effectiveness of the 
proposed methods. The conclusions from the phases and the 
final results are presented in detail. The last section contains a 
final conclusion. 

II. PRELIMINARY WORK 

A.  Original formulation of DMPs 

The DMP model [4] is presented as  
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where 
ic  and 0ih   are the centers and widths of radial basis 

functions ( )i s , and , 0z z   are coefficients of the linear 

part in (1) and (1) has the unique attractor point at ,x g=  

0.v =  0   is a timing parameter for adjusting speed before 

execution of movements, and s  is a phase variable to achieve 

dependency of function ( )f s  out of time. The dynamics of s  

is expressed by a canonical system as 

 , 0s s  = − &  () 

The convergence time of s  is determined by the factor  . 

If 0s → , the value of ( )f s  trends to 0 and  ,x v will reach 

to the final point [ ,0]g . Vector   is learned using supervised 

learning algorithms by minimizing the error function: 
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(a)                                  (b)                                  (c) 
Figure 4. Experimeal setup and interface and the recorded trajectories of 

the object and the tool (with Omni joystick) (a) physical platform with a 

red object and a blue finger-shape tool (b) trajctory of the object center 
(upper figure) and the manipulator’s end (lower figure) (c) trajecotry 

learned results by using the original DMP that the corners between the line 

segements are erased due to the minimizing function (4).  

 
Figure 3. Mulit-tool use to achieve the same manipulation effect (the right 

figure is modified from the left for illustration) 

 

 
Figure 3. Diagram of  Dynamic Movement Primitives (DMP)-based skill Learning and transfer framework for multi-tool use 

 



  

where ( )f s represents the final calculated forcing function, 

and ( )Tar

jf s is the target value calculated by the jth  trajectory 

 ( ) ( )( )Tar

j j z z j jf s v g x v  = − − −&  () 

where 
jx and 

jv  represent the positions and velocities of 

the jth  trajectory. 

B. Problem description and assumptions 

Fig. 3 (a) shows the experimental conditions from the top 
view. Human operator handles the pen of the Joystick attached 
with a tool (blue part) to contact and move the object (red part) 
to reach to the target square. Due to the operator’s preference 
and the tool’s shape, only the upper and left sides of the tool 
can be used for manipulation (as shown in Fig.4(a)). Thus, the 
object can only be pushed leftward and forward. The upper 
subfigure of Fig.3 (b) shows a trajectory of object center that is 
consisted of several line segments. If the object is grasped by 
human hands or attached directly on the robot’s end, it can be 
moved straight from the start to the target and the angles 
between the line segments can be avoided. Thus, the first 
problem can be described as:  

Problem 1: If we use the demonstrations under the influence 
of user’s preferences and tool’s usages for skill training, it is 
easy to bring these characteristics to the skill generalization 
process that may be not suitable to the new tool or new cases. 
Additionally, if we use the original DMP formulation in (1) for 
skill learning, because there is no any limitation on the learned 
trajectories, these properties will be erased by the minimizing 
calculation (Fig. 3(c)) in (4). 

 As tool-use is a process interacted by the tool and the object 
/environment, we also record the tool’s moving trajectory (the 
end of the manipulator, and the tool is fixed with constant 
relationship to the manipulator). For changing contact regions 
(from tools’ top to the left or vice versa), there are two arching 
trajectories. So the second problem is  

Problem 2: how to learn the skill for switching contact points. 
During the switching process, avoiding conflicts between the 
tool and object is probably the main concern. 

To address above problems, we propose the assumptions: 

Assumption 1: The potential contact regions and properties of 

tools can be recognized by using the methods in [12], or some 
parameter identification methods e.g. in [13]. In this work, it is 
assumed that these properties and regions are known or 
manually determined before skill learning and generalization.  

Assumption 2: All the tools in this paper are basic tools that 
can be summarized as limited shapes introduced in [10], such 
as I shaper, T-shape and L-shape etc. 

III. DMP-BASED SKILL LEARNING FRAMEWORK 

For above two problems, we propose the OE skill and SS 
skill separately, both of which are based on DMP and used for 
multi-tool use scenes.  

A. Object effective (OE) skill learning 

As mentioned above, the effective attack surfaces are on 
the top and left side of the tool, selected by the operator to 
produce forward and left thrusts. While for an object attached 
to the end of the robot or gripped by the robot hand strictly, it 
can be moved with the robot. The limited effective ranges of 
the tool constrain the directions of the object's motion. Let us 
take Fig. 5(b) as an example: the hands can be used to move 
the object from the starting point to points A and B, which 
happen to be within the dark blue and light blue regions called 
"universal space". If we set point A and point B as internal 
passing points to reach to target, we can choose two ways to 
move the object from A to B: first leftward and then forward 
up to B or the forward first. Here, we choose the latter strategy 
and the light blue universal space is compressed into a space 
with blue lines such that there are several corners along the 
final trajectory, as it is shown in Fig. 4(b). 

The pure OE skill is expected to remove these constraints 
and to be learned in the universal space. Then, for a new task 
using a new-shape tool, the pure OE skill will be generalized 
first and condensed again according to the constrains 
generated by the new tool. Therefore, before using OE skills 
learning method, we assume that the effective force regions 
and tool’s shapes are known, and the constrains generated by 
these conditions can be expressed by several inequalities. 

Then, what we do is to build a nonlinear mapping function 
for the trajectory points in the universal space and condensed 
space. We classify these constraints into angle constraints and 
Cartesian space constraints. The typical angle constraint is the 
one affected on the top of the tool in Fig.5 (a) and the effective 
pushing directions are within a small range colored in yellow 
and shown in Fig. 5(b). Here, we refer our previous research 
[10] and set an angle condensed in the constrained/condensed 

space as   and 
b  as the boundary condition of  , and the 

angle released in the universal space is 
g , then a nonlinear 

mapping function is built as  
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where ( )0,1k  is an adjusting factor. According to the proofs 

in [19], ( ),b b   −  is strictly satisfied.  

For the transformation in the Cartesian space, we set 
ox  as 

a referring point, which are within constraints, as presented in 

 
 (a)                                                          (b) 

Figure 5. limited effective tool areas and potential trajectories under the 

influence of the limitations (a) Effective force areas of the tool at the upper 
and left side of the tool (yellow coloured lines) (b) Potential trajectories 

are generated within the limited space under the influence of the tool 

limitations. The figure on the lower left shows the constraints of the upper 
contact area. The figure above right shows the effective trajectories (blue 
lines) from the starting point to the intersection point A and point B. 



  

our previous work of [10]. Set 
px as a point in the universal 

space, 
bx  as a point on the constrained boundary, and 

gx  as a 

point in the compressed space. As it is shown in Fig.5 (a), the 
leftward push action is constrained by the effective pushing 

points aligned on the tool’s left side. Define p p or x x= − , 

b b or x x= − , g g or x x= − , and ( )0,1k  , a transformation 

function (7) is built to generate a constrained trajectory within 
an area or out of an area as  
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Eqs. (6) and (7) are used to condense a trajectory in the 
universal space into a constrained space. We can use inverse 
calculation based on Taylor expansion (usually use two order 

expansion) to expand   or 
gx  from the condensed space to 

the universal space and achieve 
g  and 

px . For example, 

using the Taylor expansion of (6), a constrained angle   is 

transformed into angle 
g  in the universal space by   
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which is determined by k and has four possible solutions for 

the same  . We use evaluation principles such as smoothness 

of the generated trajectory to select one as the final universal 
point. The OE skill learning and generalization procedure can 
be summarized as following steps: 

1. Select constraint type and build the mapping function (6) 
or (7); 

2. Use demonstrated trajectory and the inverse calculation 
of (6) and (7), like (8), to calculate the results in the 
universal space; 

3. Use (1) to learn from the transformed trajectory points 
and achieve skills in the universal space; 

4. Use mapping function (6) or (7) again and constraints of 
new tools and new environmental conditions to condense 
the learned skill into the constrained space.  

Remark 1: The relative distance between two adjacent points 
is increased and compressed by the nonlinear transformation 
functions, which may lead to nonuniformity of the generalized 
trajectory. We can set up an optional point tank containing 
multiple points near the center points for point selection to 
ensure the smoothness of the trajectory. 

B. State switching (SS) skills learning 

Fig. 6 shows an illustration of the contact state switching 
process. A tool is moved from the right contact surface on the 
object to the lower contact surface. Not only the object but 
also the contact areas of the tool are switched from left to top. 
Therefore, the change trajectory (black dashed line in Fig. 6) 
has to do with both the object and the multifunction tool. Even 
for the same object, the contact points will be different for 
different tools due to the different shapes, and the ability of the 

tool to change state will be different. We would like to split the 
one-point trajectory of the tool (black dashed line) into a 
virtual object motion trajectory (red line) and a pure tool 
motion capability (red dashed line), where the latter can be 
generalized depending on the changes in the shape and contact 
areas of the tool. Similar to OE, we assume that the contact 
points of the tool and object as well as the outlines of the tool 
and object are precisely known. 

 

Figure. 6. Illustration of tool state switching process  

Assuming during the tool’s state switching process, object 
keeps static.  Set the initial contact points (point 3 on the object 

and point 2 on the tool) locate at 
ox  and the vector between 

point 2 and point 3 on the object as ox , the vector from point 

2 to point 1 as tx , the final position of point 2 as g , the final 

position of point 4 as O
g and the initial position of point 1 as 

t
g , then we have 

, ,O t O t t O

o o o− =  −  − =  − = g x x x g x x g x x  () 

Set x as the tool’s trajectory in the world coordinates, and 
t

x and O
x as the decomposed trajectories of the tool and the 

object, then x  always satisfies 

 ( ) ( )1 2

t O
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where
1k and 

2k are constant vectors. For the end point o
g and 

t
g  , (10) is still satisfied. Using (9), we can get   

 ( )( ) ( )( )1

1 2

H
t OI k I k tr

−
− + =  x x  () 

which means that the factors 
1k  and 

2k  are determined by the 

vectors between the start and end contact points, and I is an 
unit vector.  

Using (10) and (11), we have  

 ( )1 2 1 2

t O

ok k I k k− = + − −x x x x  () 

Using DMP, the trajectory generated by the tool’s contact 
point 2 in one-dimension is expressed as 
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Similarity, we assume the two trajectories (the pure tool’s 
movements and virtual object movements) decomposed from 
x  are expressed by DMP as  



  

 
( )( ) ( )t t t t t

z z

t t

v g x v f s

x v

  



 = − − +

 =

&

&
 () 

 
( )( ) ( )O O O O O

z z

O O

v g x v f s

x v

  



 = − − +

 =

&

&
 () 

where tx , tv , tg , Ox , Ov and Og are one-dimension values of 

vector t
x , t

v , t
g , O

x , O
v and O

g , and ( )tf s and ( )Of s  are 

forcing functions sharing the same phase variable s  with 

( )f s , and 
z , 

z , and   are common factors. 

Using (13) and (14), we have  
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where
1

t tg g k g= −% , and
1

tx x k x= −% .  

Taking (12) into (16), we have 
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Comparing (15) and (17), we can get  

 ( ) ( ) ( )1 2 0t Of s k f s k f s− − =  () 

It means that ( )f s is expressed by the linear composition 

of ( )tf s  and ( )Of s . As 
1k and 

2k are calculated by (11) 

after confirming the positions of the start point and end point, 

if a virtual trajectory Ox based on ( )Of s is generated, the 

pure  tool’s forcing function ( )tf s , as well as the operation 

skill tx , can be directly calculated by (14). The SS skill 

learning and generalization can be realized through the 
following steps: 

1.   Acquire exact information of tool’s shape, positions of the 
tool and object’s contact points (as assumptions stated); 

2.   Use (11) to calculate 
1k  and 

2k ; 

3.   Use (13) and (15) to learn the exact expression of the real 

tool’s movement x  and virtual object movement Ox ; 

4.   Use (18) to calculate ( )tf s  and get the pure SS skill (14); 

5.  Generalize the pure SS skill according to the new object’s 

contact point and learn a new virtual object movement Ox  

and a forcing function ( )Of s  according to the new tool’s 

shape; 

6.  Use (18) to get ( )f s and use (13) to calculate the final 

tool’s switching trajectory for a new tool and new object.  

Remark 2: The SS skill can be generalized between different 
tools due to the essential conditions are merely contact points 
and the outline data of the tool and object that don’t concern 

with other features. Contact point can be set autonomously by 
the visual recognition method or manually set by humans. 

IV. EXPERIMENTS 

The experiment is taken base on a small platform consisted 
of a Kinect for recording the object’s movement and tool’s 
positions, an Omni joystick for collecting position information 
and acting as an actuator for moving the object, and two self- 
made tools (a finger-shape tool and a rectangular slope tool) 
fixed at the end of the joystick (Fig. 7).  

A. Setups and system modelling 

As the last three joints of Phantom Omni joystick are fixed 
and we add extra tools at the joystick’s end, the kinematic and 
dynamics parameters of the joystick (Fig.7) are premeasured 
and recalculated. 

 

Figure. 7 Phantom Omni joystick and attached tool 

DH parameters of phantom joystick is presented in Table I. 

TABLE I.  DH PARAMETER FOR THE PHANTOM AND TOOL 

Joint i  i (mm) 
ia (mm) 

id (mm) 
i  

1 -pi/2 0 133.35 
1  

2 0 133.35 0 
2  

3 0 133.35 0 
3  

Tool 0 
ta  10 2pi/3 

* 
i is link twist, 

ia is the link length, 
id  is the link offset, 

i is the 

joint angle, and 
ta distance from robot end to the tool’s center point 

Parameters of the object and tools are measured and shown 
in the following Table II.  

TABLE II.  PARAMETER FOR OBJECT AND TOOLS 

Object  Tool 1 Tool 2 

Radius 
=17.5mm 

ai=26mm; Tool’s width = 
12 mm; Radius of contact 
head =6mm; Left contact 
length = 10mm 

ai=28mm; Tool’s width = 
12mm; Left contact length 
= 5mm; Angle of inclined 
plane = pi/3 

To enable the Omni to autonomously move as an actuator, 
the dynamics parameters of the joystick are estimated based 
on the method mentioned in [20].  

B. Skill learning  

No matter OE skill or SS skill, the first step is to learn skills 
from demonstrations. OE skill is directly learned from object 



  

trajectories (Fig.8 (a)). Like point A and B in Fig. 5 (b), we 
select some points at the trajectory corners as fixed points by 
hand, and build the constrained inequalities for the internal 
trajectory points. The constrained points will be recovered to 
the universal space following the procedure shown at the end 
of Section III. A. The recovered trajectories are colored in 
grey and shown in Fig.8 (b). Then a universal OE skill (red 
line in Fig.8 (b)) is learned from these trajectories by using 
DMP. 

 
(a)                                                       (b) 

Figure. 8 Object trajectory transformation and learning (a) original object 

trajecotries with constraints (b) recovered object trajectories (gray lines) and 

learned skill (red line) in the universal space 

The results of SS skill learning are presented in Fig.9. 
First, we intercept the state switching actions from the original 
data presented in Fig.9 (a). Then the actions are aligned and 
shown as the grey lines in Figs.9 (b) and (c). By using DMP, 
the skills under the influence of the tool and the object are 
abstracted as the red dash line shown in Figs.9 (b) and (c).  

Following (10), the trajectory point tx is calculated after 

setting the object virtual movements ox . Here, we designed 

two virtual trajectories: an arching line and a direct line 
connecting the two contact points on the tool (green dash lines 
shown in Figs.9 (b) and (c)). Then, by using DMP, we can use 

(15) to fit the virtual curves and get ( )Of s . After calculating 

proper values of 
1k and 

2k , ( )tf s is achieved by (18) and the 

pure tool-use trajectories (blue solid lines shown in Figs.9 (b) 

and (c)) are also learned by (14). Comparing Fig.9 (b) and 
Fig.9 (c), the deviance degree between the blue curves and the 
start point in Fig.9 (b) is larger than the results in Fig.9 (c), and 
we can conclude that different virtual object movements will 
cause difference of the final learned pure skills.  

C. Skill generalization  

The OE and SS skills are generalized for a different tool use 
case by setting different conditions in the environment. First, 
for the OE skill, the new tool, as Tool 2 in Fig. 7, has two 
functions: pushing the object leftward or pushing it diagonally 
with an angle of 0.75pi  through an inclined plane. The start 

and end points are the same as in Fig.8(b). Compared to the 
demonstrations in Fig.5, we first generalize the skill learning 
in Fig. 8 (b) by the confirmed start and end points. Using the 
selected pushing points, we calculated the reachable areas of 
the new tool by its kinematic functions to generate new 
constraints of the tool in Cartesian space. In Fig.10, we show a 
feasible solution for the trajectory generalization, where the 
object is pushed leftward twice (red lines) and left forward 
(blue lines) twice till the end point.  

 

Figure. 10 OE skill generalization under the effect of a Trapezoid tool 

The SS skill is generalized for two kinds of tool-use cases: 
A T-shape tool and a trapezoid-shape tool. The tools’ initial 
locations are colored in blue in Fig. 11 (a) and Fig. 11 (b) and 
tools surfaces, highlighted in yellow, are prepared for the next 
contact. The contact points after state switching are randomly 
chosen along the yellow lines. The round objects are colored 
in dark red with the same size in Figs. 11 (a) and (b). Five 
internal steps are selected to present internal state to in Fig. 11. 

During initialization, we confirm the starting contact 
positions and select the potential contact points on the object 
and the tool. Then, a virtual object motion is generated 
according to the steps presented at the end of Section III. B. 

Using the pure skill tx  learned in Fig.8, we can generalize the 

SS skill changing along with the tool’s shape.  

 
(a)                                                (b) 

Figure. 11  Generalized tool’s trajectories with different tool’s shape 

and contact point changes (a) results of T-shape tool and the contact 

points locate at the right and bottom of the object (b) results of 
trapezoid-shape tool and the contact points locate at the right and 

bottom-right of the object 

 

 
(a)     

 
(b)                                                        (c) 

Figure. 9 Trajectories and DMPs-based tool’s state switching skills. (a) 

tool’s demonstrated movements (b) results of the arch-shaped object’s 

virtual movements and learned SS skill (c) results of the line-shaped 

object’s virtual movements and learned SS skill 

 



  

Seen from Fig. 11, the tools are moved to the desired 
positions and change the contact directions and positions 
finally. The generalized trajectories (blue lines in Fig. 11) are 
different seriously due to the tools’ shapes.  

D. Experiments based on integration of OE and SS skills 

The experiment is performed in four steps (as shown in 
Fig.3). First, an operator operates the joystick and controls it to 
move the object using tool 1. The Kinect and the joystick 
record the trajectory points of the center of the object and the 
end effector of the tool. After aligning the trajectories, 
compensating for platform deformation, and task 
segmentation for the generated trajectories, we create a skill 
learning dataset (Fig. 8 (a) and Fig. 9 (a)).  

Second, the two skills are learned separately. For learning 
the OE skill, we select state change points (vertices) as fixed 
points and then the motions are recovered under the 
constraints caused by the tools and learned in the universal 
space (Fig. 8 (b)). Similarly, the SS skills are learned from the 
segmentations of the tool motions (gray lines in Figs. 9 (b) and 
(c)). 

Third, the OE and SS skills are generalized sequentially. A 
new task should first contain information such as the start and 
end points, the outline of the tool and the contact points, the 
kinematic and dynamic parameters of the manipulator, and 
some special operational requirements such as obstacle 

avoidance or state change times. Then, the OE skill is 
generalized based on the known information, taking into 
account the physical conditions of the manipulator in Tables I 
and II and the object handling requirements (Fig. 10 (a)). The 
SS skills are then generalized based on the results of the OE 
skill generalization, which include exact start and end 
positions for each OE skill. (Fig. 11).  

Finally, we can combine the OE and SS skills to generate 
the overall action of tool use triggered by a new tool for a new 
task by connecting the starts and ends of these skills. Fig. 12 (a) 
shows the generalized desired path for the object (blue) and 
the tool (red) and Fig. 12 (b) shows the actual movements of 
the tool recorded with the joystick.. 

 

(a)                                                         (b) 

Figure. 12 Generalized object and tool’s trajectories and the compare of the 
planned and real movements (a) Planned object and tool’s trajectories (b) 

Compare of  tool’s planned path and real recording motions 

Figure. 13  Experiment taken based on the physical platform (a~f) demonstrations  by human operator (A~F) the robot (joystick) completes new tasks (new tool 

and new map) autonamously based on learned skills. (a) and (A) are start state, (c)and (C) shows the states switching process, and (e) and (E) are the final 

reaching-target state, (f) and (F) are leaving screenshot of the tool 

Fig.13 shows the experimental screenshots of the human 
demonstrations and the framework certification made by robot 
manipulating a new tool, and the object is pushed to the target 
location as expected.  

 

Figure. 14 Realize ‘safety margin’ and the long ‘tail-effect’ effect around the 

obstacle by (7)  

Although we compensated for the actuator dynamics and 
used PD control for joystick position tracking, there is still 
some degree of position tracking error due to the stiffness of 
the joints and the obstacle forces generated by the object, as 
shown in Fig.12 (b).  

E. Extended functions of OE skill learning method 

 Ref [19] proposed an idea of ‘safety margin’ to avoid 
confliction with obstacles, which it is easy to be realized in (7) 

by changing 
gr  to 

gr + , and 0   represents the width of 

safety margin. As obstacle avoidance is a core application for 

DMP, compared with [19], two kinds of constraints caused by 
tools and the environmental conditions e.g. obstacles can be 
integrated in the same framework by using (7). Fig. 14 
presents the preliminary results of realizing ‘safety margin’ 



  

and ‘tail- effect’ effect around the obstacle, corresponding to 
the Figs.6 and 7 in [19]. 

F. Discussion 

In this paper, we conduct an exploratory study of skill 
learning and transfer between different tools and test the 
effectiveness of the proposed method through experiments. In 
this framework, we consider the constraints imposed by the 
environment and the shape of the tool. Some previous research 
has investigated skill learning and generalization technologies 
in a constrained environment, e.g., [10], [19]. There is limited 
research that considers both environment and tool influences 
and discusses skill transfer between different tools. However, 
the framework needs to be improved to reduce the manual 

settings, e.g., , ,o bx x k  in (7), as well as the contact points of 

the tools, which can be determined by previous research in 
computer vision and deep learning, e.g., [12]. Due to the page 
limitations, the selection and optimization of these factors are 
not deeply discussed either.   

The main contribution of this work is to provide a solution 
for tool manipulation capabilities after tool usage recognition, 
i.e., to answer the fourth question proposed by Brown and 
Sammut in [1]. We hope that the learned skills are reusable 
and can be applied to a new task after sufficient geometric 
information has been acquired and repeated demonstration has 
been avoided. The demos and experimental certifications will 
be performed on the 2D platform. For 3D space manipulation 
and 6D skills, there is still much to be done based on the 
current skill learning framework. 

V. CONCLUSION 

For multi-tool use skills learning and transfer for object 
interaction, we propose a novel DMP-based framework that 
takes into account the effective working ranges of the tool, the 
selection of contact points, and the influence of the shapes of 
the tool and object. The OE and SS skills are learned from the 
tool and object trajectories using two improved DMP methods 
separately. By combining the two skills, the newly generated 
skill can be used to perform a task to reach an object using a 
new tool and considering the specific requirements.  

An experiment about human interaction with the robot 
(Joystick) and autonomous task execution by the robot is 
conducted to verify the effectiveness of the proposed system. 
Due to the previous closure of the laboratory, the experiment 
was conducted only on a 2D platform. Future work will be 
based on real robots to perform 3D operations using standard 
tools. In addition, based on the work of this paper, some 
techniques, such as tool selection and effective region 
detection are expected to be added to the current framework to 
improve the robot's capabilities in using tools.  

REFERENCES 

[1] S. Brown, and C. Sammut, "A relational approach to tool-use learning 
in robots, " in: International Conference on Inductive Logic 
Programming Springer, Berlin, Heidelberg. pp. 1-15, September, 2012. 

[2] A. Xie, F. Ebert, S. Levine, and C. Finn, "Improvisation through 
physical understanding: Using novel objects as tools with visual 
foresight," arXiv preprint arXiv:1904.05538. 2019. 

[3] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, "Recent 
advances in robot learning from demonstration," Annual Review of 
Control, Robotics, and Autonomous Systems, no. 3, 2020. 

[4] A. J. Ijspeert, Nakanishi J., and Schaal S., "Trajectory formation for 
imitation with nonlinear dynamical systems," in: Proc. IEEE/RSJ Int. 
Conf. Intell. Robot. Syst., 2001. pp.752–757 

[5] A. Ude, A. Gams, T. Asfour, and J. Morimoto, "Task-specific 
generalization of discrete and periodic dynamic movement primitives," 
IEEE Trans. Robot., vol. 26, no. 5, pp.800-815, 2010.  

[6] T. Kulvicius, K. Ning, M. Tamosiunaite, and F. Worgötter, "Joining 
movement sequences: Modified dynamic movement primitives for 
robotics applications exemplified on handwriting," IEEE Trans. 
Robot., vol.28, no.1, pp.145-157, 2011 

[7] A. Colomé, and C. Torras, "Dimensionality reduction for dynamic 
movement primitives and application to bimanual manipulation of 
clothes", IEEE Trans. Robot., vol.34, no.3, pp.602-615, 2018. 

[8] A. Montebelli, F. Steinmetz, and V. Kyrki, "On handing down our tools 
to robots: Single-phase kinesthetic teaching for dynamic in-contact 
tasks, " in: 2015 IEEE International Conference on Robotics and 
Automation (ICRA) , pp. 5628-5634, May, 2015. 

[9] C. Yang, C. Zeng, C. Fang, W. He, and Z. Li, "A dmps-based 
framework for robot learning and generalization of humanlike variable 
impedance skills, " IEEE/ASME Transactions on Mechatronics, vol. 
23, no. 3, pp.1193-1203, 2018. 

[10] Z. Lu, N. Wang and C. Yang, "A Constrained DMPs Framework for 
Robot Skills Learning and Generalization From Human 
Demonstrations," IEEE/ASME Transactions on Mechatronics, vol. 26, 
no. 6, pp. 3265-3275, Dec. 2021, doi: 10.1109/TMECH.2021.3057022. 

[11] K. Fang, Y. Zhu, A. Garg, A. Kurenkov, V. Mehta, F. Li. and S. 
Savarese, "Learning task-oriented grasping for tool manipulation from 
simulated self-supervision, " The International Journal of Robotics 
Research, vol. 39, no. 2-3, pp.202-216, 2020.  

[12] Y. Bekiroglu, D. Song, L.Wang, and D.Kragic, "A probabilistic 
framework for task-oriented grasp stability assessment, " in: 2013 IEEE 
International Conference on Robotics and Automation, pp. 3040-3047, 
May. 2013. 

[13] Z. Lu, N, Wang and C. Yang, "A novel iterative identification based on 
the optimised topology for common state monitoring in wireless sensor 
networks, " International Journal of Systems Science, vol. 53, no.1, pp. 
25-39, 2022 . 

[14] Z. Lu, N. Wang, M. Li and C. Yang, "Incremental Motor Skill Learning 
and Generalization from Human Dynamic Reactions based on 
Dynamic Movement Primitives and Fuzzy Logic System," in IEEE 
Transactions on Fuzzy Systems,  

[15] Y. Zhu, Y. Zhao, and S. C. Zhu, "Understanding tools: Task-oriented 
object modeling, learning and recognition, " in: Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition, 
pp.2855-2864, 2015. 

[16] R. Braud, A. Pitti and P. Gaussier, "A Modular Dynamic Sensorimotor 
Model for Affordances Learning, Sequences Planning, and Tool-Use," 
in IEEE Transactions on Cognitive and Developmental Systems, vol. 
10, no. 1, pp. 72-87, March 2018 

[17] H. Hoffmann, Z. Chen, D. Earl, D. Mitchell, B. Salemi, and J. Sinapov, 
"Adaptive robotic tool use under variable grasps," Robotics and 
Autonomous Systems, no. 62, vol. 6, pp.833-846. 2014. 

[18] N., Yamanobe, W., Wan, I.G., Ramirez-Alpizar, D., T., Petit, Tsuji, S., 
Akizuki, M., Hashimoto, K. Nagata, and K., Harada, A brief review of 
affordance in robotic manipulation research. Advanced Robotics, vol., 
no. 31(19-20), pp.1086-1101. 2017. 

[19] S. M. Khansari-Zadeh, and A. Billard, "A dynamical system approach 
to realtime obstacle avoidance," Auton. Robots, vol.32, no.4, pp.433- 
454, 2012. 

[20] T. Sansanayuth, I.  Nilkhamhang, and K. Tungpimolrat, "Teleoperation 
with inverse dynamics control for phantom omni haptic device, " in 
2012 Proceedings of SICE Annual Conference (SICE) , pp. 2121-2126, 
August, 2012,  

[21] C., Lauretti, F. Cordella, and L. Zollo, "A Hybrid Joint/Cartesian 
DMP-Based Approach for Obstacle Avoidance of Anthropomorphic 
Assistive Robots". Int J of Soc Robotics vol 11, pp. 783–796, 2019. 

[22] C. Zeng, Y. Li, J. Guo, Z. Huang, N. Wang and C. Yang, "A Unified 
Parametric Representation for Robotic Compliant Skills With 
Adaptation of Impedance and Force," in IEEE/ASME Transactions on 
Mechatronics, doi: 10.1109/TMECH.2021.3109160. 


