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A B S T R A C T   

Concrete is a versatile construction material, but the water content can greatly influence its quality. However, using the trials and error method to determine the 
optimum water for the concrete mix results in poor quality concrete structures, which often end up in landfills as construction wastes, thus threatening environmental 
safety. This paper develops deep neural networks to predict the required water for a normal concrete mix. Standard data samples obtained from certified/leading 
laboratories were fed into a deep learning model (multilayers feedforward neural network) to automate the calibration of mixing power of the concrete water content 
for improved water control accuracy. We randomly split the data into 70%, 15% and 15%, respectively, to train, validate and test the model. The developed DNN 
model was subjected to relevant statistical metrics and benchmarked against the random forest, gradient boosting machines, and support vector machines. The 
performance indices obtained by the DNN model have the highest reliability compared to other models for concrete water prediction.   

1. Introduction 

Globally, billions of metric tons of concrete are produced and 
consumed yearly for construction. This value will continue to rise due to 
increased development in global economic activities. When adequately 
proportioned to achieve the desired strength, concrete is the vital con
struction material for sustainable infrastructural development, and 
water is the critical input to the concrete hydration for strength and 
durability properties [1]. However, failure to achieve the assumed 
compressive strength at design stages may have adverse effects on the 
anticipated performance of the reinforced concrete (RC) structural ele
ments. Furthermore, research has established that concrete quality and 
durability is greatly influenced by the quantity of mixing water ([1,2], 
and most times, this water content is determined based on trial or 
experience, which may not achieve the required compressive strength. 
In some regions, the use of low-quality concrete and mismatching pro
duction of the concrete mix due to trial-error of mixing has triggered the 
rising number of material misuse and waste. These give rise to Recycled 
Concrete (RC) as a result of wastes from building collapse and 

demolition [3–5]. The consequences of this include threatened envi
ronmental safety due to construction wastes ending up in landfills, 
increased project costs resulting from building collapse, destruction of 
civil engineering infrastructures, and loss of human lives. 

Aggregates account for about 70–80% of concrete, and their varied 
chemical compositions (due to climatic conditions) influence the con
crete properties, either in fresh or hardened states [6]. Analysis of 
experimental data by Liu in 1997 [7] has shown that the strength of 
concrete does not depend on the quantity of cement paste alone but on 
the effect of the quantity of water required to mix the concrete to a 
workable level. This property emphasizes the significant impact the 
mixing water has on the strength and durability of concrete. The quality 
and performance of concrete both in fresh and hardened states are 
closely related to the quantity of water used [8–10]. The generally 
accepted Abrams generalization law in civil engineering [11], expressed 
as f = A

Bw/c, where, f is compressive strength, w/c is the water to cement 
ratio by volume, shows an inverse relationship between the compressive 
strength and quantity of mixing water (w/c) of concrete mix. Thus, 
increasing the w/c beyond the optimum value decreases the concrete 
compressive strength, whereas reducing the w/c ratio down to the 
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optimum value boosts the concrete strength. However, this rule assumed 
no air void, and the procedure for determining variables A and B is 
complicated. Also, these two parameters are also influenced by other 
parameters, i.e., slump, cement type, specimen curing and testing 
methods, and the age of testing. 

In practice, the correct practice to achieve better concrete perfor
mance includes using appropriate mix proportioning that considers the 
multiple impacts of water, followed by effective control of the quantity 
of mixing water and curing method [12]. The high content of adversely 
mixing water can influence the properties of fresh concrete by causing 
an increase in its workability but leading to low strength development 
[13,14]. Fresh concrete is expected to be workable and easily flowing for 
ease of placement, compaction, and finishing; these require water 
beyond the optimum value. In some cases, such excess water beyond the 
optimum value deliberately injected into the fresh concrete mix to 
improve its flow and ease of placement could cause segregation and 
bleeding of the concrete if not adequately controlled. This gives rise to 
weak concrete and degrades the quality of the final concrete product 
[15]. Advantages of a properly prepared fresh concrete mix are: (i) 
prolonged life span of concrete properties and protection from damages 
resulting from failed or demolished RC structures, and (ii) minimization 
of environmental impacts from the demolished poor-quality RC. 

In optimizing the required water for a fresh concrete mix, techniques 
such as water-reducing admixtures or superplasticizers have been 
introduced [6,16], and [17]. However, the use of water-reducing ad
mixtures or plasticizers is an additional cost to the production of con
crete which may not be affordable to low-income earners. Popovics [18] 
emphasized the need for an optimized concrete mixture (i.e., increased 
workability and improved concrete properties with less water) using 
reliable and accurate techniques to model concrete materials’ behavior. 
In addition, Machine Learning (ML) models can assist in reducing con
struction wastes generated through trial mixes of concrete, rejected 
ready-mix concrete for inadequate flow properties, or demolition of 
structural elements that failed to meet the minimum strength require
ment. For instance, regression analysis has limited ability to model 
complex nonlinear relationships in concrete mix ingredients and final 
concrete properties [19], due to many different concrete constituents 
with properties that can be individually and collectively varied. How
ever, controlling water content concerning the behavior of concrete 
material is demanding, as water has an enormous influence on the 
behavior of fresh and hardened concrete. The concrete’s strength and 
durability are dependent on the amount of water, and so are concrete 
shrinkage and concrete workability [1]. Thus, maintaining the quality of 
the hardened product for short or long terms and the ability to 

consolidate and finish the fresh concrete with uniformity and predict
ability depends on controlling the water content. However, little or no 
attention has been devoted to predicting water requirements for con
ventional concrete mixes. Hence, managing concrete water effectively 
requires adopting robust methods to predict and manage concrete water 
content for improved water control accuracy. 

Deng et al. [20] argued that deep neural networks (DNNs) are best 
suited for this problem because of the complex relationships between 
components in the concrete mix. Thus, to address the issues associated 
with trial and incorrect mixes of concrete, we adopt this robust tech
nique to manage the require water for concrete mixes to reduce wastage 
associated with trial mixes and those originating from collapse struc
tures due to incorrect concrete mixtures. Accordingly, the following are 
the specific objectives of this study:  

1) construct a deep learning model to effectively model and manage the 
required water for concrete mixes.  

2) benchmark the performance of the deep learning model with 
Random Forest (RF), Gradient Boosting Machines (GBM), and Sup
port Vector Machines (SVM) models.  

3) interpret the DNN model internal operations using model-agnostic 
interpretation methods.  

4) develop a prototype to support informed decision-making to manage 
the complexity of the concrete material behavior regarding concrete 
water content. 

Consequently, this paper develops a tool to manage the required 
water quantity for concrete mixes; and compares its performance with 
selected ML models using the root mean square error, mean absolute 
error, forecast bias, and coefficient of correlation (R2). This tool will help 
stakeholders make informed decisions regarding the managing opera
tions of concrete water content for durable concrete production that 
guarantees safe structures and reduces construction waste. 

The remainder of the paper is structured as follows: In Section 2, a 
review of literature is carried out. Section 3 discusses the methodology 
employed in this study to develop predictive models, a form of data 
analytics using current and historical data to forecast activity, behavior, 
and trends. Results evaluation is in section 4, while the implication of 
the study in practice is discussed in Section 5, and Section 6 concludes 
the paper. 

Nomenclature 

ANFIS Adaptive Network-based Fuzzy Inference System 
ANN Artificial Neural Network 
CNN Convolutional Neural Networks 
CS Compressive Strength 
DNN Deep Neural Network 
ELM Extreme Learning Machine 
FIS Fuzzy Inference System 
FL Fuzzy Logic 
FPNN Fuzzy Polynomial Neural Networks 
FRP Fiber Reinforced Polymer 
GA-ANN genetic-Algorithm Artificial Neural Network 
GBM Gradient Boosting Machines 
HPC High Performance Concrete 
LWC Light Weight Concrete 
MAE Mean Absolute Error 
ML Machine Learning 

MLR Multiple Regression Analysis 
MRA Multiple Regression Analysis 
NA Natural concrete 
OT Operation Tree 
R2 Coefficient of Correlation 
RAC Recycled Aggregate Concrete 
RC Recycled Concrete 
RCPT Rapid Chloride Penetration Test 
RF Random Forest 
RMSE Root Mean Square Error 
RT Regression Tree 
SFLSIM Self-adaptive Fuzzy Least squares Support vector machines 

Inference Model 
SVM Support Vector Machines 
SVR Support Vector Regression 
UPV Ultrasonic Pulse Velocity 
w/c Water-cement ratio  
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2. Literature review 

2.1. Application of computational models in assessing concrete properties 

The emergence of new concrete mixtures and applications has 
motivated the need for accurate predictions of relevant concrete prop
erties (i.e., strength, slump, elasticity). A summary of ML approaches to 
predetermining concrete properties is shown in Table 1. Essentially, the 
relationship between concrete components (compressive strength, 
elastic modulus, tensile strength, permeability, water-cement ratio, 
density, water absorption and crush index, sand ratio, cement dosage, 
aggregates ratio, and other factors) is a complex nonlinear relationship. 
However, modeling techniques, for instance, can derive some analytical 
mathematical functions using experimental data [21] and system 
properties defined with pure mathematical models. However, mathe
matical models cannot provide insights into the workings of systems and 

essential dependencies between variables. 
Thus, they perform poorly in dealing with complex and uncertain 

environments, such as predicting material properties in concrete mix 
designs [59]. Accordingly, empirical and statistical models, such as 
linear regression, have been used to model concrete properties [39,52]. 
However, regression models require laborious experimental work to 
develop and may produce inaccurate results when the relationships 
between concrete properties are complex. Due to their important char
acteristics, i.e., the ability to learn from data and fault tolerances, arti
ficial neural networks (ANNs) have been used as alternative approaches 
to model concrete properties [27,31,34,36,50,53]. For instance, in 
predicting CS, Bilim et al. [31] collected 225 data samples to develop a 
feedforward, single hidden layer neural network and obtained a 
high-performance R2 of 0.965. Ozcan et al. [38] also adopted a feed
forward network to predict CS using 240 data samples and reported a 
Squared-R of 0.977. Similarly, Duan [33] used 168 sets of experimental 
data to develop a back-propagation network model, which produced R2 

and RMSE values of 0.996 and 3.680, respectively, on the testing set. 
Zarandi et al. [42] developed fuzzy polynomial neural networks for CS 
prediction using 458 experimental data of different concrete mix de
signs, and R2 = 0.8209 was obtained as the best prediction ability. Shao 
et al. [34] used BP neural networks to model concrete slump and ob
tained a prediction accuracy of 0.857. Similarly, Yeh [39] used experi
mental data of 78 records and adopted neural networks and 
second-order regression for concrete slump flow modeling. The perfor
mance ability of ANN concerning R2 was 0.72 on the testing set. 

However, ANNs still suffer from uncontrolled convergence speed, 
poorer generalization performance, and overfitting problems. Also, pa
rameters of neural networks greater than two layers are difficult to 
optimize using the traditional gradient descent. Furthermore, SVMs and 
SVRs have low computational costs, accessible optima, and are efficient 
for small data sample problems. Consequently, they have been applied 
to model concrete properties [46,51,54]. For example, Mozumder et al. 
[54] used SVR on 238 samples to predict the uniaxial compressive 
strength of FRP confined concrete and obtained performance metrics R2 

= 0.9832 and RMSE = 8.59 on the testing data. Nevertheless, the 
computational complexity of SVMs grows exponentially with the 
training sample size. Decision trees [50,58] have also been used as a 
non-parametric tool based on induction rules to analyze the concrete 
mix data. However, they have poor generalization ability, especially for 
examples not in the training set. Recently, ML techniques, i.e., random 
forests [57,58] gradient boosting machines [58], have made great at
tempts at modeling concrete mix data to predict concrete properties. 
However, error rates are still unsatisfactory. 

However, the major challenge associated with most conventional ML 
and statistical techniques is the considerable effort to manually extract 
data attributes to achieve good prediction performance. In addition to 
this challenge are the nonlinear relationships with high-order in
teractions among variables. Consequently, due to their good general
ization ability and robust mechanisms for handling sparse, noisy, and 
nonlinear data, deep learning techniques are being proposed to address 
these challenges. Data and algorithm-level methods are continuously 
improving, and current research activities are focusing on computa
tionally efficient data analysis methods. Moreover, unsupervised and 
supervised learning techniques are combined in deep learning to yield a 
semi-supervised model, an attribute lacking in the conventional ML 
techniques. Thus, deep learning has motivated successful applications, i. 
e., face recognition [60], sound analysis [61], defect detection [62], 
fault diagnosis [63], safety analytics [64], and demolition waste analysis 
[65]. Additionally, deep learning techniques have outperformed 
methods like principal component regression, support vector machines, 
and shallow artificial neural networks due to their remarkable repre
sentation ability [66]. 

Similarly, based on the reviewed past studies on modeling concrete 
properties, it can be concluded that the experimental samples are small. 
Also, most of the studies emphasized more on determining the 

Table 1 
Applications of ML techniques and concrete properties.  

Author Approach Area of Study 

[22] ANN CS of HPC 
[23] ANN CS of natural concrete 
[24] BP-ANN CS of natural concrete 
[25] ANN Confined CS and Strain of circular concrete 

columns 
[26] ANN Fracture parameters of concrete 
[27] ANN Modulus elasticity of RA 
[28] ANN (CC and BP) CS of structural light weight concrete 
[29] ANN Long-term effects of fly ash and silica fume on 

CS 
[30] ANN CS, tensile strength, gas permeability and 

chloride ion penetration of HPC 
[31] ANN CS of ground granulated blast furnace slag 

concrete 
[32] ANN Permeability of chloride ions on a varied mix of 

HPC 
[33] ANN CS of RAC with varied aggregates 
[34] BP-ANN Slump, CS and elastic modulus of RAC 
[35] ANN Model the velocity–strength relationship of 

concrete 
[36] ANN CS using UPV and density values for reinforced 

concrete structures 
[37] ANN and MRA CS of concrete 
[38] ANN and FL Compressive strength of silica fume concrete 
[39] Second-order 

regressions and ANN 
Slump flow of concrete 

[40] MRA and ANN CS of concrete containing blast furnace slag and 
fl ash 

[41] ANN and fuzzy logic CS of concretes containing fly ashes 
[42] Fuzzy NN and FPNN CS of natural concrete 
[43] ANN, FIS and ANFIS CS of HPC 
[44] Hybridized OT and GA CS of HPC 
[45] Regression, ANN and 

ANFIS 
CS of no-slump concrete 

[46] SVR CS and RCPT of concretes containing 
metakaolin 

[47] Geometric Semantic 
GA 

CS of HPC 

[48] Ensemble Decision 
Tree 

CS for HPC 

[49] ANFIS and GA-ANNs CS of concrete 
[50] M5’ Algorithm Modulus elasticity of RAC 
[51] Self-adaptive FIS based 

SVM 
Compressive strength of rubberized concrete 

[52] Multivariable 
regression and GA 

Modulus of elasticity and the splitting tensile 
strength of structural recycled concrete 

[53] ANN and regression Relationships between RAC components and 
properties 

[54] SVM CS of FRP confined concrete 
[20] CNN CS of RAC 
[55] ELM CS of lightweight foamed concrete 
[56] ANN-GA Slump of ready-mix concrete 
[57] RF and SVM Modulus of elasticity of RAC 
[58] RT, RF and GBM CS and splitting tensile strength  
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compressive strength of the concrete with little effort to managing the 
water required for concrete mix. The reason attributed to this fact is that 
improving the compressive strength of concrete will automatically 
enhance its other properties (density, shear strength, modulus of elas
ticity, permeability). However, it should be noted that the concrete’s 
strength and durability are dependent on the amount of water in the 
fresh mixture (and subsequently the pore space in the hardened mass). 
The concrete shrinkage property is also proportional to water content, 
and workability is exponentially dependent on water. Water thus exerts 
its influence on the behavior of the fresh and hardened concrete to the 
degree that is perhaps greater than other variable ingredients of the 
mixture. Controlling concrete water content due to the complexity of the 
concrete material behavior is demanding. Also, maintaining the quality 
of the hardened product for short or long terms and the ability to 
consolidate and finish the fresh concrete with uniformity and predict
ability depends on controlling the water content. To the best of our 
knowledge, deep learning applications for optimal concrete water con
trol have not been profound in concrete mix designs. Thus, managing 
water effectively requires adopting robust methods that predict concrete 
water content for improved water control accuracy. 

Thus, we chose deep neural networks to manage concrete water 
content in this study and benchmarked their predictive performance 
with the popular techniques for modeling concrete properties, i.e., 
gradient boosting machines (GBM), random forest (RF), and support 
vector machines (SVM). GBM and RF have been shown to outperform 
other conventional ML models, i.e., decision trees, in predicting concrete 
mechanical properties [58], while SVM has low computational costs and 
accessible optima. 

2.2. Justification for the study 

The need to efficiently control water contents to maintain the quality 
of hardened products for short or long terms is highly demanding. More 
so, traditional ANNs show good prediction abilities; however, their slow 
convergence, overfits, and local optimization affect the accuracy and 
efficiency of predictions [36]. Also, the prediction accuracy of the 
conventional machine learning methods is largely dependent on effec
tive parameters selection. In comparison, deep learning techniques can 
learn complex relationships and patterns in massive datasets even with 
missing entries [60] and have achieved great success in face recognition, 
sound analysis, fault diagnosis defect detection [67]. In predicting 
concrete properties, though deep learning techniques have been used 
[20,68–75], due to their generalization ability and mechanisms for 
handling sparse, noisy, and nonlinear data. However, to the best of our 
knowledge, limited studies exist that employ deep learning techniques 
for predicting the required water for concrete mix. 

This study adopts deep learning techniques and develop a prototype 
to estimate the required water for concrete mixtures with no chemical 
admixtures, which is helpful in environments where superplasticizer is 
unpopular, especially, in developing countries, because of additional 
costs. This study is needed to prevent frequent building collapse due to 
poor-quality concrete, especially in developing countries. Furthermore, 
effective water management in concrete requires robust and efficient 
methods capable of modeling complex nonlinear systems, i.e., control
ling concrete water content for improved quality water control 
accuracy. 

2.3. Deep neural networks 

A deep neural network is a function that maps an input vector to an 
output vector and has emerged as a highly successful field of machine 
learning [76,77]. Deep neural networks (DNNs) are the new direction 
for traditional machine learning technologies, inspired by the mecha
nism of mammalian brain recognition [62]. Deep neural networks 
(DNNs) with their multiple nonlinear hidden layers enhance the 
learning of complicated relationships between their inputs and outputs. 

The first layer (input) has neurons activation set to the value of the input 
vector. The last layer (output layer) represents the output vector, and the 
intermediate layers (hidden layers) give intermediate representations of 
the input vector. In contrast to artificial neural networks with only one 
hidden layer and few hidden neurons per layer, DNNs comprise many 
hidden layers with a significant number of neurons. The goal is no longer 
to learn the main pieces of information but to capture all possible facets 
of the input [78]. Considering a neural network with H numbers of 
hidden layers, also let ℏ ∈ {1,….,H} represents the index of the hidden 
layers in the network. The feedforward operation of a standard neural 
network can be described as (for ℏ ∈ {1,….,H − 1} and any hidden unit 
i, presented in Equations (1) and (2): 

xi
(ℏ+1) =wi

(ℏ+1)yℏ + bi
(ℏ+1) (1)  

yi
(ℏ+1) = f

(
xi

(ℏ+1)) (2)  

Where x(ℏ) is the vector of inputs into layer ℏ, y(ℏ) is the vector of out
puts from layer ℏ. w(ℏ), b(ℏ) and f denote the weight matrix and biases 
vector at layer ℏ and the activation function respectively. Basically, the 
most successful inventions in the context of DNNs are rectified linear 
units (ReLUs) as activation functions [79]. A ReLU function is the 
identity for positive values and zeroes otherwise. The use of ReLUs gives 
rise to sparse input representations that are robust against noise and 
makes classification models more comfortable in higher-dimensional 
spaces [80]. The most important advantage of ReLU is its remedy for 
the vanishing gradient, from which networks with sigmoid activation 
functions and many layers suffer. Also, modern deep neural networks 
provide training stability, generalization, and scalability with big data 
[81]. A compressive overview of deep learning methodologies is found 
in Schmidhuber [77]. 

3. Methodology 

This section discusses the methodology adopted, specifically the 
dataset and the development of prediction models. The outline is shown 
in Fig. 1. The concrete considered in the study is ordinary concrete for 
general construction purposes with no superplasticizer or admixtures. In 
developing automatic concrete mix designs, we employ multilayer deep 
feedforward neural networks to predict the required water content for 
the different concrete mix proportions. 

3.1. Theoretical framework 

Strength is the most valued property of concrete as it measures its 
ability to resist stress under loading. The working stress theory for 
concrete selection prefers compressive strength over tensile and flexural 
strength because of its comparative advantage to resist compression 
loading. Although, strength development in concrete is a long-term 
process due to the relatively slow nature of hydration reaction. In 
practice, however, concrete strength is usually determined based on 
controlled curing of concrete tested at selected ages of 3, 7, 14, and 28 
days. In a real-life structure, concrete is exposed to multi-directional 
stress. However, for ease of laboratory test, a uniaxial compression 
test is universally accepted for testing concrete due to its simplicity [82]. 

Theoretically, the 28-day strength of concrete is widely accepted as a 
criterium in selecting concrete strength for design purposes since it is 
believed to have attained about 99% of its strength at this age of curing 
under standard temperature-humidity conditions [82]. Meanwhile, 
7-day strength is also selected for assessing strength properties and 
measuring early strength development; and considered for concrete se
lection where there is a limitation of time for making decisions. In 
addition, the concrete designer usually predicts 28-day strength from 
the 7-day strength as it is assumed that the concrete is in the range of 
60–75% of 28-day strength [83]. However, seldomly, in practice, the 
strength of concrete is also measured at 14 days of curing. This 
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theoretical understanding reflects the concrete mix data collected in this 
study from different concrete practitioners with 48% based on 28-day 
strength, 42% on 7-day strength, and 10% measured the strength of 
concrete at 14 days of curing. 

3.2. Data identification and collection 

Concrete is a highly complex material, and modeling its behavior is 
difficult. According to Yeh and Lien [44]; the four basic ingredients of 
conventional concrete (Portland cement, water, and fine and coarse 
aggregates) influence its mechanical properties. In this approach, the 
required water (liter/m3) for the concrete mix is taken as a function of 
the following seven input features: cement (kg/m3), fine aggregates (kg/
m3), coarse aggregates (kg/m3), concrete compressive strength 
(N /mm2), density (kg/m3), slump (mm), and age of testing (days). The 
determination of the input vectors was made to ensure that the major 
parameters influencing the strength of concrete were fairly represented 
based on the earlier study by Živica [1]. In this study, concrete mixes 
from ordinary Portland cement were considered to eliminate the effect 
of cement types on concrete properties. As a result, all factors except the 
quantity of the concrete component that may affect the properties of 
mixing concrete as described in Ref. [2] were not considered in our 
experiment. Portland Cement of grade 42.5R and grade 32.5 N were 
considered as these are the available grades in Nigeria. Grade 42.5R 
cement had higher tri-calcium silicate and di-calcium silicate contents 
than the 32.5 N cement, thus has higher comprehensive strength [84]. 

A dataset of three thousand and twenty-one (3021) standard con
crete tests were collected from ten different standard laboratories. This 
dataset (certified trial mix) contains the following: date cast, date tested, 
mix proportion, and cube size (usually 150mm× 150mm× 150mm). 
Others are cement types (i.e., Ordinary Portland Cement), placing detail, 
aggregate types, concrete cube density (kg /m3), crushing load (kN), age 
(usually 7, 14 and 28 days), water-cement ratio and average compres
sive strength. Seven components (cement, fine aggregate, coarse 
aggregate, density, slump, age, and compressive strength) represent the 
predictor variables, while the attribute water is the output variable. 
Table 2 shows the quantity of the constituent materials and the water- 
cement ratio (w/c) of the concrete used in this study, the values of w/ 
c ranged between 0.48 and 0.74. Those with w/c above 0.6 were made 
with naturally deposited sand as fine aggregate, while those with w/c 
lesser or equal to 0.60 were made with granite dust as fine aggregate. 

This is an indication that the naturally deposited sands contain 
higher silt fractions (with higher water absorbing tendency) than the 
granite dust, this would require higher water to achieve adequate 
workability due to increased surface area. Data pre-processing or 
normalization eliminates numerical difficulties or conditions where the 
attributes with greater ranges dominate those with smaller ones. Scaling 
data input to a range of (0, 1) improves the learning rate drastically [56]. 
Normalization is carried out by using Eq. (3). 

X =
(x − xmin)

(xmax − xmin)
(3) 

Fig. 1. Flow of the research methodology.  

Table 2 
Some details of typical sample of collated concrete data.  

Cement (kg/m3) Fine Aggregate (kg/m3) Coarse Aggregate (kg/m3) Age Concrete Strength (N/mm2) Slump Density (kg/m3) Water (liter/m3) ratio 

289 835.1 1116.7 14 19.64 67 2380 185.0 0.64 
277 607.2 1056.3 28 14.78 89 2210 187.7 0.68 
286 855.8 1290.1 7 13.88 87 2530 185.0 0.65 
348 574.4 981.8 14 29.05 45 2410 186.3 0.53 
320 753.6 1048.3 7 15.96 105 2240 184.7 0.58 
376 514.8 1239.8 28 30.62 95 2420 185.0 0.49 
340 825.8 1126.8 7 22.82 56 2430 218.3 0.64 
268 666.3 963.6 28 27.13 79 2520 190.9 0.71 
329 845.4 1182.7 14 21.17 98 2300 186.0 0.57 
286 801.9 857.6 14 23.96 89 2440 190.3 0.67 
388 588.8 1098.7 28 15.19 93 2390 185.3 0.48 
350 686.7 1097.5 7 30.62 67 2430 213.1 0.61 
326 885.6 995.9 28 9.19 83 2220 184.5 0.57 
296 720.4 951.9 7 27.36 67 2220 218.3 0.74 
252 614.8 1188.8 28 30.62 101 2230 186.5 0.74 
440 718.1 1088.8 7 8.03 79 2120 218.3 0.50 
261 767.2 1015 14 26.21 98 2350 182.3 0.70 
295 777.9 976.6 7 17.33 100 2130 185.6 0.63 
336 717.9 998.2 28 17.64 101 2420 182.2 0.54  
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Where X is the estimator of the normalized data, x is the sample data 
collated, xmax is the maximum value and xmin is the minimum value of 
the data collated. This estimator scales and translates each feature so 
that all values are in. the range 0 and 1, to avoid any of the variable 
dominating others. This normalization is required since the dataset has 
input values with different scales; hence, this process accurately esti
mates the minimum and maximum observable values. 

Also, redundant predictors can affect the precision of models and 
lead to unreliable forecasts. Thus, we used the variance inflation factor 
(VIF) to measure the degree of collinearity present in the dataset and 
eliminate redundant predictors. The higher the value of VIF, the higher 
the collinearity is between the related variables. VIFj (Eq. (4)) of a 
predictor xj is calculated using the linear relationship between xj and 
other independent variables [x1,x2,…,xj− 1,…,xm]. 

VIFj =
1

1 − R2
j
, j = 1,…., p, (4)  

where, R2
j is the coefficient of determination of the regression of xj on all 

other independent variables in the dataset [x1,x2,…,xj− 1,…,xm]. In the 
case when there is no multicollinearity between the variables in the 
dataset, R2

j equals zero, and VIFj equals 1. However, if multicollinearity 
exists, VIFj progresses to a value much greater than 1. James et al. [85] 
recommended VIF thresholds to detect the multicollinearity phenome
non. VIF values less than five are appropriate, while values greater than 
five are a cause of concern or indicate serious collinearity. Thus, we 
included all the seven predictors in the forecasting model development 
since their VIF values are less than five and satisfy the multicollinearity 
examining condition. 

In addition, data cleaning methods are also employed to detect and 
repair errors in the data, as described by Chu et al. [86]. For instance, we 
used the mean substitution technique, the most commonly practiced 
approach to address missing values by replacing missing values on a 
variable with the mean value of the observed values. The dataset for 
model development was split into training (70%), validating (15%), and 
testing set (15%), respectively. The training data was used to build the 
models, the validation was used to prevent overfitting, and the test data 
was used to evaluate the prediction ability of models. Table 3 shows a 
summary of the variables and their VIF values (except for the dependent 
variable). Independent variables (features) comprise cement, fine ag
gregates, coarse aggregates, curing age, slump, density, and compressive 
strength, while the dependent variable (Q) is the required water 
(liter/m3). 

3.3. DNN topologies and hyperparameter settings 

The architecture of the deep learning model shown in Fig. 2 depicts 
input and output variables for prediction. Usually, creating a simple 
DNN model starts by using only dense layers as a baseline, then using a 
smaller model (less hidden units) and then creating a complex model 
with a capacity in the hidden layer. Finally, the validation losses of these 

models are compared by benchmarking their performance using 
appropriate metrics. It should be noted that there is no specific method 
for determining the right number of layers of the deep learning archi
tecture. However, it is best to start with a few layers and then increase 
the size until diminishing returns on the validation loss are achieved, as 
recommended in LeCun et al. [76]. Thus, in determining the number of 
network layers and neurons, we tried three network topologies, i.e., one 
layer, two layers, and three layers, using neurons in the range 10–1500 
and initially training these networks at 10 epochs to evaluate their 
predictive abilities on the validation set. The rectifier or Rectified Linear 
Unit (ReLU) was used as the activation function for the hidden layers 
and output node. The computed error between the actual and predicted 
output was propagated backwards. Other neural network hyper
parameters are set at default values. 

Fig. 3a depicts the network topologies and their performance on the 
validation set. However, a 2-layer network with 80 neurons (40 neurons 
in each layer) obtained the highest R-Squared of 0.898; thus, we settled 
for this topology. However, in arriving at the optimal number of epochs 
for training the neural networks, we adopted different epoch numbers to 
study the convergence of the training procedure. Fig. 3b depicts the plot 
of the mean square error vs. epoch numbers. The model reached 
convergence at 500 epochs (mean square error = 7.20); hence, we used 
this value (500) for training the final model. Thus, the overall network 
architecture comprises an input unit (representing the seven predictors), 
followed by two rectified layers (hidden units) with 40 neurons each and 
completed with a final layer output unit. This chosen network topology 
is less complicated and guarantees model generalization on the test data. 

In addressing the overfitting of regularization parameters (Lasso and 
Ridges) were used as described by Srivastava et al. (2014). For instance, 
ℏ1 (H1: Lasso) and ℏ2 (H2: Ridge) regularization enforce the same pen
alties by modifying the loss function to minimize loss as described by Eq. 
(5): 

H ′ ( w, b|i
)
=H

(
w, b|i

)
+ λ1R1

(
w, b|i

)
+ λ2R2

(
w, b|i

)
(5) 

For ℏ1 regularization, R1(w, b|i) is the sum of all ℏ1 norms for the 
weights and biases in the network; ℏ2 regularization via R2(w, b|i) rep
resents the sum of squares of all the weights and biases in the network. w 
is the collection {wi}1 : N− 1, where wi denotes the weight matrix con
necting layers i and i + 1 for a network of N layers. Similarly, b is the 
collection {bk}1 : k+1, where bk denotes the column vector of biases for 
layer k + 1. The constants λ1 and λ2 are generally specified as very 
small. The gradient descent is a popular algorithm for optimizing neural 
networks, as it minimizes the objective function f(θ), θ ∈ Rd by updating 
parameters in the opposite direction of the gradient of the objective 

Table 3 
Representation of dependent and independent variables.  

Variables Acronym Minimum Maximum Average VIF 

Coarse Aggregates (x1) 
kg/m3 

CA 857.60 1397.50 1095.24 1.10 

Cement (x2) kg/m3 CEM 213.00 489.00 369.93 2.10 
Fine Aggregates (x3) 

kg/m3 
FA 514.80 937.60 725.68 1.04 

Age (x4) AG 7.00 28.00 17.57 4.84 
Compressive Strength 

(x5) N/mm2 
CS 6.48 30.90 21.76 4.12 

Slump (x6) mm SLMP 45.00 110.00 83.64 2.19 
Density (x7) kg/m3 DEN 2000.00 2630.00 2372.98 3.24 
Water (Q) liter/m3 WATER 162.30 218.30 186.53 NA  

Fig. 2. Deep learning architecture for predicting the required water for con
crete mix. 
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function ∇θf(θ) w.r.t. to parameters and the learning rate to determine 
steps taken to reach a (local) minimum. However, the gradient descent 
can fail to recover the true trajectory due to the cost of gradient 
computation. Similarly, stochastic gradient descent, which has a robust 
initialization and annealing schedule, may get stuck in saddle points 
rather than local minima. Thus, to overcome this challenge, the Nesterov 
accelerated gradient [87], an efficient optimization technique, was used 
to reduce the gradient computation cost. The deep learning model was 
implemented using keras in a Python environment. 

3.4. Selected machine learning techniques for benchmarking 

To benchmark the performance of the deep learning model, we used 
three techniques that stand among the most popular and successful su
pervised Machine Learning (ML) methods namely, Random Forest (RF), 
Gradient Boosting Machines (GBM), and Support Vector Machines 
(SVM). Similar approach was found in Refs. [62–64]. 

3.4.1. Random forest 
Random forest algorithm [88] uses decision trees to construct 

numerous trees by recursive partitioning the predictor space, i.e., using 
the binary splits to separate regions possessing the closest responses to 
predictors. For example, in a classification problem, a constant is fit 
locally on the individual final region to generate the closest probable 
category to the categorical outcome. However, for regression, the final 
result is determined using the dependent variable average value. RF 
derives advantages of trees, which include the ability to express highly 
complex and nonlinear interactions between predictors, handling out
liers, extraneous predictors, and high dimensional data sets of huge 
observations [58]. 

Two parameters are often essential when tuning the RF model. These 
are the number of trees required (ntree), and the number of random 
variables for each tree (mtry). Finding the optimal ntree, involves setting 
the mtry to the default value (sqrt of total predictors) and then searching 
the required number of trees from a list, i.e., (40, 60, 80, 120, 160, 200, 
240, 280, 320, 360, 400) corresponding to a stable model. We build 10 
RF models repeatedly, and for each ntree, we note the following: Out of 
Bag (OOB) error rate and trees with stabilizing OOB error rate reaching 
the minimum. Similarly, we determine the optimal mtry, by applying the 
same procedure as above; that is, running the RF model ten times, and 
selecting the optimal number of predictors (i.e., 1, 2, 3, 4, 5) for the split 
where the out of bag error rate stabilizes and reaches the minimum. The 
optimal values for these parameters are depicted in Table 4. 

3.4.2. Gradient boosting machines 
According to Friedman [89], the learning procedure in gradient 

boosting machines (GBMs) progressively adds distinct models to 
improve the precision of the predicted dependent variable. The GBM 
algorithm builds distinct base learners, for instance, decision trees, to 

Fig. 3. Experiment with different DNN topologies.  

Table 4 
Optimal hyperparameters values.  

Algorithm Hyperparameter Value 

RF Number of variables “mtry” 3 
Number of trees “ntree” 60 

GBM Number of trees “n.tree” 60 
Learning rate “shrinkage” 0.2 
Interaction depth “interaction.depth” 4 

SVM Cost of constraint “C” 3 
Insensitive loss function (σ) 0.1  

S.A. Bello et al.                                                                                                                                                                                                                                  



Results in Materials 15 (2022) 100300

8

maximally correlate with the negative gradient of the loss function, 
which is linked to the full ensemble (consisting of huge moderately weak 
models). GBMs are comparatively simple in terms of implementation 
and have recorded significant breakthroughs in diverse applications 
[58]. Three parameters of GBMs are critical for optimal performance 
during tuning. The first is known as “n.tree”, which denotes the number 
of trees in the sequence. A sufficiently high number of trees is required to 
accomplish decent learning; however, overfitting on noisy data sets 
occurs when too many trees are used. Hence, monitoring “n.tree” is 
indispensable. The second parameter, the size of trees, is controlled by 
“interaction.depth” which determines the order of predictor–predictor 
interaction. The last parameter, learning.rate shrinks the contribution of 
each newly added tree. The smaller the (learning.rate) parameter, the 
lower the shrunk boosted increments are, thus the better the model’s 
generalization ability. However, this is at the cost of the convergence 
speed, and using a higher value for this parameter will increase the 
number of iterations. Three parameters were tuned using the random 
search method, with the optimal values depicted in Table 4. 

3.4.3. Support vector machines 
SVMs are used to transform high-dimensional feature data through 

nonlinear transformations of independent variables. SVMs tuning is 
essential to guarantee the sensitivity of hyperparameters throughout the 
vast search space. We adopt the Gaussian kernel, the default and prev
alent Radial Basis Function (RBF) kernel as recommended in Meyer et al. 
[90]. We then optimize the regularization parameter C, and bandwidth 
σ, controlling the degree of nonlinearity, using the cross-validation 
technique. Table 4 portrays the optimal values of these parameters. 

3.5. Performance evaluation of ML models 

Models fitted to the training set were used to determine the water for 
a concrete mix from the training set data, whereas the test set was used 
for making predictions and evaluating performance measures. The same 
explanatory variables were used in all models. The most common 
practice for model validation is to evaluate the prediction ability using 
selected error metrics based on the test data (not used in training the 
model). The performance of the models was evaluated and validated 
using the Mean Absolute Error (MAE), Root Mean Squared Error 
(RMSE), Forecast Bias (B), and coefficient of determination (R2) metrics. 
MAE measures the errors between paired observations, RMSE measures 
the spread of prediction errors (residuals) and forecast bias (B) indicates 
how high or low is a forecast to the actual value. The performance 
metrics are computed using Eqs. (6)–(9) respectively as:  

• Mean Absolute Error (MAE) 

MAE =
1
n

∑n

i=1
|yi − ti| (6)    

• Root Mean Squared Error (RMSE) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(yi − tI)

2

√

(7)    

• Forecast Bias (B) 

B=

(∑n
i=1(y − ti)

n

)2

(8)    

• The coefficient of determination (R2) 

R2 = 1 −

[∑n
i=1(yi − ti)

]2

∑n
i=1(ti − ti)

2 (1)  

where n is the number of specimens, ti denotes observed outcomes, yi 

denotes predicted outcomes, ti is the sample mean (i.e., t =
∑n

i=1ti
/
n). 

The values for RMSE, MAE, forecast bias (B), and R2 are computed for 
the quantity of water required by randomly sampling test data examples 
on fitted models (i.e., GBM, DNN, RF, SVM) and repeating this process 
200 times. The sample means for these computations are then deter
mined appropriately. Nevertheless, the applicability of the framework in 
this study is limited to the following cases:  

1) Appropriate concrete mix design specifications, including required 
strength and slump, component content and ratio, and information 
about the material are used  

2) The physical and chemical properties of cement and density are 
satisfactory according to general specifications.  

3) Coarse and fine aggregates are graded within limits of generally 
accepted specifications. 

4. Results 

4.1. Performance evaluation 

Table 5 and Fig. 4 summarize and compare the statistical perfor
mance metrics (MAE, RMSE, forecast bias, and R2) of models used in this 
study side-by-side concerning the prediction of the required water for 
the concrete mix using scatter and box plots. In Table 5, the Squared-R 
(R2) for fitted DNN, GBM, RF and SVM models on the test data indicated 
a consistent performance by DNN (0.983) compared with GBM (0.958), 
RF (0.954), and SVM (0.943), respectively, due to the minimal varia
tions of the Squared-R obtained. Similarly, MAE for DNN (1.680) was 
better than GBM (2.078), RF (2.372) and SVM (2.343), respectively. 

Also, DNN obtained the least RMSE of (2.114) compared with GBM 
(3.245), RF (3.459) and SVM (3.854), respectively. Concerning the 
difference between forecast and observed values, DNN obtained a 
minimum of 0.033 compared to 0.791 (GBM), 0.648 (RF), and 0.139 
(SVM). Consequently, the resulting “forecast bias” measures of DNN 
showed a consistency in the difference between the observed outcomes 
and forecasts, which contrasts with other algorithms that exhibit me
dium or large fluctuations in error (deviation of observed and predicted 
values). These deviations are minimal in DNN, hence its ability to pro
duce more reliable results. 

Similarly, Fig. 5 depicts the prediction ability of the models (DNN, 
GBM, RF, and SVM) on the sample from the testing data to forecast the 
required amount of water (liter/m3) for different concrete mixes. Again, 
the four models predicted the amount of water required for concrete 
mixes with reasonable accuracy, and we perceived that the differences 
between the observed outcomes and forecasts are marginal for all 
models. However, a general outlier analysis of the plot shows that DNN 
has fewer outlier points than other models. 

All models achieved an R2 value (>0⋅94) for the correlation of the 
required water for concrete mixes to predictive variables. Fig. 6 depicts 
that the predictions by DNN, the best performing model, are accurate 
and closer to the measured values. This high R2 value indicates that the 

Table 5 
Statistical parameters describing errors in prediction of the required water.  

Models MAE RMSE R2 Bias 

DNN 1.680 ± 0.11 2.114 ± 0.16 0.983 ± 0.00 0.033 ± 0.04 
GBM 2.078 ± 0.23 3.245 ± 0.61 0.958 ± 0.01 0.791 ± 0.48 
RF 2.392 ± 0.21 3.459 ± 0.35 0.954 ± 0.01 0.648 ± 0.47 
SVM 2.343 ± 0.26 3.854 ± 0.50 0.943 ±b0.01 0.139 ± 0.18  
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required water for concrete mixes is governed by the slump, density, 
compressive strength, and cement, as revealed by a linear projection 
method with explorative data analysis depicted in Fig. 7. This linear 
projection method scores the attributes by computing the MSE of the k- 

nearest neighbors model on a projected two-dimensional data (testing 
set in this case) and returning the top-scoring features that visually 
discriminate between different water mixes exhibited in the dataset. The 
top four features were presented in Fig. 7 to ensure simplicity and clarity 
of information. 

Irrevocably, it should be noted that the comparative differences in 
the performance of the models are only marginal; this is possibly due to a 
small number of predictors used. However, the DNN model obtained the 
most significant improvement in prediction accuracy. These results 
indicate the ability of DNN to reduce unexplained variance without 
overfitting the data. Furthermore, the regularization techniques imple
mented in the DNN model avoid data overfitting, thereby providing 
more accurate predictions. Thus, the results of this study can be 
explained as follows.  

a) In comparison to other algorithms, we found that the applicability of 
DNN for accurate prediction of the required water in Portland con
crete designs is more reliable than GBM, RF, and SVM models. The 
high R2 (Figs. 4 and 6, and Table 5) values by DNN compared to other 
conventional machine learning methods indicate its superior pre
diction capability. Furthermore, the DNN explained 98% of the 
variability in the water content of Portland cement mixes (R2 =

0.983). Thus, DNN demonstrates reasonably high predictability in 
managing water in the concrete mixture for adequate workability 

Fig. 4. Prediction plots.  

Fig. 5. Actual vs. predicted values of water (liter/m3) by models.  
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and hydration optimization. The sensitivity analysis also revealed 
that 5-fold Cross-Validation (CV) produced a similar predictive 
power (i.e., CV R2 = 0.980) for the required water for cement mix, 
confirming further that overfitting was insubstantial. The results 
show that the DNN model tends to accurately forecast the required 
water for concrete mixes.  

b) In addition, the forecast bias of DNN against other algorithms in 
predicting the required water for concrete mixes revealed that DNN 
exhibits higher accuracy, with its predictions closer to observed 
outcomes compared to other ML techniques, thus making it more 
suitable for predicting the required water for concrete mixes. Hence, 
the conventional methods cannot match the DNN’s performance 
according to the evaluation criteria.  

c) Similarly, the results conformed with previous findings concerning 
the deep learning higher precision, higher efficiency and higher 
generalization ability compared with conventional ML techniques to 
forecast mechanical properties of concrete. For instance, deep 
learning techniques have been reported to exhibit higher accuracy 
and stronger generalization than traditional neural networks and 
SVM [20]; Latif [72]. 

4.2. DNN model interpretation 

The deep neural networks are considered “black boxes” since their 
models are challenging and complex. Nevertheless, the interpretability 
of machine learning models is essential to gain insights into their 
behavior and facilitate the trustworthiness of their predictions. 
Although the main focus of this study is on the predictive performance of 
DNN models, it is of interest to interpret the structure of the predictive 
model to support model selection, criticism and development. Next, we 
discuss a few model-agnostic methods (i.e., measuring interactions, 
partial dependence, and surrogate trees) used to interpret the structure 
of DNN as applied to the prediction of the water quantity for concrete 
mix design. 

Measuring interactions involves determining how strongly the fea
tures interact with each other. This interaction is measured using the H- 
statistic proposed by Ref. [91]. The interaction strength is zero (0) when 
there is no interaction and one (1) if all variations of the predicted 
outcome depend on a given interaction. Interactions between predictors 
of the DNN model are depicted in Fig. 8 (left). The predictor slump 
“SLMP” exhibits the strongest interaction signal, with the DNN model 
having the most potent interaction effect of 0.23. Other relevant pre
dictors are density (DEN), compressive strength (CS), cement (CEM), 
and curing age (AG). However, coarse aggregates (CA) and fine aggre
gates (FA) are the least important variables in the DNN model, but both 
variables always contributed to the model’s predictive ability. Including 
variables with little predictive power does not negatively affect the DNN 

Fig. 6. Regression of test data by DNN.  

Fig. 7. Instances selected from the linear projection method.  
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model’s performance; therefore, there was no attempt to remove such 
variables from the model. Fig. 8 (right) depicts a 2-way interaction 
strength between slump (SLMP) and other variables. The DNN model 
shows density (DEN) with the strongest interaction of 0.27. Identifying 
these interactions is helpful in understanding which variables create 
co-dependencies in the model’s behavior. 

Partial dependence plots (PDPs) are low dimensional graphical 
renderings of prediction functions to describe relationships between the 
outcome and predictors of interest. Partial dependence plots allow the 
evaluation of models and confirm how the explanatory variables are 
used for prediction. For example, Fig. 9 depicts ICE curves and the PDP 
curve (thick yellow line, averaging predictions across all observations) 
for comparing the marginal impact of the three key predictors (density, 
slump, and compressive strength) on the response variable (the required 
water for concrete mix). The DNN model should confirm some physical 
and chemical processes for the application presented here. For example, 
density is inversely proportional to water content, i.e., it decreases as the 
water content increases (Fig. 9. -left). This is attributable to the reduc
tion of total water content leading to the lower formation of air voids in 
the concrete, with higher water content resulting in more air voids. 

Similarly, as expected, the water content in concrete will be directly 
related to the slump because wetness largely determines the workability 
concretes. It is evident (Fig. 9. – center) that the slump increases 
approximately linearly with water content. Hence, the wetter the con
crete, the higher the slump. Concretes with high water content have a 
high slump, while those with a low water content have a low slump. 

Furthermore, water content (water-cement ratio) is a convenient 
measurement whose value is well correlated with concrete strength and 
durability. The lower the water content is, the higher the compressive 

strength and the more durable the concrete. Fig. 10. (right) shows that 
the strength increases with the addition of water to facilitate the proper 
hydration of cement paste. However, subsequently adding more water 
leads to a reduction in strength, as expected. The average water required 
for different concrete mixes in the dataset is 186.53 L/m3, corresponding 
to an average w/c ratio of 0.52. This value is reasonable for the normal 
concrete mix as the water-cement ratio for such concrete is of moderate 
workability [6]. As shown in Fig. 11, the DNN model’s partial depen
dence plots confirmed these general predictions and processes. 

Similarly, a surrogate model to interpret the internal workings of the 
DNN model is depicted in Fig. 10, which illustrates the use of decision 
trees to mimic the DNN model in respect to controlling the required 
water for concrete mix. These decision rules can help engineers optically 
control the required water in concrete mix design to facilitate the pro
duction of durable and high-quality concretes. Consequently, producing 
robust concretes will prevent segregation or bleeding of concrete, 
leading to low strength concrete that causes buildings to collapse. 

5. Discussion and implication for practice 

The more informed we are about concrete compositions and prop
erties relationship, the more effective the optimization process for the 
concrete mix. In practice, substantial experiments are required to ensure 
concrete mix design meets requirements. Thus, continuous adjustment 
of concrete mix designs requires experience coupled with its associated 
complicated issues. Concrete mix modeling is to develop a system that 
properly reflects the very nature of the concrete mix. However, the 
traditional modeling techniques have shown difficulty, laborious and 
unreliability in predicting concrete behavior. Whereas, as evidenced by 

Fig. 8. Measuring interactions (left-overall interaction strength), (right- 2-way interaction).  

Fig. 9. Partial dependency plots for predictors “Density”, “Slump” and “Compressive strength.  
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this study, deep learning techniques have shown considerable reliability 
and applicability in predicting concrete behavior. Specifically, DNN 
learned the complex interrelations among concrete parameters for 
higher accurate results and faster real-time prediction without the need 
for an empirical method. 

In addition, to demonstrate the practical usefulness of this model, its 
prototype was developed to enable civil engineers and other users to 
make practical, informed decisions in the field regarding managing the 
complexity of the concrete material behavior to control the concrete 
water content. Users supply appropriate input parameters through the 
user interface, which triggers the DNN model to predict the required 
water content and presents justifications for arriving at any decision. 

Similarly, the tool allows for effective collection and storage of new data 
to address the data limitation problem. Fig. 9 depicts sample screenshots 
of the tool, which enable civil engineers to model the required water for 
concrete mixes without performing a series of trial mixes. 

The assumption made in this study is that the nature of constituent 
materials (types and shapes of aggregates, cement brands, mixing 
techniques, and other components) is constant and that only water 
content is a varying factor. By this assumption, the effect of water is 
considered to have an overbearing impact on the concrete strength, and 
the effects of other factors could be considered secondary. 

Developing this tool has tremendous application in the field of 
concrete technology or practice, specifically, the calibration of mixing 

Fig. 10. DNN model interpretation with a decision tree.  

Fig. 11. A prototype tool for concrete water quantity modeling.  
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power of the concrete water content for improved water control accu
racy. By the results of this study, the dilemma of what quantity of water 
is required to achieve optimum strength would be reduced if not elim
inated. The tool will also allow concrete practitioners to simulate con
crete strength containing different constituents before starting the trials 
mix, thus reducing the number of trials needed to achieve the desired 
strength. Also, the tool will be helpful for educational purposes by 
demonstrating how constituent materials vary with compressive 
strengths at varied water-cement ratios. 

While the previous studies developed predictive models for special
ized concrete types such as HPC blended concrete, other authors 
measured other mechanical properties. However, the current study 
developed a predictive model for the required quantity of water at 
different compressive strengths for the standard regular concrete. Since 
improvement on the compressive strength of concrete will lead to 
improvement of the durability of concrete. This study considered regular 
concrete, where chemical and(or) mineral admixtures in concrete pro
duction are optional. For example, where high compressive strength 
may not be of high interest (i.e., construction of dams), the durability of 
the concrete may be paramount. In that case, supplementary cementi
tious materials, i.e., fly ash and ground granulated blast slag (GGBS), 
may be included in the concrete to reduce the high heat of hydration of 
normal cement, which often leads to internal cracks. This specialized 
concrete may be on a special request as fly ash and GGBS are not readily 
available, particularly in most parts of Africa. 

Consequently, the contribution of this study is to develop a robust 
model to estimate the required water content (water to cement ratio) in 
concrete mixtures as maintaining the quality of hardened products for 
short or long terms is demanding. Therefore, a theoretical implication of 
the study is the implementation of a deep learning model suitable for 
predicting the required water of concrete mix based on the constituent 
materials after 7, 14, and 28-days of curing. In addition, the developed 
deep learning model showed superior accuracy to other conventional 
machine learning techniques and had the most improved statistical 
parameter values (RMSE = 2.114, MAE = 1.680, R2 = 0.983) for the test 
data. Furthermore, in practical terms, the developed model will facili
tate efficient control of water contents in concrete with no chemical 
admixtures and prevent frequent building collapse due to poor-quality 
concrete, where superplasticizer is unpopular because of additional 
costs. Also, in addressing the “black box” challenge associated with 
current ML models, we adopt relevant model-agnostic approaches to 
gain insights into the proposed deep learning model for concrete water 
content prediction to facilitate the trustworthiness and transparency of 
its predictions. 

Also, further refinement in the ML approach, as shown by the deep 
learning model, has helped substantially reduce material wastage and 
production time and improve concrete quality. Furthermore, the 
developed model is easily accessible to onsite construction workers for 
consultation. Thus, the discovered knowledge will assist experts to 
optimize concrete mix design for improved production at a lower cost, 
which will eventually reflect in the concrete maintenance and life cycle 
cost. 

6. Conclusion 

This study is vital in determining the required quantity of water for 
improved water control accuracy of concrete mix to guarantee high- 
quality concretes without chemical admixture using state-of-the-art 
deep neural networks. Furthermore, the proposed tool improves the 
accuracy of concrete water prediction and modeling in concrete mixes to 
reduce and eliminate wastes due to collapsed concrete structures 
resulting from incorrect concrete mixes. The statistical analysis of the 
DNN model in predicting the required water for the concrete mix was 
done by evaluating and validating its prediction ability with conven
tional machine learning methods using RMSE, MAE, forecast bias, and 
R2 as performance metrics. The values of RMSE, MAE, forecast bias, and 

R2 obtained were 2.114, 1.680, 0.033, and 0.983, respectively, on the 
testing set. Thus, the formulated computational model for predicting the 
required water for the concrete mix showed good results, as the differ
ences between the forecasts and observed outcomes are negligible. 
Furthermore, in comparison with other conventional machine learning 
models, DNN gave the most negligible forecast bias, RMSE, and MAE 
values, and the highest R-Squared (0.983). This result revealed a high 
correlation between the experimental results and forecasts from DNN, 
thus, proving its suitability in predicting the required water for the 
concrete mix. 

The outcome of this study can aid civil engineers and related pro
fessionals in the precise determination of the required water for different 
concrete mixes without performing a series of laboratory tests or trials 
mix, thereby leading to reduced construction wastes and consequently 
reduced environmental impacts. In addition, the results of this study can 
be used to formulate industry guidelines to predict the water-cement 
ratio in ready-mix concrete production. The novelty of applying the 
proposed model is its simplicity and ease of application. Many of the 
existing models are complex to use while on site. This study can also 
influence further academic research in the use of multilayer feedforward 
networks to formulate water-cement ratios for different concrete mixes 
and related studies. 

It should be noted that fewer predictors of concrete water are used in 
this study; in the future, we hope to incorporate more predictors, such as 
density and sizes of the coarse and fine aggregates, workability and 
setting time of cement and concrete. In addition, the inclusion of more 
data records, i.e., ambient temperature, pressure, and humidity in the 
dataset, will further improve prediction performance. Also, we hope to 
incorporate image processing techniques to enhance the prediction 
process. We also hope to get concrete mix design data from more sources 
to improve the robustness of the model. Furthermore, we will carry out 
an analysis of different DNN architectures for better insight. 
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[52] I. González-Taboada, B. González-Fonteboa, F. Martínez-Abella, J.L. Pérez- 
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[53] I. Miličević, T.K. Šipoš, Prediction of properties of recycled aggregate concrete, 
J. Croat. Assoc. Civ. Eng. 69 (2017) 347–357, https://doi.org/10.14256/ 
jce.1867.2016. 

[54] R.A. Mozumder, B. Roy, A.I. Laskar, Support vector regression approach to predict 
the strength of FRP confined concrete, Arabian J. Sci. Eng. 42 (2017) 1129–1146, 
https://doi.org/10.1007/s13369-016-2340-y. 

[55] Z.M. Yaseen, R.C. Deo, A. Hilal, A.M. Abd, L.C. Bueno, S. Salcedo-Sanz, M.L. Nehdi, 
Predicting compressive strength of lightweight foamed concrete using extreme 
learning machine model, Adv. Eng. Software 115 (2018) 112–125, https://doi.org/ 
10.1016/j.advengsoft.2017.09.004. 

[56] Vinay Chandwani, V. Agrawal, R. Nagar, Modeling slump of ready mix concrete 
using genetic algorithms assisted training of Artificial Neural Networks, Expert 
Syst. Appl. 42 (2015) 885–893, https://doi.org/10.1016/j.eswa.2014.08.048. 

[57] T. Han, A. Siddique, K. Khayat, J. Huang, A. Kumar, An ensemble machine learning 
approach for prediction and optimization of modulus of elasticity of recycled 
aggregate concrete, Construct. Build. Mater. 244 (2020), 118271, https://doi.org/ 
10.1016/j.conbuildmat.2020.118271. 

[58] J. Zhang, D. Li, Y. Wang, Toward intelligent construction: prediction of mechanical 
properties of manufactured-sand concrete using tree-based models, J. Clean. Prod. 
258 (2020), 120665, 2020. 

[59] C. Yeh, Design of High-performance concrete mixture using neural networks and 
nonlinear programming, J. Comput. Civ. Eng. 13 (1999) 36–42. 

[60] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep 
convolutional neural networks, in: Adv. Neural Inf. Processing Syst., 2012, 
pp. 1097–1105. 

S.A. Bello et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S2590-048X(22)00048-6/sref3
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref3
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref3
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref4
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref4
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref4
https://doi.org/10.1007/s11668-008-9197-7
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref6
http://refhub.elsevier.com/S2590-048X(22)00048-6/optH6eTIzFwm8
http://refhub.elsevier.com/S2590-048X(22)00048-6/optH6eTIzFwm8
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref7
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref7
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref8
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref8
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref9
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref9
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref9
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref10
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref10
https://doi.org/10.1016/j.conbuildmat.2011.01.010
https://doi.org/10.1016/j.conbuildmat.2011.01.010
https://doi.org/10.1016/j.conbuildmat.2013.11.054
https://doi.org/10.1016/j.conbuildmat.2013.11.054
https://doi.org/10.1080/19648189.2014.974831
https://doi.org/10.1016/j.conbuildmat.2012.02.073
https://doi.org/10.1007/s13369-014-1549-x
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref16
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref16
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref16
http://refhub.elsevier.com/S2590-048X(22)00048-6/optjk9cz9m2GK
http://refhub.elsevier.com/S2590-048X(22)00048-6/optjk9cz9m2GK
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref17
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref17
https://doi.org/10.1016/j.conbuildmat.2018.04.169
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref56
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref56
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref19
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref19
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref20
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref20
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref21
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref21
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref22
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref22
https://doi.org/10.1016/j.engfracmech.2003.12.004
https://doi.org/10.1016/j.engfracmech.2003.12.004
https://doi.org/10.1016/j.conbuildmat.2013.02.064
https://doi.org/10.1016/j.conbuildmat.2008.12.003
https://doi.org/10.1016/j.conbuildmat.2005.08.009
https://doi.org/10.1016/j.conbuildmat.2005.08.009
https://doi.org/10.1016/j.autcon.2011.11.011
https://doi.org/10.1016/j.advengsoft.2008.05.005
https://doi.org/10.1016/j.advengsoft.2008.05.005
https://doi.org/10.1016/j.conbuildmat.2008.04.015
https://doi.org/10.1016/j.conbuildmat.2012.04.063
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref31
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref31
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref31
https://doi.org/10.1016/j.ultras.2008.05.001
https://doi.org/10.1016/j.ultras.2008.05.001
https://doi.org/10.12989/cac.2010.7.3.271
https://doi.org/10.12989/cac.2010.7.3.271
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref34
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref34
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref34
https://doi.org/10.1016/j.advengsoft.2009.01.005
https://doi.org/10.1016/j.cemconcomp.2007.02.001
https://doi.org/10.1016/j.cemconcomp.2007.02.001
https://doi.org/10.1016/j.eswa.2011.01.156
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref38
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref38
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref38
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref39
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref39
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref39
https://doi.org/10.18178/ijscer.5.3.156-167
https://doi.org/10.1016/j.eswa.2008.07.004
https://doi.org/10.1016/j.eswa.2008.07.004
https://doi.org/10.1016/j.conbuildmat.2009.10.037
https://doi.org/10.1016/j.conbuildmat.2012.02.038
https://doi.org/10.1016/j.eswa.2013.06.037
https://doi.org/10.1016/j.eswa.2013.06.037
https://doi.org/10.1016/j.engappai.2013.03.014
https://doi.org/10.1016/j.advengsoft.2013.09.004
https://doi.org/10.1016/j.conbuildmat.2015.06.055
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref48
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref48
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref48
https://doi.org/10.1016/j.conbuildmat.2015.12.136
https://doi.org/10.14256/jce.1867.2016
https://doi.org/10.14256/jce.1867.2016
https://doi.org/10.1007/s13369-016-2340-y
https://doi.org/10.1016/j.advengsoft.2017.09.004
https://doi.org/10.1016/j.advengsoft.2017.09.004
https://doi.org/10.1016/j.eswa.2014.08.048
https://doi.org/10.1016/j.conbuildmat.2020.118271
https://doi.org/10.1016/j.conbuildmat.2020.118271
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref55
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref55
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref55
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref57
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref57
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref58
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref58
http://refhub.elsevier.com/S2590-048X(22)00048-6/sref58


Results in Materials 15 (2022) 100300

15

[61] Y. Dong, G. Hinton, N. Morgan, Introduction to the special section on deep learning 
for speech and language processing, IEEE Trans. Audio Speech Lang. Process. 20 
(2012) 4–6. 
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