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ABSTRACT 

We propose a new high speed line tracing algorithm 
based on a well known differential geometric line 
extraction algorithm. The previously separate steps of line 
detection and line tracing are performed simultaneously. 
This allows the exclusion of non-candidates from 
processing. Exploiting the inherent continuity of lines and 
using extracted line characteristics in subsequent 
detection/tracing also solves the problem of multiple, 
computationally expensive scale space iterations. 
Consequently, processing time is shown to be reduced by 
up to a factor of fifty. Furthermore, the extraction is very 
sensitive as hard to set global thresholds are no longer 
required. In the context of these proposals, we also review 
methods to identify the pixel-wise line orientation. The 
previously used orientation of maximum second derivative 
proved to suffer from systematic errors, whereas, our two 
novel methods proved more reliable. Our algorithm is 
designed for images containing only a single line but can 
be applied to images with multiple lines, especially if the 
global image structure is known. 

KEYWORDS: Curve Tracing, Line Detection, Gaussian 
Scale Space, High Speed, Sub-Pixel 

1. INTRODUCTION 

The extraction of curvilinear features, or simply (curved) 
lines, is a very important operation in low level vision. 
Applications include the extraction of roads from aerial 
images [1], the extraction of vessels from MRI-images [2] 
and the processing of solar images [3]. Our application 
requires the rapid extraction and tracing of specular 
signatures. Our study concerns the on-line inspection and 
reverse engineering of complex specular surfaces, an 
industrial problem that has so far only been solved for 
Lambertian surfaces [4]. Outcomes of the project will 
bring benefits to many different manufacturing industries, 
including those of ceramic, metal and lacquered or 

polished goods or pharmaceutical packaging. We are 
exploiting what we coined as the specular signature, in 
other words the reflection of a laser line of the specular 
surface on to the back of a translucent screen. We have 
developed an apparatus where a continuous stream of 
images of the front of this screen is taken while the 
specular specimen travels beneath it on top of a conveyor 
belt. Often the surfaces contain topographic textures and 
the resulting projection is therefore a highly complex 
curvilinear structure. As these signatures can take on 
arbitrary shapes and can vary in scale, no direct 
information is apparent to facilitate the extraction/tracing. 
This therefore is very challenging. What sets our problem 
apart from general line or edge detection is that, as long as 
the observed surface is continuous, only one single 
signature line will be present. We can also set the 
geometry of our apparatus in such a way that the 
signatures are not self intersecting. It is crucial for us to 
know the path of the signature and we furthermore require 
the precise extraction of the line centre as well as line 
width. To make the device suitable for high speed 
production lines, we also depend on high speed 
processing. To bridge large gaps that can appear in the 
signature and flag the presence of surface defects, it is 
also crucial to precisely know the orientation of the line at 
every point. 

So far, we have not found evidence of line extraction 
methods that address our problem, with our required 
combination of attributes (processing speed, sub-pixel 
accuracy, line width determination, ability to bridge 
gaps). We close this gap by a straight forward 
interweavement of the extraction and tracing steps of a 
well known differential geometric line extraction 
algorithm [5], that we carry out simultaneously. By 
exploiting a line’s inherent continuity, we can extract 
every line point using knowledge of its characteristics, 
most importantly its position, orientation, scale and 
degree of bulging. This brings a large reduction in 
processing time. Moreover, the method makes redundant 
any global thresholds as required in previous work. As 
these are notoriously difficult to set, it is virtually 
impossible to satisfy all regions of an image, especially if 
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different scales are present. This results in a vastly 
improved sensitivity of our algorithm. 

The remainder of this paper is organized as follows. 
Section two looks at related work and discusses the 
underlying algorithm. Section three introduces our novel 
algorithm and discusses line orientation computation; 
section four shows and discusses exemplary experiments. 
The conclusion follows in section five. 

2. LINE EXTRACTION 

Line detection, tracing and extraction are well known 
problems and have been investigated for several decades. 
Popular methods include active contours [6] and Hough 
transform based approaches. The former is a notoriously 
slow technique whilst some effort has gone into creating a 
real time Hough transform [7, 8]. However, the Hough 
transform, which normally relies on a binary input (and 
hence a pre-processed, thresholded image), does not 
compute line orientation or width and is limited to 
detecting predefined analytical functions such as straight 
lines or circles. Often multiple tuned filters [1] or filters in 
combination with subsequent region growing [9] are used. 
The result is a rough estimate of the line orientation; the 
line width cannot be determined. Sargin et al [10] chose 
an initial line point and grew the line along a tree with a 
branching factor of eight where each branch represents a 
neighbouring pixel. As criterion they use a second 
directional derivative threshold. A real time line 
extraction algorithm was proposed in [11] where the 
Laplacian edge detector is applied to the area of pixels 
that are most likely to represent the following course of 
the line. Again, no sub-pixel accurate line point detection 
is possible and no accurate information on orientation and 
width are extracted. 

More sophisticated methods employ differential 
geometry. The image is seen as a height map and line 
centre positions are defined as regions of high directional 
curvature. They return the line orientation in addition to 
reliable and sub pixel accurate line centre positions and 
also extract the width of lines. A particularly well made 
algorithm was published by Carsten Steger in 1998 [5] 
and has since then been the basis of a much research 
work. Like all differential line detection algorithms it 
relies on robust and meaningful derivatives which can be 
obtained by convolution with the Gaussian kernel. 
However, the kernel parameters have to be precisely 
matched to the feature’s scale to obtain an optimum 
balance between noise suppression and accuracy. 
Therefore a time intensive scale space iteration needs to 
be employed, a technique that greatly limits the speed of 
application. Here we begin to identify a requirement for a 

method that omits the need for iteration and guarantees 
best scale parameter selection at the same time. 

The classical approach consists of treating the scale space 
scale by scale, i.e. by combining the responses and
searching for maxima in scale space. Some publications 
deal with the optimum selection of the parameters. 
Lindeberg [12] proposed an automatic selection based on 
the local degree of diffuseness of the image while [13] 
aim to select a set of best scales based on maximizing the 
correlation between the smoothed and the noise free 
image which is estimated using robust statistics. However, 
all these methods iterate through scale space first and 
select the best scales by comparison afterwards.  

We propose a straight forward approach for scale 
selection. This is made possible as we trace and detect 
lines simultaneously in a purely local approach. As 
foundation for our algorithm, the method of Steger is 
used. Steger detects line centre points as points where the 
directional gradient is zero and the second directional 
derivative has a high absolute value (negative for ridges 
and vice versa). Line edges are defined as the points of 
maximum directional gradient on a sweep perpendicular 
to the line. In a first step, line pixels are identified within 
the whole image matrix. In a second step, the detected 
line pixels are linked together. Because of their close 
proximity and the known line orientation, this is a fairly 
easy procedure.  

Since for bar shaped lines the derivatives vanish in its 
interval, the original image is convolved with a Gaussian 
smoothing kernel  

���� �� �� 	 ���� �� 
 ���� �� ���������������������������������������������
�
where 

���� �� �� 	 

���� �

����������� �������������������������������������������������
is the Gaussian kernel. The image derivatives can then be 
calculated using the central difference scheme: 
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where h is the spacing, in our case one pixel. ��� ���� ����
are calculated respectively. Alternatively convolution 
with the Gaussian derivative kernels is suitable as well.  

It was shown by [14] and [15] that the convolution with 
well chosen Gaussian kernels produces the desired second 
derivative maxima at the centre position for different line 
shapes, i.e. bar-shaped, parabolic and roof-like. The 
centre line point (the position of the zero crossing of the 
directional curvature) is found by setting the derivative of 
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 (a)                   (b)                              (c) 
Figure 1. Fading Out Signature (Detail); (a)Input; (b)Limitations Of Global Threshold; (c)Result Of Novel Method  

the second order Taylor polynomial to zero. In two 
dimensions it follows that the centre point location is: 

���� ��� 	 �!"�� !"�� ����������������������������������������������������������#�
where

! 	 $%&%�$'&'
$%%&%���$%'&%&'�$''&'���������� �����������������������������������(�

and �"�� "�� is the orientation of the maximum second 
derivative computed as the eigenvector of maximum 
eigenvalue of the Hessian matrix 

) 	 *��� ������ ���+�����������������������������������������������������������������������,�
and hence the orientation perpendicular to the line. Note 
that the line orientation computation is ultimately based 
on a very limited neighbourhood.  

A pixel is declared a line point if ��� ��, the interpolated 
line centre position, lies within its boundaries
���� ��� - .� /

� � /�0X.� /
� � /�0�������������������������������������������������1��

This alone creates manifold false positive responses. 
Therefore, as final criterion, thresholding of the 
magnitude of the curvature (the degree of bulging) is 
applied. This reliably excludes pixels in the image 
background but has to be individually fine tuned to detect 
only line centre pixels. Figure 1 demonstrates the 
difficulty of defining this global threshold. However, once 
a line centre is defined, the line edges are found along a 
sweep perpendicular to the line orientation. In a second 
step the identified line pixels are linked together. 
Therefore the found line orientations have to be 
harmonised as initially they can point in either one of the 
two opposing directions of line travel. 

However, the standard deviation � of the kernel has to be 
accurately matched to the scale of the object to be 
extracted. In the case of lines, scale denotes line width.  If � is chosen too small, the resulting convolution profile 
will be flat around the line centre which hence cannot be 
detected. Steger as well as Canny [16] have shown that, in 
order for the second directional derivative to have its 

maximum at x=0, the line centre position, � 2 �3
4 5 has 

to hold, where W is the full width of the line. On the other 
hand, if � is chosen too large, oversmoothing will occur 
and relevant information can be lost. Steger, in the context 
of accurate width determination also observed that the 
edges of the line can never move closer to the line centre 
than��. Hence
��
, 5 6 � 6 


�5�������������������������������������������������������������������7�
represents the lower and upper bounds of sigma. The 
range of scales of lines that can be detected by a given 
fixed sigma is therefore very limited. In the work of 
Steger, multi-scale processing is not included. The 
algorithm is for this reason limited to certain scales. 
Multi-scale processing could be implemented if the line 
bits identified at different scales were added in the end. 
However, in addition to the vast time requirement, note 
that with this approach a different global threshold would 
have to be defined for every single scale. 

Table 1. Required Optimal Sigmas � For Line Widths 
W Between 4 And 45 Pixels

3. REAL TIME CONVERSION 

3.1. Principal Algorithm 

Through a simple change in the algorithm, all these issues 
can be resolved and scale space computation can be 
included without the need for time-consuming iterations. 
A full scale space analysis is only performed along one 
column or row that the sought after line is guaranteed to 
cross. In our case, that is the centre column of the image. 
Every successive step is then only performed for those 
pixels that lie in the immediate extension of the latest 
previously detected point; non candidates are strictly 
excluded. All characteristics of a line, be it width, profile 
shape or orientation, will only change slowly along its 
path. Therefore the previously employed global threshold 
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can be omitted and instead a local threshold of the 
curvature’s magnitude can be introduced that for every 
pixel depends on the curvature of the previously detected 
line pixel. Additionally scale space iteration can be 
avoided as the optimal Gaussian kernel scale parameter 
can be determined through the width of the previous line 
point. 

Using local curvature thresholding is sufficient to trace 
curves with high precision and over various levels of 
width. Fading out lines can be traced well (see Figure 1). 
However if curves are fading out, the second directional 
curvature is slowly reduced until the resulting threshold is 
close to zero. Consequently, in these conditions the 
algorithm tends to detect false positives in the background 
of the image. However, these bogus line pixels have no 
order; their width and orientation change randomly.
Hence two more variable local thresholds, defining the 
line’s change in orientation and width, are introduced. 
They can be set loosely in order to guarantee not to stop 
the detection/tracing prematurely and will still guarantee 
to stop the algorithm after very few false positives. 
Without further investigation, we found that 10 pixels as a 
width threshold and around 70 degrees as orientation 
threshold proved successful. 

Due to the local approach, it is especially important that 
the algorithm is able to bridge gaps and intersections to 
guarantee continued processing. Otherwise whole line 
parts can be missed. Steger’s linkage algorithm was 
enhanced by [17]. They compute a first order Radon 
transform and search for the line segment that yields the 
maximum inner product with the image. In cases where 
no direct neighbour can be identified as line member, they 
search within a triangle centred on the average orientation 
of the last � line points and with internal angle �. We use 
the same triangle and apply our tracing algorithm on an 
outwards sweep within it (see Figure 2). When no line 
pixels can be identified the search distance d is increased. 
If d gets larger than a predefined maximum gap size, the 
last detected pixel is declared a line end and the algorithm 
stops. As M we used 10, � was set to 40 deg; the 
maximum gap size depends on the image and the 
occurring gaps; we used 35 pixels 

The algorithm is initialised by detecting seed pixels 
through application of Steger’s algorithm to a single 
centred column. No thresholding is applied in order not to 
exclude any lines. As a result, multiple false seed points 
will be created. These can however be easily excluded as 
real lines are usually several hundred pixels long while 
the algorithm breaks down after only a few pixels for 
bogus lines. In our case, however, we limit the seed points 
to the one with the highest directional curvature as we are 
after one line only. Every seed point is created twice with 
opposing directions so that detected lines are traced in 

both directions. Should one line cross the initialisation 
column more than once, the line is tackled from various 
points simultaneously. Hence several single line parts will 
be created and have to be connected. This however is 
straight forward as two connected line parts will 
inevitably detect each other’s ends. The complete 
algorithm is presented in the shape of a flow chart in 
Figure 4. 

Figure 2. Search Sequence At Gaps And Intersections 
With Increasing Distance d 

3.2. Accurate Line Orientation Computation 

If directly neighbouring pixels are to be connected, a 
crude orientation accuracy of 0.75 8 �is sufficient to limit 
the search to three pixels within the eight-pixel-
neighbourhood. However, a precise measure is needed 
whenever the distance between two conjoint pixels is 
larger as caused by gaps or intersections.  

In the original work of Steger, the orientation of the 
maximum second derivative at the line centre location is 
used. While this is a valid and reasonably robust 
approach, the second derivate has a tendency towards the 
horizontal, vertical and diagonal orientations as it is only 
dependent on a limited neighbourhood (the 4-pixel 
neighbourhoods of its 4-pixel neighbourhood). The 
discrete nature of an image does not allow for accurate 
interpolations.  

To include a wider neighbourhood, a weighted average of 
the orientations of the maximum gradients along a sweep 
perpendicular to the line can be employed. To detect the 
line borders and hence the line width, this sweep is 
necessary anyway. As weighting factor, the gradient 
magnitude is employed. This is based on the idea that 
gradients with a high magnitude, as they appear at the 
edges of the line, are predominantly defined by the line 
and are less vulnerable to surrounding noise. Noise 
sources could e.g. be differences in the line intensity. 
Hence 

"�9��� ��: 	 ; �"�9<�� <�:=>9<�� <�:=�?@A�?
; =>9<�� <�:=�?@A�?

�����������������B�
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       (a)                                     (b)

        (c) 

        (d) 
Figure 3. Comparison Of Orientation C

Existing And Our Two Novel Algorith
And Results (c) For Artificial Image; I

Results (d) For Real Imag

where <� 	 �� � C�"��DEFGE�����HIJ���K L C L K<� 	 �� � C�"��DEFGE�����HIJ���K L C L K
�"��DEFGE , as a first approximation, is th
maximum curvature and 
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"����� ��� is calculated accordingly. The 
into account that gradients on oppos
opposing orientations. Furthermore it 
defined line direction. As the preceding pi
always be known, once the sub pixel 
position of the actual pixel is computed,
can also be calculated using a backw
scheme. 
"� 	 � P%�P%�QRSTR�=UV�UW= ���������������������������������������������
"��accordingly.

Computation Of 
hms. Input (a) 
Input (b) And 
ge

K��������������������
N���K�������������������

�
he orientation of 

����X ����������������
��
latter step takes 

ing sides have 
harmonises the 

ixel position will 
accurate centre 

, the orientation 
wards difference 

�������������������� �
��  

Figure 4. Flow Chart Of The Alg

Here, the weighted gradient neighb
used to define the subpixel cen
methods show a very simil
confirmation of the high accuracy
position computation. In our algor
chosen that minimises the differen
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Figure 3 compares the performanc
i.e. maximum second derivative (S
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computed the pixel-wise orientati
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so that the ground truth is known.
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bourhood orientation is
ntre position. The two 
lar accuracy, giving 

y of the subpixel centre 
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f a circular automotive 
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414



Table 2. Summary Of Results, Compar

                                                                    
 (a)                  

Figure 5. River 1 Traced; Input (

  
(a)              

Figure 6. Artificial Multi-Scale Imag

As the curvature is constant, the true 
straight line running from 0.5 � to 0. Fig
show the input images, c) and d) plot
orientations over line pixels for the artific
image. The latter two also include key 
measures. Note that in c) and d) the se
orientation tends towards the horizontal or
declines steeply, cuts the ground truth 
orientation and quickly converges towa
orientation. Both the gradient neighbourh
the backwards difference scheme prov
accurate than the orientation of maximum
this, the critical maximum error reaches 
deg for the artificial and real image res
makes the reliable bridging of gaps or inte
impossible. The weighted gradient 
method’s error reaches a maximum of o
deg respectively, while the values for the 
method are 6.2 and 11.4 deg. 

rison Of Processing Times To Original Algorithm And

                                                   
     (b)                       (c) 
(a), Result Of Our Algorithm (b), Result Of Canny Ed

  
 (b)        (c) 

ge “Snake”: Input (a), Result Using Our Multi-Scale A
Result Using Only One Scale (c) 

orientation is a
gure 3 a) and b) 
t the calculated 
cial and the real 
statistical error 

econd derivative 
rientation until it 
at the diagonal 

ards the vertical 
hood method and 
ve much more 

m curvature. For 
19 deg and 25 

spectively which 
ersections nearly 

neighbourhood 
only 3.5 and 7.6 

finite difference 

4. EXPERIMENTS 

In this section the benefits of the
demonstrated. Although the d
algorithm was primarily designed 
trace specular signatures, in the fo
of its performance on two aerial im
image will be presented and disc
structures on one of the aerial imag
image strongly vary in scale an
processing. The results and the
comparison to the underlying algo
in Table 2.  

Figure 1 shows details of a fadi
shows the input image, c) shows 
with our approach and b) the resul

d Breakdown Thereof 

dge Detector (c)

Algorithm (b), Poor 

e algorithm are further 
described high speed 

to rapidly extract and 
ollowing also examples 
mages and one artificial 
cussed. The curvilinear 
ges and on the artificial 
nd require multi scale 
e processing times in 
orithm are summarised 

ing out line, where a) 
the result after tracing 

lt of the extraction step 
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of the original algorithm. It shows in b) 
the global threshold, line pixels at the lef
image are excluded while false positives 
beneath the line where it was detected. In 
is well traced. Both algorithms used the sa
of 4 at a detected line width between 3
processing times for the uniscalar imple
24.75 seconds for a), 1.35 seconds for b);
2056*500 pixels and the detected line h
1920 pixels. 

Another example of the algorithm’s 
designated area is given in Figure 7 with i
and traced line in b). The gap in the line w
and the background noise around the imag
influence the tracing. The image size w
pixels, 1885 line pixels were identified 
took 1.29 seconds. As in Figure 1, simila
obtained by Steger’s original code, with p
24.4 seconds.  

Figure 5 shows the result of our algorithm
aerial image of a river and compares 
achieved with the Canny edge detector. 
input image, b) is the line centre and edg
our algorithm and c) shows the result us
detection. Note that b) and c) were both ap
plane of the image (not shown). Processi
algorithm was 0.83 seconds while that 
standard implementation of Canny was 0
hence of the same order of magnitude. H
the given time, our algorithm computed 
position, line edges and line-connectivity
contains the edges. Image size was 688*8
line-pixels were detected. For the three im
so far, a single scale implementation was 
line’s widths were constant. However, T
the respective processing times for
implementations using 8 scales. Here, a
pixels could be detected where the signatu
out. 

The benefits of multi scale processing are 
Figure 8. It shows an aerial image of the
the multi scale tracing result. The river
image varies between 5 and 49 pixels. Th
implemented using the eight different 
Table 1. These were in ascending orde
applied to the eight different areas marked
As can be seen, the river is well traced an
reasonably accurately detected; only 
towards the lower end were lost in the sm
Also the algorithm did not trace accurately
became wider than the maximum s
However, a similar accuracy or length of
not be established using a single scale. Th

that, because of 
ft extreme of the 
exist above and 
c), the signature 

ame fixed sigma 
3 and 12 pixels; 
ementation were 
; image size was 
had a length of 

results in its 
input image in a) 
was well bridged 
ge centre did not 
was 2056 * 500 

and processing 
ar results can be 

processing taking 

m applied to the 
it to the result 
Where a) is the 

ges computed by 
sing Canny edge 
pplied to the hue 
ing time for our 
of the Matlab® 

0.66 seconds and 
However, within 
sub-pixel centre 
y while c) only 
820 pixels; 1112 
mages discussed 
sufficient as the 

Table 1 also lists 
r multi scale 

a few extra line 
ures were fading 

demonstrated in 
e river Elbe and 
’s width on the 

he algorithm was 
scales given in 
er automatically 
d in Figure 8 b). 

nd its borders are 
the small aits 

moothing process. 
y where the river 
sigma allowed. 
f the tracing can 
e eight-scale run 

time of our algorithm was 0.52 se
size 287*320 pixels and 260 dete
runs of the original algorithm wit
would take 17.6 seconds with th
merging of the output images a
different global thresholds. 

Figure 6 shows an artificial image 
showing a line with varying w
corrupted with uniformly distribut
mean 0 and variance 0.04. Aga
implemented with eight-scales. H
largest were actually employed. O
619 line-pixels. The areas where
applied are marked in Figure 6
Multi-Scale line tracing using eigh
1.53 seconds. The theoretical r
algorithm, including eight con
successive iterations in scale space
matrix, is 62.0 seconds. Figure 6 c)
only one scale, in this case sigma
prominence of the line in the ima
the lack of scale-variation but diffe
are largely levelled out and ce
detection are far less accurate. 

(a) 

 (b) 
Figure 7. Signature 2 With Gap

  
 (a)                                         (b) 
Figure 8. The River Elbe And Its

Tracing Result Using Five D

5. CONCLUSION 

In this paper an existing and 
differential geometrical line tr

econds for the image of 
ected line pixels  Eight 
th the respective scales 
he problem of optimal 
and the need for five 

of size 480*640 pixels, 
width. The image was 

ted random noise with 
ain the algorithm was 

However, only the five 
Our algorithm detected 
e different scales were 
b) in ascending order. 
ht different scales took 
run time of Steger’s 
nvolutions and eight 
e over the whole image 
) shows the result using 
a = 12. Because of the 
age, it is traced despite 
erences in the line width 
ntre as well as edge 

p And Tracing Result

s Delta: Input (a) And 
ifferent Scales (b) 

widely acknowledged 
racing algorithm was 
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substantially advanced in that the required processing 
time was dramatically reduced while at the same time 
multi-scale processing was implemented. Our algorithm 
carries out line point identification and line tracing 
simultaneously and hence allows the two steps to fructify 
each other. It was shown that time requirement can be 
reduced by a factor of more than 50 but can be reduced 
even more as the speed advantage rises with bigger 
images, shorter lines and more required scales. Our novel 
algorithm delivers high level tracing results with a speed 
similar to that of basic low level edge-detectors. It has the 
added benefit of improved accuracy as the previously 
required global threshold could be replaced by a local one 
that does not have to be set manually. Although applied 
here to single line images, the algorithm is fully able to 
trace several independent lines once seed points are 
identified.  

Furthermore in this paper we presented novel and more 
accurate methods to define a line’s pixel-wise orientation. 
This largely simplifies the bridging of large gaps and 
intersections. Through accurate direction computation 
using a backwards difference scheme the supreme 
accuracy of the sub-pixel line centre position computation 
could once more be proven. The algorithm was tested 
using images of specular signatures as well as artificial 
and aerial images showing lines of varying width and 
containing gaps. 
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