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Abstract
The choice of mutation rate is a vital factor in the success of any genetic algorithm (GA),
and for permutation representations this is compounded by the availability of several
alternative mutation operators. It is now well understood that there is no one “optimal
choice”; rather, the situation changes per problem instance and during evolution. This
paper examines whether this choice can be left to the processes of evolution via self-
adaptation, thus removing this nontrivial task from the GA user and reducing the risk of
poor performance arising from (inadvertent) inappropriate decisions. Self-adaptation
has been proven successful for mutation step sizes in the continuous domain, and for
the probability of applying bitwise mutation to binary encodings; here we examine
whether this can translate to the choice and parameterisation of mutation operators for
permutation encodings.

We examine one method for adapting the choice of operator during runtime, and
several different methods for adapting the rate at which the chosen operator is applied.
In order to evaluate these algorithms, we have used a range of benchmark TSP prob-
lems. Of course this paper is not intended to present a state of the art in TSP solvers;
rather, we use this well known problem as typical of many that require a permutation
encoding, where our results indicate that self-adaptation can prove beneficial. The re-
sults show that GAs using appropriate methods to self-adapt their mutation operator
and mutation rate find solutions of comparable or lower cost than algorithms with
“static” operators, even when the latter have been extensively pretuned. Although the
adaptive GAs tend to need longer to run, we show that is a price well worth paying
as the time spent finding the optimal mutation operator and rate for the nonadaptive
versions can be considerable. Finally, we evaluate the sensitivity of the self-adaptive
methods to changes in the implementation, and to the choice of other genetic operators
and population models. The results show that the methods presented are robust, in the
sense that the performance benefits can be obtained in a wide range of host algorithms.
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1 Introduction

The decision of what values to assign to the parameters that control a genetic algo-
rithm (GA) have a great impact on its performance. The self-adaptation of mutation
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parameters has been proven successful in the continuous domain (Beyer, 2001; Schwefel,
1981) and for binary combinatorial problems (Bäck, 1992; Glickman and Sycara, 2000;
Preuss and Bartz-Beielstein, 2007; Smith and Fogarty, 1996). Removing the need for the
GA user to find optimal settings for the mutation operator and/or rate saves them a
considerable amount of time. It can also reduce the risk of poor performance arising
from inappropriate settings when extensive operator tuning is not possible or practical,
and so can improve performance over a wider range of problem instances.

Here we look at combinatorial problems with a permutation representation, where
there are many possible mutation operators to choose from, each with an associated
parameter. In order to exemplify this class of problems, we have taken as our benchmark
well-known examples of the travelling salesman problem (TSP). Of course this paper
is not intended to present a state of the art in TSP solvers; rather, we use this as typical
of many that require a permutation encoding. In this paper, we investigate the self-
adaptation of the mutation operator, the self-adaptation of the mutation rate, and the
self-adaptation of the mutation operator and rate combined.

The rest of this paper proceeds as follows. Section 2 provides background on self-
adaptation and on different mechanisms that have been used to achieve it. Section 3
describes our experimental setup, that is, the choice of problems, algorithmic frame-
work, performance measures, and algorithms used for comparison. Section 4 describes
experiments to select the best fixed mutation operator and mutation rate for our test
problems; the results were then to be used as a benchmark to test self-adaptation. Sec-
tion 5 describes experiments evaluating various possible mechanisms for self-adapting
the mutation probability, and their robustness to changes in implementation details.
Section 6 describes experiments using self-adaptation to evolve the choice of mutation
operator to be applied to any particular offspring. Section 7 evaluates the effects of self-
adapting both the choice of mutation operator and its probability of application. Sec-
tion 8 evaluates whether or not self-adaptation is effected by the particular GA set-up by
examining other population models and choices of operator for selection and crossover.
Finally, in Section 9 we draw some conclusions and suggest areas for future work.

2 Background on Self-Adaptation

Genetic algorithms (GAs) are search methods based on evolution in nature. In GAs,
a solution to the search problem is encoded in a chromosome. As in nature, these
chromosomes undergo recombination (crossover) and mutation to produce offspring.
These offspring then replace the less fit members of the population. In this way, the GA
moves toward better solutions. GAs are typically used for NP-hard problems where
finding the optimal solution would take far too long to calculate, they will typically
find a good solution within a reasonable time. In order to get good results using a
GA, one needs good parameters such as the selection strategy, the crossover rate, the
mutation rate, the mutation operator, and the replacement strategy. It is not uncommon
for a large amount of time to be spent tuning these parameters in order to optimise
the GA performance (Eiben et al., 2007; Meyer-Nieberg and Beyer, 2007). Often the
parameters selected will only be optimal for a particular problem type or problem
instance (Eiben and Smith, 2003).

The practice of using adaptive mechanisms to alter operator choices and parame-
ters has attracted much attention. However, the space of operators and parameters is
large, and the mapping to the resulting quality of solution found is complex, still not
well-understood, and problem dependent. Therefore hand-designed mechanisms have

492 Evolutionary Computation Volume 18, Number 3



Self-Adaptation for Permutation Representations

had relatively less success, and there has been natural interest in the application of evo-
lutionary algorithms to search this space. In particular, the use of self-adaptation, where
the operator’s parameters are encoded within the individuals and subjected to evolution
was established in the continuous domain within evolution strategies (Schwefel, 1981).
Bäck’s work in self-adapting the mutation rate to use for binary encodings within gener-
ational GAs (Bäck, 1992) proved the concept, and established the need for appropriate
selection pressure. Smith and Fogarty (1996) examined the encoding and conditions
necessary to translate this to a steady-state GA. In order to achieve the necessary selec-
tion pressure, they employed a cloning mechanism. From the single offspring resulting
from crossover, they derived a set of clones. The mutation rate of each clone was then
modified with a certain probability before being applied. The fittest resulting solution
was then returned to the population. The results showed that the number of clones
that led to the shortest tour length was five, and that this tallied with previous work
in evolution strategies (where the ratio of μ to λ is typically in the range of 5–7) and
Bäck’s implementation of truncation selection. They found that adding a self-adaptive
mutation rate improved the performance of the GA and removed a nontrivial parameter
from the GA. They also examined a variety of different ways of encoding the mutation
parameter. In subsequent work, Stone and Smith (2002) showed that for combinatorial
problems, the use of a continuous variable to encode for the mutation rate, subject to
log-normal adaptation, was outperformed by a simpler scheme. In their method, the
value of the gene encoding for the mutation rate had a discrete set of alleles, that is,
the mutation rate came from a fixed set, and when subject to mutation was randomly
reset with a small probability. This has been examined experimentally and theoretically
in Smith (2001, 2003). In particular, it was shown that the way that the encoded muta-
tion rate is perturbed is important—allowing the operator to work on-itself (per Bäck,
1992)—will lead to premature convergence to suboptimal attractors. Similar results
have been found in the continuous domain experimentally (e.g., Glickman and Sycara,
1999) and theoretically (Rudolph, 2001). Stephens et al. (1998) have shown in general
that adding self-adaptive genes to encodings can create evolutionary advantages.

Extending beyond adapting the rate at which an operator is applied, Bäck et al.
(2000) explored self-adaptation applied to the population size, the mutation rate, and
the crossover rate on a set of five test functions. They found that self-adapting all three
parameters or the population size alone performed better than the equivalent standard
GA. They were disappointed with the performance of self-adapting the mutation rate
alone and the crossover rate alone. They concluded that one reason for the poor results
of the GA with a self-adapting mutation rate alone was their chosen algorithm, and
that the one used by Smith and Fogarty (1996) has been shown to perform better. This
work was followed by Eiben, Schut, and de Wilde (2006), who used self-adaptation of
population size and tournament size based on aggregated data from the population;
they used a self-adaptive mutation rate GA as one of their benchmarks.

Others have explored evolving the whole GA to solve the TSP problem (Oltean,
2005). Although there has been work on self-adapting the choice and mechanisms
of the crossover operator (Schaffer and Morishima, 1987; Spears and Anand, 1991;
Smith and Fogarty, 1995, 1996), and of local search strategy (Hart et al., 2004; Krasno-
gor and Gustafson, 2004; Smith, 2002, 2007b), there has to date been little attention
paid to the choice of mutation operator. This is perhaps because work in this area has
focused on continuous- or binary-coded problems (where Gaussian, respectively bit-
flipping, mutation is the well established norm), but is highly relevant when considering
permutation-based problems. This is because when a permutation mutation operator
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is changed, the whole landscape changes, which is quite different from continuous or
bitwise binary operators where you have a fully connected weighted graph. An inves-
tigation as to how different operators affect the fitness landscape can be seen (Julstrom,
1997; Thierens, 2005; Reeves, 1999; Schiavinotto and Stutzle, 2007).

3 Experimental Setup

A steady-state GA was used for all experiments. The parent population was set to
100, the mating population was set to 2, and there was 1 offspring. Selection was via
binary tournament, the crossover probability was 0.7, and the crossover type was DPX
(Friesleben and Merz, 1996; Merz and Freisleben, 1997). Replacement was via binary
tournament between the offspring and the oldest parent. Each experiment was run 20
times for statistical analysis. In these experiments, the mutation rate was the probability
that each gene in the chromosome will mutate and not the probability that a single
mutation will occur in the chromosome. The steady-state GAs were allowed to run for
up to 5,000,000 calls to the fitness function or until there was no improvement for 200,000
iterations. The results were recorded and analysed. All experiments were carried out
on 27 problem instances from TSPLIB (Reinelt, 1991), and the problem instances ranged
in size from 48 nodes to 657 nodes.

The mutation operators for permutation representations must ensure that the chro-
mosome post mutation is a permutation of the chromosome prior to mutation. The
mutation operators considered are as follows.

SWAP Swap the allele value in the locus currently being considered with that
from another randomly chosen location.

INSERT Move the allele value from the locus currently being considered to that
of another randomly chosen location.

SCRAMBLE Scramble the allele values between the locus currently being considered
and that of another randomly chosen location.

INVERSION Reverse the sequence of the allele values between the locus currently
being considered and that of another randomly chosen location.

ASSORTED Carry out a SWAP, INSERT, SCRAMBLE, or INVERSION each time a
mutation operation is required. Each operator is selected in sequence.

A detailed description of these mutation operators can be found in Eiben and Smith
(2003).

There are many other types of mutation operator, such as the TRANSLOCATION
mutation operator, that we have not included in this paper. We chose a limited number
of operators with which to investigate self-adaptation for simplicity. However during
our research it has become apparent that, as each mutation operator provides its own
unique way to escape a local minima, using a larger set of mutation operators would
be interesting. This may form the basis of future research.

For each run of each GA the cost (or fitness) of the solution with the shortest tour
length found was recorded, along with the number of calls to the fitness function, and
whether or not the GA terminated because it had reached stability.
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In order to compare the results on individual TSP instances, we used one-way
ANOVA testing to see if there was a significant difference between the cost of the solu-
tions found using methods. Where this was indicated with more than 95% confidence,
post-hoc analysis with Tamhane’s T2 test was used to determine whether pairwise
differences were statistically significant. Where enough runs of the GAs for a given
problem instance had terminated due to stability, we used one-way ANOVA to see
whether there was a significant difference between the numbers of calls to the fitness
function for the nonadaptive GA as opposed to the self-adaptive GAs. This is of sec-
ondary importance when compared to which GA provides the cheapest cost for the
travelling salesman, but would be used to recommend which GA to use should two or
more GAs provide the cheapest solution.

In order to draw more general conclusions, a full ANOVA with the algorithm and
instance as independent factors was carried out, again with post-hoc testing between
algorithms. Tamhane’s T2 test is used for post-hoc analysis as it does not assume that the
sets of results being compared have equal variances. However, there still remains the
issue of whether the runs from different TSP instances can be normalised in a consistent
manner, particularly when in some cases getting close to the optimum presents a hard
bound which makes the assumption of a Gaussian distribution invalid. Thus for greater
confidence, in some cases we also report results from using the nonparametric Kruskal-
Wallis test. This is based on the rankings of results attained by different methods rather
than their absolute values, and so is more conservative.

4 Selecting the Best Fixed Mutation Operator and Rate

An initial set of experiments was carried out to determine which mutation operator and
mutation rate produce the shortest tour length within the context of our “standard”
steady-state GA. The results obtained using the mutation operator and mutation rate
that produced the shortest tour length were then used as base data for comparison in
the further experiments.

4.1 Experimental Setup

A steady-state GA was applied 20 times for each of the five mutation operators and 13
different mutation rates (0.001, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05,
0.055, and 1/length) on each of the problem instances.

4.2 Results

Using the general model statistical analysis of the best solution found per run with
each of the fixed mutation rates showed that using a mutation rate of 0.005 performed
significantly better (>95% confidence) than the others.

In each case the results were worse at the extrema of the range of mutation rates,
with a “sweet spot” in the middle. The mutation rate 0.005 performed best as it lay
at the lower end of the sweet spot for most of the 27 problem instances. The sweet
spot was much broader for the smaller problem instances. It narrowed to a point as
the size of the problem instances grew larger. The results obtained using a mutation
rate 1/length were slightly better that those from 0.005, but not significantly so. The
mutation rate 1/length coincided with the sweet spot slightly better than the mutation
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rate 0.005, however neither of these mutation rates sat in the centre of each sweet spot,
the function defining this mutation rate was not found.

A comparison was made of the performance of the four mutation operators (SWAP,
INSERT, SCRAMBLE, and INVERSION), ignoring ASSORTED. This showed that for
each problem instance INVERSION outperformed the other three mutation operators;
see Table 5 discussed later. We then used ANOVA/Tamhane to analyse the results for
all five mutation operators, factoring out the effect of instance.

• Considering all mutation rates INVERSION was significantly better (>95% con-
fidence) than both SWAP and SCRAMBLE.

• Considering a mutation rate of 0.005 both INVERSION and ASSORTED per-
formed significantly better (>95% confidence) than SWAP, INSERT, and
SCRAMBLE.

• Considering a mutation rate of 1/length showed that SWAP, INSERT,
INVERSION, and ASSORTED performed significantly better (>95% confidence)
than SCRAMBLE. It also showed that ASSORTED outperformed SWAP, INSERT,
and INVERSION but not significantly.

It is likely that had more runs been made, this difference would have become sta-
tistically significant. This result—that even on these well-understood problems there
is a benefit to using more than one mutation operator—supports our hypothesis that
it will be beneficial to adapt the operator choice. This is because changing the mu-
tation operator changes the neighbourhood seen during mutation, and so facilitates
escape from points that are locally optimal under one mutation operator. This effect has
been exploited elsewhere, for example, in variable neighbourhood search (Hansen and
Mladenovic̀, 1998), Hyper-Heuristics (Cowling et al., 2001), and so-called multi-meme
algorithms (e.g., Krasnogor et al., 2002; Ong et al., 2006; Smith, 2007a).

Using the Bonferroni test, the results were more clear cut. The ASSORTED mutation
operator significantly outperformed all the others at the 95% confidence level.

The results from the algorithm with the ASSORTED mutation operator and a mu-
tation rate of 1/length of the tour was used as the base data for future comparisons.

5 Self-Adapting the Choice of the Mutation Rate

Next we investigated self-adaptation of the mutation rate. In order to code for this, a
gene was added to each chromosome to be used during mutation, which has different
meanings according to the various mechanisms examined. The factors considered were
the choice of algorithm that could be used, the lower and upper bounds of any sets of
mutation rates, and the number of discrete mutation rates that should lie between the
lower and upper bounds. Where we are comparing more than two things, we use the
general model. When we compare two things, we also show analysis by instance. Thus
the following experiments were run.

• Sensitivity to changing the method for self-adapting the mutation rate.

• Sliding-window or random selection of new values when using the discrete method.

• Sensitivity to changing the number of mutation rates when using the discrete
method.
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• Sensitivity to changing the length based lower and upper bounds for mutation
range.

• Sensitivity to changing the number of length based mutation rates.

• Sensitivity to changing the values of the perturbation probability.

5.1 Sensitivity to Changing the Method for Self-Adapting the Mutation Rate

Three different algorithms for self-adapting the mutation rate are compared as follows:

1. Log normal

2. Uniform random

3. Discrete mutation rates

For the log normal and uniform random algorithms, the “mutation” gene is a
continuous variable in the range [0.0005, 0.1], which directly encodes the probabil-
ity of each gene having mutation applied. For the discrete algorithm, this gene takes
the integer values in the range [0, n − 1] which indexes a table of n actual mutation
rates. This use of sets of discrete mutation rates has been shown to be successful
(e.g., Smith, 2001; Stone and Smith, 2002; Smith, 2003). The possible mutation rates
are shown in Table 7, discussed later. In each case the “mutation” genes were initialised
randomly.

The ASSORTED mutation operator was used. During crossover the mutation rate
was taken as the mean value of that in the two parents (mapped to the nearest value in
the discrete case). After crossover, five clones were produced from the single offspring.
The mutation rate gene was copied from the offspring to the five clones. Mutation was
then applied to the five clones—first to the encoded mutation rate, then to the problem
encoding with the (possibly new) probability.

For the uniform random and discrete mutation rates algorithms, the mutation rate
was changed 10% of the time to a new value chosen uniformly at random from the
appropriate available range, the other 90% of the time it remained unchanged. The
discrete algorithm used 10 possible values. The new log normal mutation rate (R) was
calculated using the following formula.

R = R · exp(-1/
√

d)·N(0,1) (1)

The constant d was first the number of nodes in the problem instance. This produced
very poor results, and after some experimentation the value was changed to 7, which
performed only marginally better. Although self-adaptive mutation in the continuous
domain has been reported to be relatively insensitive to this value, it has been shown
elsewhere that for combinatorial problems the value can be significant (Stone and Smith,
2002).

Analysis of the results using both ANOVA/Tamhane and the Kruskal-Wallis test
showed that with more than 95% confidence the discrete mutation rates algorithm per-
formed significantly better than uniform random algorithm, which in turn performed
better than the log normal algorithm when compared over the 27 problem instances.

More detailed inspection of the results showed that in many cases both the log
normal and uniform random algorithms terminated their search earlier than the discrete
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mutation rates algorithm. This was because the mutation rates had evolved to such low
levels that within the time allowed by the convergence termination criterion (200,000
evaluations), mutation had a very low probability of causing the multiple changes
needed to find a better solution and escape from a local optima. We reason that the
difficulty lies in the way that the mutation rate can move to a higher value. For most
problems, for much of the range of the mutation rate, a gene taking that value will on
average cause less than one mutation. Thus the implicit self-adaptation fitness landscape
will be neutral in these regions. The uniform random method will place the gene back
in this region approximately half of the time, so the chances of escape become lower.
Considering the mechanism used in log-normal adaptation, half of the time this will
reduce the encoded mutation rate. If we consider any two different mutation rates, then
because the mechanism is multiplicative, the chance of generating the step needed to
move from the higher to the lower, is greater than that of generating a step from the
lower to the higher, with a probability that increases with their distance. Thus, once
the “fitness-neutral” region of the mutation-rate space is entered, there is downward
pressure on mutation rates.

Similar results have been found for binary encoded problems and the case inves-
tigated (Stone and Smith, 2002). These effects have been observed in the continuous
domain: experimentally using self-adaptive log-normal adaptation by Glickman and
Sycara (Glickman and Sycara, 2000) and theoretically using the 1:5 rule with multiplica-
tive adaptation by Rudoloph (2001). Nevertheless, for many problems the log normal
approach works extremely well in real-valued evolution strategies. Our hypothesis is
that the different nature of the mutation operators—in effect, the different meaning of the
rate that is evolved—means that this problem of premature convergence of mutation
rates can be much worse in combinatorial problems.

In contrast, the discrete method is able to move to very different mutation rates,
and the chance of moving (albeit temporarily) to a high value is greater and in fact
becomes more so as the encoded rate decreases. Thus, although the ability to keep low
mutation rates to fine-tune a solution is a little lower, so are the chances of premature
convergence. Thus, the discrete mutation rates algorithm achieved significantly better
results, although at the expense of more calls to the fitness function.

5.2 Sliding-Window or Random Selection of Discrete Mutation Rates
when Self-Adapting the Mutation Rate

In order to test this hypothesis further, two different algorithms were employed with the
discrete mechanism. The first employed a sliding-window mechanism. The value of the
mutation rate gene had a 0.9 chance of remaining the same, a 0.05 chance of increasing
by 1, and a 0.05 chance of decreasing by 1. With this sliding-window mechanism, the
mutation rate could only change to an adjacent mutation rate in the table of actual
mutation rates. The second algorithm simply replaces the value in the mutation rate
gene, with a chance of 0.1, with a random integer value between 0 and n − 1, where n

is the number of discrete rates used.
When the results were compared, using ANOVA, from the 27 problem instances,

23 showed no significant difference in performance between the two algorithms. The
results for the other four problem instances showed that the random selection algorithm
performed better than the sliding-window algorithm. Which algorithm performed best
was not dependent on the size of the problem instance. These results support the find-
ings above: the difference in the performance between the random selection algorithm
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Table 1: Lower and upper bounds of the mutation rates (where l is the number of nodes
in the problem instance). X indicates the combinations examined.

Lower Upper bound
bound 1.5/l 2.0/l 2.5/l 3.0/l 3.5/l

0.0 X X

0.5/l X X X X X

1.0/l X X X X

and the sliding-window algorithm can be explained as the cost involved in learning the
best mutation rate. The random selection algorithm performs better than the sliding-
window algorithm as it has more freedom in the changes it makes to its mutation rate.
Compared to the log normal approach, we have removed the problem of the asymmetry
of probabilities of moving between two values, which improved performance, but the
sliding-window algorithm is still constrained to move only to adjacent mutation rates.

5.3 Sensitivity to Changing the Number of Mutation Rates
when Using the Discrete Method

A steady-state GA was executed 20 times using seven different sets of predefined
mutation rates. The sets were of sizes 1, 2, 5, 10, 22, 35, and 50. The mutation rates were
not evenly distributed, but were biased toward the lower mutation rates. All mutation
rates were between 0.0005 and 0.1. The actual mutation rates compared are shown in
Table 7, discussed later.

Analysis using the general model both the Tamhane’s T2 test and the Kruskal-Wallis
test, of the distances found for each tour, showed that the smaller sets of mutation rates
performed better. The Tamhane’s T2 and Bonferroni tests both indicated that the set
with five discrete mutation rates produced the shortest tour lengths, followed closely
by the set with two discrete mutation rates. These tests also showed that the set with
50 discrete mutation rates performed significantly worse than the other sets (>95%
confidence).

5.4 Sensitivity to Changing the Length Based Lower and Upper Bounds
for Mutation Range

Eleven different lower and upper bounds for the mutation rates were compared, as
shown in Table 1. In each experiment, 34 mutation rates were evenly distributed between
the lower and upper bounds.

Analysis using the ANOVA/Tamhane showed that the mutation rates with the
range from 0.5/length to 2.5/length performed better, but not significantly so at the 95%
confidence level. The Kruskal-Wallis ranking also found 0.5/length to 2.5/length to be
the best, followed by 0.5/length to 3.5/length, 0.5/length to 3.0/length, 1.0/length to
2.0/length, 0.5/length to 2.0/length, 0.5/length to 1.5/length, 1.0/length to 2.5/length,
1.0/length to 3.0/length, 0.0 to 1.5/length, 0.0 to 2.0/length, and 1.0/length to
3.0/length.

5.5 Sensitivity to Changing the Number of Length Based Mutation Rates

Nine different sets of evenly distributed mutation rates were compared (in Section 5.3,
the mutation rates were unevenly distributed). The sets were of sizes 1, 2, 5, 10, 20, 30,

Evolutionary Computation Volume 18, Number 3 499



M. Serpell and J. Smith

34, 40, and 50. The set with one mutation rate had a mutation rate of 1/length. All other
mutation rates were evenly distributed between 0.5/length and 2.0/length.

Analysis using the ANOVA/Tamhane showed that the set containing only two
mutation rates performed slightly better, but not significantly so. This is interest-
ing as it agrees with the work done by Cobb and Grefenstette (1993). The dynamic
switch between a low and high mutation rate (hyper-mutation) is also used in solving
multi-objective problems (Abbass, 2002; Castillo and Trujillo, 2005). The set containing
20 mutation rates performed second best. The single mutation rate was significantly
worse than the sets with multiple mutation rates at the 95% confidence level. Analy-
sis using the Kruskal-Wallis test, which removes any bias toward the larger problem
instances, showed that the set containing 20 mutation rates performed slightly better,
but not significantly so. These results indicate that the number of mutation rates is not
the important factor. The important factor is that there are both high and low mutation
rates as this provides the opportunity for the GA to select a higher mutation rate when
it is stuck in a local minima, which in turn may dislodge the GA from the local minima.

5.6 Sensitivity to Changing the Values of the Perturbation Probability

Four different probabilities were applied to changing the mutation rate. These were 0.01,
0.05, 0.1, and 0.25. The value 0.1 is the value used in all other experiments in this paper.

Analysis using the ANOVA/Tamhane showed that for the four chosen probabilities
for changing the mutation rate, there was no significant difference at the 95% confidence
level in the performance of the algorithm. Indeed, the algorithm has shown itself to be
extremely robust to the choice of this probability of change. This is because the cloning
algorithm acts as a local search within parameter space, reducing the effect of the
meta-mutation rate on the effectiveness of self-adaptation.

5.7 Conclusions

These experiments showed that an algorithm that used a set of discrete mutation rates
significantly (>95% confidence) outperformed ones that used log normal and uniformly
random mutation rates. We presented a hypothesis of two contributing factors, which
was supported by results showing that random selection of a new discrete mutation
rate was better than the use of a sliding window. These experiments also showed that
the selection of an appropriate set of discrete mutation rates was important. We found
that although the best lower and upper bounds of the mutation rate were 0.5/length to
2.5/length, the algorithm would perform effectively with other lower and upper bounds
of the mutation rate. The best selection of the size of the mutation rate set was found
to be 20, although this was the least significant factor, again showing the robustness of
this algorithm. The important factor was that there was a spread of mutation rates that
would give a low mutation rate (0 or 1 bits per chromosome) up to a high mutation rate
(2 or 3 bits per chromosome). Even changing the probability of mutating the mutation
rate had no significant effect on this algorithm. Overall, these results showed that the
discrete method is robust to a range of changes in its specification.

6 Self-Adapting the Choice of Mutation Operator

As noted above, for permutation encodings, there is a range of different mutation
operators in common use, and the results reported earlier show that in fact an algorithm
using each of four in turn outperforms the use of any one of them in isolation. In this
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section, we examine whether it is worthwhile to self-adapt the choice of which operator
to use at different stages of the search process. We then go on to look at the sensitivity
to changing the rate at which the choice of mutation operator is mutated.

6.1 Self-Adapting the Choice of Operator

The algorithm used was exactly as for the discrete method with four values, except that
in this case the mutation gene encoded for one of the four possible operators, and the
mutation rate was as per the base data (1/length). Thus the only difference between
this adaptive operator algorithm and the fixed (but cycling) operator algorithm that
supplied the base data, was the means of choosing the mutation operator; so here we
compared the difference between an algorithm that changed but did not learn against
one that did.

When the results were compared, using a paired t-test (results conformed to a nor-
mal distribution), from the 27 problem instances, 25 showed no significant difference in
performance between the algorithms. The results for the other two problem instances
(d657 and p654) showed that the adaptive operator algorithm performed best both
times. This is an interesting result as when we compare the performance of the fixed
mutation operators the INVERSION operator outperformed the ASSORTED operator
for the two problem instances d657 and p654, as shown in Table 5, discussed later. This
implies that the self-adaptation of the mutation operator has also found that INVER-
SION is the best mutation operator to use for the problem instances d657 and p654.
A comparison of the operator usage for each problem instance does indeed show that
the self-adaptive GA uses the INVERSION operator more frequently for the problem
instances d657 and p654 than any of the other problem instances, as shown in Table 2.

Normalising the results and factoring out the effect of the problem instance revealed
that the tour lengths obtained with the the adaptive operator algorithm are shorter than
those obtained with the fixed operator algorithm, but not significantly so at the 95% con-
fidence level. However, using the Kruskal-Wallis test, the fixed operator algorithm was
ranked higher. Our conclusion is that the adaptive operator algorithm and the fixed op-
erator algorithm (in which all four operators are used in sequence) perform equally well.

For each of the problem instances, the percentage usage of each of the mutation
operators (SWAP, INSERT, SCRAMBLE, and INVERSION) were averaged over 20 runs
of the self-adaptive GA. This comparison of operator usage can be seen in Table 2. The
self-adaptive GA learns which mutation operators are more beneficial. Interestingly, it
does not pay to stop using any of the operators as even SCRAMBLE is still being used
to find better solutions at the end of the experiment. When the percentage usage of
each of the mutation operators is plotted against the problem instance size, some trends
become apparent, as shown in Figure 1. The percentage usage of the operators SWAP
and SCRAMBLE decreases, the usage of the INSERT operator remains constant, and
the usage of the INVERSION operator increases as the problem instance size increases.

Figure 2 shows two graphs that show how the four different mutation operators,
SWAP, INSERT, SCRAMBLE, and INVERSION improved the tour length for the prob-
lem instance att48 over time. Each time a clone won a tournament with the oldest parent,
the mutation operator that had operated on that successful clone was recorded. The pro-
portion of usage of the four mutation operators is similar to that shown in Table 2 for
the problem instance att48. Figure 2, however, shows how the usage of the mutation
operators changes over time. Figure 2 shows that the SWAP operator dominated the
beginning third of the GA search and played a significant role in the remainder of the
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Table 2: The percentage usage of the mutation operators for each of the problem in-
stances (each averaged over 20 runs) when the mutation operator is self-adapted and
the mutation rate is set to 1/length.

TSPLIB SWAP(%) INSERT(%) SCRAMBLE(%) INVERSION(%)
att48 26 28 16 30
eil51 26 33 16 25

berlin52 24 32 15 29
eil76 24 34 15 27

kroA100 24 31 15 30
kroB100 23 33 14 30
kroC100 24 31 15 30
kroD100 25 32 15 28
kroE100 25 31 16 28

eil101 24 35 14 27
lin105 25 31 15 29
pr107 23 32 15 30

bier127 23 33 15 29
ch130 23 33 15 29
ch150 23 34 14 29

kroA150 23 32 15 30
kroB150 23 33 14 30

d198 23 33 14 30
kroA200 23 32 14 31

gil262 23 32 14 31
a280 22 34 13 31

lin318 22 33 13 32
fl417 23 32 13 32

pcb442 21 34 12 33
d493 20 35 12 33
p654 22 30 12 36
d657 21 33 11 35

first half of the GA search. During this time, the tour length was rapidly improved.
The SWAP operator appeared later in the GA search after a short period dominated
by the SCRAMBLE operator. As the GA search is initialised with random permuta-
tions (i.e., scrambled data), it is possible that SWAP is the best operator for improving
scrambled data. The INSERT operator is the main operator during the last 60% of the
GA search, followed by INVERSION. Because these operators break fewer links, they
make finer improvements to the tour length. The SCRAMBLE operator became domi-
nant toward the end of the GA search for a short period of time. This is probably because
the SCRAMBLE operator can rearrange small portions of the chromosome in a way that
the other mutation operators could not, and this was needed to get out of local minima.

6.2 Sensitivity to Changing the Rate at which the Choice of Mutation
Operator is Mutated

Four different probabilities were applied to changing the mutation operator. These were
0.01, 0.05, 0.1, and 0.25. The value 0.1 is the value used in all other experiments in this
paper.
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Figure 1: Mutation operator usage by problem instance size when self-adaptation is
used to select the mutation operator and the mutation rate is fixed.

Analysis using the ANOVA/Tamhane showed that for the four chosen probabilities
for changing the mutation operator, there was no significant difference at the 95%
confidence level in the performance of the algorithm. Indeed, the algorithm has shown
itself to be extremely robust to the choice of this probability of change.

6.3 Conclusions

These experiments have shown that self-adapting the choice of mutation operator per-
forms at least as well as cycling through each of the four mutation operators (SWAP,
INSERT, SCRAMBLE, and INVERSION). These experiments have shown that the choice
of operator adapts to the given problem instance and will also change over time. The
probability of changing the mutation operator has little effect on the performance of
this algorithm, no significant effect being detected when the probabilities 0.01, 0.05, 0.1,
and 0.25 were examined. This leads us to conclude that this is a robust algorithm.

7 Self-Adapting the Choice of Mutation Operator and Rate
Simultaneously

Next we investigated self-adapting the mutation operator and mutation rate simulta-
neously. If self-adapting both the mutation operator and mutation rate simultaneously
can be shown to work at least as well as using the best mutation operator and mutation
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Figure 2: Mutation operator usage over time for problem instance att48, where only
the mutation operator is self-adapted. The top graph shows the usage of the SWAP
and SCRAMBLE operators. The bottom graph shows the usage of the INSERT and
INVERSION operators. The graphs are split this way for purposes of clarity.

rate, then two of the parameters normally required to be set up by the user of the GA
have been removed.

7.1 Experimental Setup

To each chromosome, a gene was added to code for the mutation operator and a gene to
code for the mutation rate; see Section 3. The adaptive rate adaptive operator algorithm
was run 20 times for each of the same 27 problem instances from TSPLIB (Reinelt,
1991). The results were compared against the nonadaptive base data which used the
ASSORTED operator and a mutation rate of 1/length.

7.2 Results

Normalizing the results and factoring out the effect of the problem instance revealed
that the tour lengths obtained with the self-adaptive GA are significantly shorter than
nonadaptive GA (>95% confidence).
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Table 3: The percentage usage of the mutation operators for each of the problem in-
stances (each averaged over 20 runs) when both the mutation operator and rate are
self-adapted.

TSPLIB SWAP(%) INSERT(%) SCRAMBLE(%) INVERSION(%)
att48 23.95 25.88 23.97 26.20
eil51 23.89 26.24 23.78 26.09

berlin52 23.90 25.71 24.04 26.35
eil76 24.34 26.11 23.63 25.92

kroA100 24.55 26.00 23.48 25.97
kroB100 24.57 25.72 23.56 26.15
kroC100 24.58 25.79 23.53 26.11
kroD100 24.44 26.10 23.58 25.88
kroE100 24.37 25.94 23.66 26.03

eil101 24.64 25.89 23.43 26.04
lin105 24.60 25.88 23.39 26.13
pr107 24.74 25.59 23.70 25.96

bier127 24.58 26.01 23.35 26.06
ch130 24.65 25.70 23.63 26.03
ch150 24.67 25.85 23.55 25.94

kroA150 24.58 25.86 23.42 26.13
kroB150 24.83 25.83 23.54 25.80

d198 24.94 25.91 23.27 25.88
kroA200 24.79 25.85 23.39 25.96

gil262 24.86 25.60 23.60 25.95
a280 24.76 25.83 23.51 25.90

lin318 24.90 25.56 23.62 25.92
fl417 25.02 25.61 23.51 25.86

pcb442 24.92 25.65 23.45 25.98
d493 24.93 25.68 23.38 26.01
p654 25.14 25.69 23.25 25.92
d657 24.98 25.60 23.45 25.97

The usage of mutation operators is given in Table 3 for each of the problem instances.
This shows that self-adaptation of the mutation operator plays a lesser role when the
mutation rate is being self-adapted. Effectively, the self-adaptation of the mutation rate
all but shuts down the self-adaptation of the mutation operator. The percentage usage
of the operators remained extremely constant throughout the experiment. However,
the mutation of the operator still plays an important part in finding the shortest path. If
we look at Table 5, discussed later, we can see that self-adapting the choice of mutation
operator alone found the best solution in four of the 27 problem instances. For seven
other problem instances, self-adapting the choice of mutation operator alone performed
better than self-adapting the choice mutation rate alone, but combining both types of
self-adaptation performed even better, showing that there is a synergy to be exploited.
During the experiment, for problem instance a280, the mutation rate fluctuated between
0.0025 and 0.0058. This is equivalent to an average of 0.7 to 1.624 bit mutations per clone
per iteration.

The usage of the mutation operators over time are shown in Figure 3 for problem in-
stance att48. The usage is very different to that seen before in Figure 2 where the usage of
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Figure 3: Mutation operator usage over time for problem instance att48, where both
the mutation operator and mutation rate are self-adapted.

the operators changed over time. Figure 3 shows that when both the mutation operator
and the mutation rate are simultaneously self-adapted, there is little selection pressure
on the mutation operators, and their usage jumps around the 25% mark throughout
the operation of the GA. During this time, after an initially high mutation rate of 0.038
(an average of 1.8 bit mutations per clone per iteration), the mutation rate fluctuates
between 0.017 and 0.03 (an average of 0.8 and 1.4 bit mutations per clone per iteration).

If we compare the number of calls to the fitness function in both Figure 2 and
Figure 3, we can see that the GA that self-adapted the mutation rate as well as the
mutation operator executed its task approximately six times quicker than the GA that
only self-adapted its mutation operator. This indicates that escaping a local minima
is often better served by increasing the mutation rate than by changing the mutation
operator (when only considering the mutation operators SWAP, INSERT, SCRAMBLE,
and INVERSION). However, this does not guarantee escape from a local minima as dis-
cussed earlier. Also, this may not be the case if a wider range of mutation operators were
considered that included more complex operators, for example, TRANSLOCATION.
This may be an area for further research.
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Table 4: Comparison of the results obtained using a self-adaptive GA with the known
optimal results. The published optimal solution comes from the TSPLIB website. The
calculated optimal solution is produced using our costing function (which is imple-
mented with lower precision than that of TSPLIB and also treats all TSPLIB data
as being in EUC 2D format) on the TSPLIB published tour, where tours have been
published.

Published Calculated Self-adaptive GA Percentage
TSPLIB Optimal Optimal Shortest Longest Mean SD Difference

att48 10,628 33,523 33,723 34,830 34,262 304.74 0.591

eil51 426 429 429 447 439 5.05 0.001

berlin52 7,542 7,544 7,544 8,244 7,871 206.62 0.001

eil76 538 557 583 571 570 8.72 4.661

kroA100 21,282 21,285 21,480 23,506 22,423 530.54 0.911

kroB100 22,141 22,381 24,720 23,342 623.79 1.082

kroC100 20,749 20,750 20,852 23,055 21,975 628.83 0.491

kroD100 21,294 21,294 21,564 23,397 22,560 551.78 1.261

kroE100 22,068 22,357 24,356 23,083 552.93 1.302

eil101 629 624 657 686 671 8.43 5.281

lin105 14,379 14,382 14,460 15,770 15,137 368.99 0.541

pr107 44,303 44,911 49,419 46,756 1,303.84 1.372

bier127 118,282 122,709 130,695 125,073 2,067.61 3.742

ch130 6,110 6,110 6,292 6,768 6,507 147.94 2.971

ch150 6,528 6,532 6,803 7,247 7,025 131.04 4.141

kroA150 26,524 27,338 29,159 28,286 526.14 3.062

kroB150 26,130 27,076 28,723 28,060 445.88 3.622

d198 15,780 16,137 16,750 16,409 183.37 2.262

kroA200 29,368 30,719 32,790 31,682 609.00 4.602

gil262 2,378 2,504 2,694 2,591 54.92 5.292

a280 2,579 2,586 2,772 2,961 2,859 51.81 7.191

lin318 42,029 44,394 46,471 45,681 589.15 5.622

fl417 11,861 12,050 13,796 12,816 418.10 1.592

pcb442 50,778 50,783 55,303 59,106 56,864 825.72 8.901

d493 35,002 37,695 39,487 38,312 557.84 7.692

p654 34,643 38,482 43,244 40,668 1,421.73 11.082

d657 48,912 57,967 60,982 59,023 1,005.78 18.512

1The percentage difference is the percentage difference between the self-adaptive GAs shortest tour and the
distance of the tour calculated using our cost function.
2The percentage difference is the percentage difference between the self-adaptive GAs shortest tour and the
distance published on the TSPLIB website.

Our results show that self-adapting the mutation rate is computationally cheaper
than self-adapting the mutation operator; however, the best result is achieved by self-
adapting both.

7.3 Full Comparison of Results

The known optimal results are compared against the results obtained using a fully self-
adaptive GA in Table 4. The self-adaptive GA used 20 discrete mutation rates between
0.5/length and 2.5/length. From Table 4, we can see that near optimal results, and two
optimal results, were found for the smaller problem instances. The poorer performance
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of the self-adaptive GA on the larger problem instances was most likely due to the
limitation placed on the number of calls to the fitness function.

Table 5 contains a comparison of the results obtained using nonadaptive GAs that
used the five different mutation operators, SWAP, INSERT, SCRAMBLE, INVERSION,
and ASSORTED against three self-adaptive GAs, one that only adapted the mutation
operator, one that only adapted the mutation rate, and one that adapted both the
mutation rate and mutation operator.

In each case, the best results were found using a self-adaptive algorithm. Out of the
27 problem instances, six (berlin52, d198, d657, eil76, kroA200, and kroB100) had the
shortest tour lengths found when using the self-adaptive GA that adapted the mutation
operator only and eight problem instances (att48, ch130, ch150, eil76, kroB150, kroC100,
p654, and pcb442) had the shortest tour lengths found when using the self-adaptive GA
that adapted the mutation rate only. The remaining 14 problem instances (a280, bier127,
d493, eil51, eil101, fl417, gil262, kroA100, kroA150, kroD100, kroE100, lin105, lin318,
and pr107) had the shortest tour lengths found when using the self-adaptive GA that
adapted both the mutation rate and mutation operator. Please note that the problem
instance eil76 was solved equally well by two of the self-adaptive GAs. In all cases the
self-adaptive GAs were still searching for better solutions when they were terminated
due to the number of fitness calls reaching a predefined limit (5,000,000).

Comparing the difference in the mean tour lengths between the best performing
nonadaptive GA (mutation rate of 1/length and mutation operator is ASSORTED) and
the best performing self-adaptive GA (self-adapts both the mutation rate and mutation
operator) for each of the 27 problem instances showed that in each case the self-adaptive
GA produced a shorter mean tour. On average, the best self-adaptive GA produced a
tour length 1.8% shorter than the best nonadaptive GA.

7.4 Comparison Against a State of the Art TSP Solver

As previously stated, this paper is not intended to present the state of the art in TSP
solvers. Its purpose is to examine the effect of self-adaptation of the mutation rate and
mutation operator on problems with a permutation representation. We did, however,
compare its performance against a state of the art TSP solver. Against the Concorde
TSP Solver (Applegate et al., 1996) our self-adapting GAs took much longer to find a
solution. For example, to find a solution for the problem instance KroA100, one of our
GAs took 15 s compared to 1 s for the Concorde TSP Solver and required 1,000,000 calls
to the fitness function.

8 Examining Different GA Setups

In order to examine whether the improved results obtained were an artifact of the par-
ticular GA environment used, different GA setups were compared using self-adapting
steady-state GAs and nonadapting steady-state GAs. Experiments were run that com-
pared the two types of GA with the following different GA parameters.

• Different crossover operators (DPX and PMX)

• Different replacement strategies (replacing the oldest and replacing the oldest by
tournament)
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Table 6: Different pool size configurations.

Configuration Parent pool Mating pool Offspring pool
1 100 2 1
2 100 10 5
3 100 20 10
4 100 50 25
5 100 100 100
6 200 200 200

Table 7: Sets of discrete mutation rates.

Number of Discrete mutation rates
mutation rates

1 0.0005
2 0.0005, 0.1
5 0.0005, 0.001, 0.01, 0.05, 0.1
10 0.0005, 0.001, 0.002, 0.003, 0.005, 0.01, 0.015, 0.02,

0.05, 0.1
22 0.0005, 0.001, 0.002, 0.0025, 0.003, 0.004, 0.005, 0.006,

0.007, 0.0075, 0.008, 0.009, 0.01, 0.015, 0.02, 0.025,
0.03, 0.04, 0.05, 0.06, 0.075, 0.1

35 0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035, 0.004,
0.0045, 0.005, 0.0055, 0.006, 0.0065, 0.007, 0.0075, 0.008,

0.0085, 0.009, 0.0095, 0.009, 0.01, 0.015, 0.02, 0.025,
0.035, 0.03, 0.04, 0.045, 0.05, 0.055, 0.06, 0.07,

0.08, 0.09, 0.1
50 0.0005, 0.0006, 0.0007, 0.0008, 0.0009, 0.001, 0.0011, 0.0012,

0.0013, 0.0014, 0.0015, 0.0016, 0.0017, 0.0018, 0.0019, 0.002,
0.0022, 0.0024, 0.0026, 0.0028, 0.003, 0.0035, 0.004, 0.0045,
0.005, 0.0055, 0.006, 0.0065, 0.007, 0.0075, 0.008, 0.0085,

0.009, 0.0095, 0.009, 0.01, 0.015, 0.02, 0.025, 0.03,
0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.07, 0.08,

0.09, 0.1
34 0.001, 0.0011, 0.0012, 0.0013, 0.0014, 0.0015, 0.0016, 0.0017,

0.0018, 0.0019, 0.002, 0.0022, 0.0024, 0.0026, 0.0028, 0.003,
0.0035, 0.004, 0.0045, 0.005, 0.0055, 0.006, 0.0065, 0.007,
0.0075, 0.008, 0.0085, 0.009, 0.0095, 0.009, 0.01, 0.015,

0.02, 0.025

• Different pool sizes (see Table 6)

• Different selection strategies (tournament, fitness proportionate, and truncation)

8.1 Results

Analysis using ANOVA/Tamhane showed that changing the GA setup made no dif-
ference to the comparative performance of the self-adaptive GAs and the nonadapting
GAs. As before, the mean tour distances tended to be shorter when self-adapting GAs
were used; however, this difference was not statistically significant at the 95% confi-
dence level.

See Table 7 for the sets of discrete mutation rates.
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9 Conclusions and Suggested Areas for Future Work

All self-adaptive GAs provided comparable, or better results to the best choice of the
nonadaptive GA. In Section 7.2, we showed that comparing the mean tour lengths in a
similar way to Oltean (2005) showed that the best self-adaptive GA found solutions that
were a little over 1.8% shorter than that of the best nonadaptive GA. The results of the
full ANOVA, where we can factor out the effects of the instance in order to draw more
general conclusions, show that the results obtained with GAs that self-adapted the mu-
tation operator as well as the mutation rate are shorter than for those that self-adapt the
mutation rate or operator type only, but not significantly so, at the 95% confidence level.

The algorithms that self-adapted their mutation rates required two to three times
as many calls to the fitness function, depending on the problem size, compared to those
using fixed rates found by prior experimental tuning. This overhead can be explained
as the time required to find their optimal mutation rate. It was seen that the mutation
rate can more than double when required.

When compared against the GA using the mutation rate set to 1/length and the
fixed mutation operators (SWAP, INSERT, SCRAMBLE, and INVERSION), the GA that
self-adapted the choice of mutation operator always produced a shorter tour length. In
the case of the mutation operators (SWAP, INSERT, and SCRAMBLE) this was significant
at the 95% confidence level. The benefit of self-adapting the choice of mutation operator
was less clear when compared against the GA using the mutation rate set to 1/length
and the fixed mutation operator (ASSORTED), but this was probably due to the fact
that our nonadaptive GA cycles through the four mutation operators. This has given it
a better chance of escaping any local minima than a similar GA using a single mutation
operator. This was shown in Section 4 and in Table 5. This was particularly apparent
when the mutation rate as well as the mutation operator was self-adapted.

The results imply that self-adaptation of the mutation rate takes precedence over
the self-adaptation of the mutation operator. Since it is possible to compose any of the
more complex operators by combinations of INVERT, it may simply be easier to search
the landscape by adapting the mutation rate to find a way out of any local minima than
by adapting the mutation operator.

Finally we noted that self-adaptation of the mutation rate and mutation operator
brought about benefits irrespective of the settings of the other, nonmutation, GA param-
eters. We have used the TSP as a means to investigate self-adaptation of the mutation
rate and mutation operator, but we believe that our conclusions apply equally to all per-
mutation problems, although further research may be carried out to prove this. We did
not consider self-adaptive mutation strategies where there was no crossover operator.
We believe that this may make an interesting future study. Likewise the self-adaptation
of permutation crossover operators has not been considered in this paper, but this too
would be interesting future research.

While carrying out the experiments in this paper, it was noted that the choice of
mutation operator used changed as the GA hunted for a solution. It would be interesting
to see how the choice of mutation operator and rate changed with the features in the
landscape of the search space.
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