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Abstract Panel data offers the potential to represent the influence on travel choices of 

changing circumstances, past history and persistent individual differences (unobserved 

heterogeneity). A four-wave panel survey collected data on the travel choices of residents 

before and after the introduction of a new bus rapid transit service. The data shows gradual 

changes to bus use over the four waves, implying time was required for residents to become 

aware of the new service and to adapt to it. Ordered response models are estimated for bus 

use over the survey period. The results show that the influence of level of service (LOS) is 

underestimated if unobserved heterogeneity is not taken into account. The delayed response 

to the new service is able to be well represented by including LOS as a lagged variable. 

Current bus use is found to be conditioned on past bus use, but with additional influence of 

lagged LOS and unobserved heterogeneity. It is shown how different model specifications 

generate different evolution patterns with the most realistic predictions arising from a model 

which takes into account lagged responses to change in LOS and unobserved 

heterogeneity. The paper demonstrates the feasibility of developing panel data models that 

can be applied to forecasting the effect of interventions in the travel environment. Longer 

panels - encompassing periods of both stability and change - are required to support future 

efforts at modelling travel choice dynamics.  
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Introduction 

 

Models are required which can accurately represent people‟s travel choices in response to 

changes in the travel environment. Travel choice models are usually developed from cross-

sectional survey data. These models reflect between–person variation in travel choices at a 

single point in time where it is assumed that travel choices are consistent with prevailing 

travel conditions, i.e. it is assumed an equilibrium state holds. For forecasting the impact of 

policy options adjustments are made to explanatory variables to reflect the scenario of interest 

and new travel choices are predicted, i.e. a new equilibrium state is forecasted. Forecasts are 

not possible of the path of evolution towards the new equilibrium. Goodwin (1998) claimed that 

the concept of equilibrium is acting as a barrier to sound policy advice and recommended that 

attention should be placed on dynamic analysis of travel choices.     

Panel data involves repeated observations over time for the same individuals and can be 

used as an alternative basis for developing travel choice models. Models estimated using 

panel data are able to reflect within-person variation in travel choices over time, as well as 

between-person variation in travel choices. Inter-temporal dependence, or the dynamics, of 

travel choices is therefore able to be considered. This paper seeks to contribute to the 

practical development of methods to model the dynamics of travel choices from panel data. 

It presents an analysis of panel data collected for residents in an urban area in England 

before and after a new bus rapid transit service was introduced. Alternative model 

specifications for incorporating dynamics are tested and their merits assessed. An exposition 

is provided next of how panel data models can incorporate dynamics.  
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Exposition of possibilities of panel data 

 

The exposition is based on a general specification for modelling discrete choices using panel 

data initially proposed by Heckman (1981a) and slightly modified by Kitamura (2000).  
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where y*
it is a latent continuous random variable for choice made by individual i at time 

period t and i = 1,…,N and t = 1,…,T. 

 

The first term on the right hand side of Eq. 1 represents the contemporaneous effect of 

explanatory variables (current circumstances) where xit is a vector of explanatory variables 

and β’ is a vector of parameters to be estimated. This term is the same as that included in 

models estimated from cross-sectional data, but the advantage of panel data is that it 

collects multiple observations from the same individuals meaning that, as well as variation in 

xit between individuals, it can incorporate variation in xit for the same individuals between 

time periods (within-person variation)1. A generalization can be made to allow the β’ 

parameters to vary between time periods to represent changes in travel choice sensitivity 

over time.  

                                                           
1
 Stated choice surveys can also be used to collect multiple observations of y

*
it for the same individuals 

with experimenter-specified values for xit (representing hypothetical policy scenarios). This provides 

within-person variation in choices but the time frame in which choices are made is ambiguous. 
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As noted by Heckman (1981a), the first term on the right hand side of Eq. 1 can be 

expanded to include historic information for explanatory variables (past circumstances). For 

example, past values of explanatory variables (referred to in this paper as lagged 

explanatory variables) such as xit-1 could be included in a model to examine whether travel 

choices are influenced by past as well as current circumstances. In the case of an 

intervention, this might be used to see whether travel choices adapt immediately or remain 

(partially) influenced by previous conditions2. Future values of explanatory variables could 

also be included if there is reason to believe that travellers anticipate future conditions and 

take these into account in travel choices.     

The second term on the right hand side of Eq. 1 represents state dependence and the 

effect of the history of past travel choices (past behaviour). Specifically, the coefficient, yl, 

represents the effect of the choice l time periods ago on the current travel choice. The third 

term on the right hand represents duration dependence, a similar concept to state 

dependence. Through the coefficient, φ, it represents the effect of the length of time spent in 

state 1 for those individuals for whom the current state is 1. The rationale for state and 

duration dependence is that experience of behaviour may lead to altered familiarity, 

perceptions, preferences and constraints that are not able to be represented through other 

explanatory variables. They can be interpreted to represent habitual behaviour.  

The fourth term on the right hand side (αi) represents an individual specific error term. 

This can be treated as a fixed constant, or as a random variable, and is possible to 

incorporate into a model when repeated observations are available for individuals. It allows 

persistent differences in individual choice propensities to be recognized (without explaining 

them via structural variables). The term therefore represents unobserved heterogeneity. It is 

also theoretically possible with panel data to incorporate further unobserved heterogeneity 

by allowing parameters β’, yl and φ to vary by individual or groups of individual. Models 

                                                           
2
 Models which predict the dependent variable as a weighted function of present and past values of 

explanatory variables are called distributed-lag models (Grilliches 1967). 
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which include unobserved heterogeneity in parameters are referred to as random 

parameters models.    

The final term on the right hand (εit) is a random error term that is independently 

distributed over i with arbitrary serial correlation. A generalization that can be made is to 

allow serial correlation in the random error term3. Serial correlation models capture state 

dependence through an unobserved component rather than structural variables. 

It can be appreciated from the above exposition that the dynamic properties of travel 

choices, such as a persistent tendency of individuals towards a particular choice, can be 

specified in different ways and it is important to be led by theoretical considerations in 

specifying models. Bradley (1997) noted that panel surveys have usually been used for 

monitoring travel choices rather than estimating models for use in forecasting. Research is 

needed to confirm that potential advantages of panel data can be realized in practice. Before 

presenting new empirical work, the experience to date with using panel data to develop 

travel choice models is reviewed.  

 

Review of travel choice modelling with panel data 

 

The review pays particular attention to the assumptions made about dynamics in models and 

is organised according to the time frame in which the studied travel choices are made. The 

review concentrates on models of single travel choices made at repeated, discrete time 

intervals. Structural equation modelling (Golob, 2003) and duration modelling (Hensher, 

1997) have also been used to analyse panel data, but these are outside the scope of the 

review.   

 

Long-term dynamics 

                                                           
3
 Serial correlation is specified by specifying εit = ρεit + ζit, where ρ is the correlation and ζit is a random 

error term that is independent and identically distributed.  
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Kitamura and Bunch (1990) estimated ordered probit car ownership models from 1984-1987 

Dutch National Mobility Panel (DNMP) data. As well as examining the influence of 

explanatory variables such as income and household size, they investigated the influence of 

unobserved heterogeneity and state dependence. They found that the importance of 

unobserved heterogeneity depended on the specification used. State dependence was 

found to be strongly significant, although its magnitude of effect depended on the 

assumptions made for initial conditions. The initial conditions problem occurs for panel data 

with a finite, small number of observation periods. The authors concluded that distinguishing 

the relative importance of unobserved heterogeneity and state dependence is problematic 

and further research is required. Kitamura and colleagues developed further models from 

DNMP data but noted that there remained unresolved issues about the specification of models 

to address serial correlation in error terms (Kitamura, 2009). 

Dargay and Hanly (2007) used eleven years of data from the British Household Panel 

Survey to estimate an ordered probit car ownership model and a binary choice commute 

mode (car and non-car) model. They used a random effect specification (to allow for 

unobserved heterogeneity). They included state dependence variables (last year‟s car 

ownership or last year‟s commute mode) to test the possibility that households which are 

otherwise similar will have different choice probabilities in the current year depending on 

their car ownership or commute mode in the previous year. The results showed the 

importance of both state dependency and unobserved heterogeneity (after taking into 

account other factors such as household income and fuel prices).  

Woldeamanuel et al. (2009) used data from the German Mobility Panel for 1996-2006 to 

estimate linear regression models of car ownership. They used a two-way random effects 

model to simultaneously examine the importance of unobserved heterogeneity between 

households and between time periods. Their results showed the presence of unobserved 

heterogeneity between households but not between time periods.    
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Srinivasan and Bhargavi (2007) investigated changes in mode choice of workers in 

Chennai, India. Respondents were asked in a household survey about travel behaviour and 

socio-economic characteristics at the time of the survey and five years previously. Dynamics 

of mode choice were examined through time-varying explanatory variables, state 

dependence variables and by allowing differences in users‟ sensitivity to explanatory 

variables for the two time periods. It was found that dynamic models provided a substantial 

improvement in model fit and failing to account for state dependence led to inflated 

estimates of level of service variables.  

    

Short-term dynamics 

 

Bhat (2000) used multi-day travel diary data for commuters in the San Francisco Bay area 

and estimated multinomial logit mode choice models with a random parameters specification 

to examine the effect of observed and unobserved heterogeneity in mode preferences and 

level of service parameters. He showed that ignoring unobserved heterogeneity in model 

parameters led to underestimating sensitivity to policy interventions.  

Ramadurai and Srinivasan (2006) used one-day travel data from the San Francisco Bay 

Area Travel Survey to model within-day mode choice decisions. They used multinomial logit 

model specifications to examine inter-dependencies between mode choice decisions made 

during the day. The models considered time-varying explanatory variables, state dependence 

variables, lagged explanatory variables and unobserved heterogeneity. They found that each of 

these sources of dynamics was statistically significant, although lagged explanatory variables 

only to a limited extent.  

   

Medium-term dynamics and changing travel environments 
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Bradley (1997) tested static and dynamic multinomial logit model specifications when looking 

at the effect on mode choice of a new rail commuter line in the Netherlands. Using before 

and after two-wave panel data for 475 commuters, he found improved model fit for dynamic 

model specifications (either accounting for response lags or state dependence) and found 

that forecasts are quite different if dynamic specifications are used instead of static 

specifications. He acknowledged limitations in the models that could be estimated with only 

two waves of data and concluded that, to understand and model the impacts of changes in 

the travel environment, „multiple “after” periods are necessary to determine whether policies 

grow, diminish or remain stable over time‟. 

Yanez, Mansilla and Ortúzar (2010) collected panel data for about 300 residents in 

Santiago, Chile, before and after the introduction of Transantiago, a reorganized public 

transport system in February 2007. Mode choice was modelled using a multinomial logit 

random parameters framework with individual specific errors and individual specific 

parameters for explanatory variables (Yanez and Ortúzar 2009). The effect of the 

intervention was modelled by allowing the parameters for independent variables to be 

modified after the intervention through a shock effect, S. It was tested whether the effect was 

constant, whether it varied randomly according to individuals or systematically according to 

socio-economic group and whether it varied according to transport mode alternatives.  

Results showed that the shock effect varied among individuals and transport mode 

alternatives. The authors acknowledge that their model specification is unsuited to 

forecasting due to its representation of the intervention through a shock effect, rather than 

through changes to the values of explanatory variables. The authors refer to planned future 

work to incorporate inertia using a modelling framework introduced by Cantillo, Ortúzar and 

Williams (2007). This framework includes inertia thresholds which imply that a change of 

travel choice depends on whether the change in utilities between time periods (the change in 

the combined effect of explanatory variables) exceeds a specific value.   
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The review has shown that there is limited experience with developing dynamic travel 

choice models from panel data in the context of changing travel environments. The following 

section of the paper introduces the survey and data that is used in the analysis. 

 

Panel survey and data 

 

The context for the case study and the panel survey are described in detail in Chatterjee and 

Ma (2009) and are summarized in this section. The Fastway bus rapid transit system began 

operating in the Crawley and Gatwick Airport area in Southern England in 2003. The 

Fastway buses travel in dedicated lanes and guideways along significant parts of their 

routes. The first Fastway service (Route 10) was introduced in September 2003 and the 

second service (Route 20) was introduced in August 2005. The overall length of the Fastway 

routes is 24kms. The Route 20 service provides the case study for this paper. It provides a 

direct connection between neighbourhoods in the town of Crawley (Broadfield, Southgate 

Three Bridges) and Gatwick Airport and Horley.  A Fastway network map can be found at 

http://www.fastway.info/.   

A four-wave panel survey was conducted to obtain information on travel choices over a 

period of time before and after the introduction of the Route 20 service. Wave one took place 

one month before the introduction of the Route 20 service and the subsequent three waves 

took place at two month intervals after this. The target population for the panel survey was 

residents living close to the route of the new Route 20 service in Broadfield and Three 

Bridges. The panel survey used self-administered postal questionnaires as the survey 

instrument. Respondents were asked to provide personal and household information and 

frequency of use of different transport modes. 554 complete responses were received to the 

first wave of the survey and 186 residents provided complete responses for all four waves. 

The sample used for the analysis is the 186 residents who participated in all four waves. It is 

recognized that the analysis sample is not representative of the population from which it was 

http://www.fastway.info/
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drawn due to survey non-response bias. The data analysis was not intended to seek 

statistical generalizations for the survey population.  

Duration modelling has been used to analyse the time taken for residents to start using 

the Route 20 service and the factors influencing this (Chatterjee and Ma, 2009). The 

analysis here focuses on the changing frequency of bus use of residents over the survey 

period. Traditionally, mode choice is analysed at the level of individual trips with the 

dependent variable being the transport mode chosen from the set of possible alternative 

options. The panel survey did not include a travel diary and hence insufficient information 

was available about specific trips to enable such an analysis.  

The dependent variable in the analysis is the frequency of using the bus reported by 

residents (0 = not at all, 1 = less than once per week, 2 = 1 to 2 days a week, 3 = 3 to 4 days 

per week, 4 = 5 days a week or more). It is a discrete, ordered variable with five possible 

response values and can be analysed using ordered probability models. 

A net increase in the number of bus users over the four waves is shown in Fig. 1. The 

increase is less prominent between waves one and two than between waves two and four. 

This implies time was required for residents to become aware of the new service and to 

respond to it. In terms of gross changes (turnover) in bus use between survey waves, the 

same number of residents increased bus use as reduced bus use between waves one and 

two, but 18 more residents increased bus use than reduced bus use between waves two and 

three and five more residents increased bus use than reduced bus use between waves three 

and four. 

 

[Fig. 1 here] 

 

Summary statistics for explanatory variables that were tested in the analysis are shown in 

Table 1. The explanatory variables include personal and household characteristics of the 

residents (mostly in the form of categorical variables) and three bus level of service (LOS) 
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variables. These were each calculated with respect to a popular local destination (Gatwick 

Airport). Their values varied across residents according to home location and were modified 

by introduction of the Route 20 bus service.  

 

[Table 1 here] 

 

Model specifications 

 

The following model specifications were tested with the panel data.       

 

Pooled model 

 

The simplest specification tested was a static (or Bernoulli) model which pools the data and 

assumes each observation is independent from other observations: 

 

ititit xy   '*
          (3) 

where y*
it is a latent ordinal variable for individual i at time period t; xit is a vector of 

explanatory variables; β‟ is a vector of parameters to be estimated; and εit is a random error 

term that is assumed to be normally distributed across observations with mean = 0 and 

variance = 1 (leading to the ordered probit model). 

With this equation the observed ordinal data, yit, are defined as: 
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where  are threshold parameters that define y. The  parameters are simultaneously 

estimated with the other model parameters. The software used for model estimation was 

Limdep version 8.0 (Greene 2002) where 0 is normalized to zero. 

In Eq. 3 bus use can vary across individuals, i, based on inter-individual differences in 

explanatory variables and can vary across time periods, t, based on intra-individual 

differences in explanatory variables. It thus represents the effect of current circumstances.  

 

Random effects model 

 

Advantage can be made of the repeated observations available in a panel to recognise 

unexplained persistent differences in the bus use of individuals (unobserved heterogeneity). 

The introduction of an individual specific error (individual effect) term into Eq. 3 leads to:  

 

itiitit xy   '*
         (5) 

 

where αi is an error term, the value of which varies between individuals but is invariant over 

time. It is assumed that αi is independent of xit
4 and is normally distributed across individuals 

with mean = 0 and variance = 1. 

 

Response lag model 

                                                           
4
 The assumption of independence between αi and xit is questionable and can introduce omitted-

variable bias. Following Mundlak (1978) it is customary to parameterize the individual effect as a 

linear function of the mean of time varying independent variables as follows: αi = α ix + ηi  where ix is 

mean of time varying independent variables (instrumental variables), α is a vector of estimable 

parameters and ηi is independent of xit. Correction for correlation between αi and xit is not shown in 

the subsequent model specifications but was tested for all random effects models and not found to be 

required. 



 

This is a pre-publication version of the following article: 

Chatterjee, K. (2011). Modelling the dynamics of bus use in a 

changing travel environment using panel data. Transportation, 38(3), 

487-509 

 

 

 

 

Lagged explanatory variables are tested in the analysis to investigate if there is a delayed 

behavioural response to the introduction of the Route 20 bus service.  
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where R is a positive integer and βr
’ is a vector of parameters to be estimated for lagged 

explanatory variables.   

In the following analysis only bus LOS is included as a lagged explanatory variable. The 

effect of past circumstances is also modelled by testing the effect of change in bus LOS 

since the previous time period.  

 

State dependence model 

 

A simple version of the state dependence model was tested where only the behavioural 

state at the previous time interval was taken into account (Markov model).   

        

itiititit yxy   1

'*
        (7) 

 

where yit-1 is the observed ordinal variable for individual i at time period t-1 (state variable) 

and γ is a parameter to be estimated.  
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Serial correlation models capture state dependency though an unobserved component, 

but interest in this analysis was on explicitly modelling state dependence and hence this was 

not tested5.  

Kitmaura (2000) notes that the state dependence model of Eq. 7 can be viewed as a 

special case of a distributed-lag model (where only the lag for the previous time period is 

included), since yit-1 would be expected to be a function of the prevailing values of 

explanatory variables at t-1. However, it is to be noted that yit-1 is a non-stochastic variable 

(the previous observed behavioural state), rather than a predicted modelled value, and 

hence there is an important distinction. In fact, lagged explanatory variables can be included 

in Eq. 7 in addition to state variables to examine if there is a separate effect of past 

prevailing circumstances to that of past observed behavioural state.   

 

Initial conditions problem 

    

The initial conditions problem arises when applying Eq. 7 to panel data with a finite, small 

number of observation periods where the choice process is not observed from the start. The 

simplest solution is to drop the first set of observations for each individual with the value of 

the state variable in the second observation (now the first observation that is modelled) the 

observed value for the behavioural state at the first observation. This is only a reasonable 

assumption if the behavioural process is being observed from the start (and the first 

observation represents the first period at which the behaviour takes place), or if the process 

is in equilibrium at the time of the first observation. Without these conditions applying (which 

is normally the case with empirical data) it is likely that the initial state variable, yi1, will be 

correlated with the individual effect, αi, and inconsistent estimators will be obtained.   

                                                           
5
 Roy, Chintagunta and Haldar (1996) found that serial correlation was not statistically significant after 

state dependence and unobserved heterogeneity were included in panel data models for ketchup 

purchasing. 
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Different methods have been put forward to address the initial conditions problems. Hsiao 

(2003; 208-211) describes a two-step method suggested by Heckman (1981b) which is 

based on first approximating the probability of the initial state variable, yi1, as a function of xi 

(as xi varies across whole observation period) and any pre-sample variables that are 

available and, second, applying Eq. 7 to model yit for subsequent time periods (time = 

2,…n), whilst allowing the error term from the first step to be freely correlated with εit. This 

method has not been widely applied, since standard software is not able to be used to 

estimate it. Two other solutions proposed by Orme (2001) and Wooldridge (2005) are more 

easily applied in standard econometric modelling software. Orme‟s method uses the same 

first step as Heckman and obtains an estimate of the error term6 that is then added to Eq. 7 

which can be estimated as a standard random effects model. The first step is:  

 

iii zy   '*

1          (8) 

        

for t = 1, where yi1 is a latent ordinal variable for individual i at time period 1 (first 

observation), λ’ is a parameter to be estimated, zi is a vector including explanatory variables 

relevant to time period 1, pre-sample information and means of time varying explanatory 

variables xit and ηi is an individual effect which has correlation with αi of ρ. The second step 

is: 

 

itiiititit eyxy   1

*
       (9) 

 

for  t = 2, … ,N.  

    

                                                           
6
 Generalized residual is calculated as:  ei = (2yi1-1)φ(λ

’
zi)/Φ({2yi1-1}λ

’
zi) where φ and Φ are the normal 

density and distribution functions respectively and λ
‟ 
are estimated values of parameters in Eq. 8.  
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Instead of starting by specifying a distribution of the probability of y1 given αi, Wooldridge‟s 

method specifies an approximation for the probability of αi given y1.  

 

iiii uxy  2110          (10) 

 

where ix is means of time varying explanatory variables and ui is a random error term that 

is assumed to be normally distributed across observations with mean = 0 and variance = 1 

and is independent of yi1 and ix .  

 

Substituting Eq. 10 in Eq. 7 gives:  

 

itiiiititit uxyyxy    2111

*
      (11) 

 

for  t = 2, … ,N.  

 

Arulampalam and Stewart (2008) compared the approximation methods of Heckman, 

Orme and Wooldridge and found similar results were obtained for each method. The Orme 

and Wooldridge methods are tested in the following analysis.         

 

Modelling results 

 

Four wave models  

 

The first set of models presented in Table 2 is estimated using all four waves of the data. A 

model using only wave one data is shown for comparison. Explanatory variables included in 

the models are those that are statistically significant across the majority of models tested 
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with the addition of age and gender, which are not statistically significant but are retained for 

interest.   

 

[Table 2 here] 

 

Bus use frequency is higher for residents who live in the Broadfield residential area 

(AREA), do not have a household car (HHC_0), have a bus pass (BPASS) and who 

commute to work (COMMU). Bus use frequency is lower for residents who have a driving 

licence (LICEN) and have two household cars (HHC_2). The LOS variable included in the 

models is DIFF_CAR, the difference in total travel time by bus compared to car. Its statistical 

significance is higher than the other two LOS variables tested. It has the expected sign 

where the longer the journey by bus compared to car the lower the frequency of bus use 

predicted.  

The random effects model (model 3) provides a considerable improvement of model fit 

over the pooled model (model 2) and highlights a high degree of persistence in bus 

frequency across observations that is not explained by explanatory variables. It is also 

notable that in the random effects models the statistical significance of DIFF_CAR is higher 

than in the pooled model. This shows that taking account of unobserved heterogeneity 

enables the influence of DIFF_CAR to be better estimated. Including DIFF_CAR as a lagged 

variable by one time period (model 4) improves model fit and the variable has higher 

statistical significance than when included as a contemporaneous variable. When including 

the full set of prevailing and historical information for DIFF_CAR (representing a distributed 

lag model) it is only the one period lagged variable that is statistically significant. The 

implication is that there is a delayed response by one time period (two months) between 

Route 20 introduction and bus use. 

The effect of past circumstances was also modelled by testing variables for (i) the 

absolute change in DIFF-CAR; and (ii) the occurrence or not of a change in DIFF_CAR 



 

This is a pre-publication version of the following article: 

Chatterjee, K. (2011). Modelling the dynamics of bus use in a 

changing travel environment using panel data. Transportation, 38(3), 

487-509 

 

 

 

exceeding a threshold value. It was also appropriate in these models to include base values 

for DIFF_CAR (wave one values prior to introduction of Route 20). It was found that 

including a dummy variable for a threshold reduction of travel time exceeding 10 minutes 

(DIFF_CAR_RED10) was statistically significant with expected sign and the base value of 

DIFF_CAR was also statistically significant with expected sign (see model 5). However, the 

model fit was inferior to model 4. 

The possibility of unexplained differences in bus use at different time periods which are 

consistent for individuals (time effects) was tested by adding dummy variables for waves 2, 3 

and 4. These were not found to be statistically significant when included in models with 

DIFF_CAR (models 3 to 5). 

It is difficult to compare parameter estimates between different ordered probit models due 

to differences in estimates of threshold parameter values from one model to another. 

Furthermore, estimated parameters for the random effects models are not directly 

comparable to those for the pooled model due to different scaling of the error variance. 

Marginal effects can be used to compare parameter estimates. They are computed at mean 

values for explanatory variables with the random effect term set to zero.  

Calculation of marginal effects for the wave one model shows that a one minute increase 

in DIFF_CAR is associated, ceteris paribus, with a 2.4% increased probability of not using 

the bus at all and a 0.2% reduced probability of using the bus five days a week or more. A 

lower sensitivity to LOS is found for the panel data models. With model 4 a one minute 

increase in DIFF_CAR is associated with a 0.5% increased probability of not using the bus 

at all and a 0.1% reduced probability of using the bus five days a week or more. The greater 

sensitivity to LOS evident for the wave one model is likely to be due to wave one travel 

choices having been made in a stable context where they have adjusted to the travel 

environment, whereas the four wave models encompass a period when travel choices are in 

the process of adjusting to the changed travel environment.  
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The source of the persistence in the random effects models is unclear without further 

model tests. It could be due to state dependence. Kitamura (2000) refers to a test that has 

been proposed to distinguish whether the persistence is due to true state dependence or 

spurious state dependence.  It involves including lagged explanatory variables along with 

non-lagged explanatory variables in a model and comparing whether predicted outcomes 

are modified.  Conducting the test showed that including lagged as well as non-lagged LOS 

variables for DIFF_CAR resulted in improved model fit. Predicted outcomes are therefore 

affected by inclusion of lagged variables and it is shown that there is a dynamic response to 

the intervention and hence there is state dependence. It is therefore worthwhile to test 

models with state dependence.    

  

Three wave models  

 

State dependence models are now considered. Due to the initial conditions problem these 

could only be estimated for three waves of data (waves two to four). For reference purposes 

pooled and random effects models similar to those previously discussed are shown in Table 

3 (models 6 to 8). Parameter estimates are similar, except DIFF_CAR is not statistically 

significant unless included as a lagged variable.  

 

[Table 3 here] 

 

Three state dependence models are shown: naïve model (no correction for initial 

conditions problem, i.e. yi1 being correlated with αi) (model 9); Orme model (model 10); and 

Wooldridge model (model 11). In the naïve model the state variables dominate and the only 

other statistically significant variables are HHC_0 and BPASS. In the first step of the Orme 

model, zi includes values for the explanatory variables at time period 1, one variable 

representing pre-sample information and means of time varying independent variables xit. 
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The pre-sample variable measured at wave 1 was a variable for attitude to bus use („buses 

provide a realistic option for some of my journeys‟) which was intended to represent 

experience of using buses prior to the survey. The results for the first step model are not 

shown but a number of variables were statistically significant (similar variables to those 

shown in Table 2 for four wave data), including DIFF_CAR (with expected sign, t-value = -

2.48). The pre-sample variable was statistically significant at very high significance level (t-

value = -5.29).  

A similar result is obtained for the Orme second step model (model 10) as the naïve 

model (model 9). The individual effect is not statistically significant in either models, implying 

persistence in bus use is due to state dependence and not unobserved heterogeneity. Lack 

of statistical significance of the generalised residual coefficient in the Orme model suggests 

that yi1 is not correlated with αi after controlling for pre-sample experience and that initial 

conditions can be treated as exogenous.  

The Wooldridge model results tell a different story with initial state variables dominating 

previous time period state variables (which are not statistically significant). The estimated 

coefficients for the initial period observations show a positive gradient which implies a 

positive correlation between the initial period observations and individual effect. The lagged 

variable for DIFF_CAR is close to statistical significance and the individual effect is 

statistically significant. Calculation of marginal effects for state variables shows that using 

the bus 5 days a week or more in first wave increases the probability of using the bus 5 days 

a week or more‟ by 77.1% and decreases the probability of not using the bus at all by 58.8%. 

Using the bus 5 days a week or more in the previous wave increases the probability of using 

the bus 5 days a week or more by 0.6% and decreases the probability of not using the bus at 

all by 15.5%.  

State dependence is shown to be important in all of the models but there are different 

interpretations. The naïve and Orme models suggest that without explicitly accounting for the 

effect of initial choices (but implicitly taking into account unobserved initial differences in the 
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Orme model) previous choices strongly determine current choices, but there are no 

persistent differences due to unobserved factors. With the Wooldridge model, bus use is 

strongly conditioned on initial state variables. The Wooldridge model leads to a better fitting 

model (after taking into account the extra three degrees of freedom used). After explicitly 

accounting for the effect of initial choices, it suggests there are persistent differences in 

travel choices (from wave 2 onwards) that are due to unobserved factors, rather than bus 

use at previous period, and LOS is influential (with one-period lagged response). The results 

for the Wooldridge model are considered to provide the best evidence and indicate that there 

is both state dependence and unobserved heterogeneity.        

It should be pointed out that the ability to address the initial conditions problem was 

compromised with this panel data due to the limited availability of explanatory variables 

which had within-person variation over the survey period. Within-person variation was 

present in the LOS variable, but this is an exogenous variable that does not contribute to 

correlation between yi1 and αi. The Orme method can take advantage of pre-sample 

information (to use as instrumental variables), but the information that was available about 

residents prior to the survey period was limited. These two points mean that the Orme and 

Wooldridge methods were compromised in being able to distinguish state dependence and 

unobserved heterogeneity. Future attempts at modelling state dependence require longer 

period panels which encompass both pre-intervention stability and post-intervention change. 

Panel surveys should seek to include more variables with within-person variation and should 

seek retrospective information about behaviour prior to the first observation period.  

        

Comparing predictions to observations 

  

A comparison was made of how well different four-wave models predicted the overall 

change in bus use arising after introduction of the new bus service (three-wave models could 

not be used for this comparison as they were only estimated for waves two to four). The 
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predictions demonstrated that the cross-sectional wave one model overestimates the initial 

number of non-bus users (predicting 156 non-users instead of observed 114 non-users) and 

overestimates the increase in bus use (predicting increase from 30 users to 67 users 

compared to observed increase from 72 users to 91 users). The cross-sectional model may 

be viewed as providing a long-run prediction, but it is important to note that in this study the 

travel environment had been stable prior to the panel survey being conducted. Where this is 

not the case, cross-sectional models are unlikely to provide valid predictions of long-term 

outcomes. The random effects models (models 3-5) are more accurate in their initial 

predictions but underestimate the increase in bus use that occurs.  

In Table 4 a comparison is made for three-wave models of predicted sequences of bus 

use (run patterns) to observed sequences. Bus frequency values were recoded with values 

of 2, 3 and 4 recoded as 2 for the purposes of presenting a manageable set of run patterns 

in the table. 

 

[Table 4 here] 

 

Table 4 shows that the pooled model (model 6) predicts too many residents not using the 

bus at any period. The random effects model (model 7) provides run pattern predictions 

closer to the observations, but overestimates stability with few changes in bus use. This is 

unsurprising since no explicit dynamics is incorporated into the model (only unobserved 

heterogeneity). Model 8 with lagged LOS variable predicts 25 residents increase bus 

frequency between waves two and three compared to 21 observed increases in frequency. It 

only predicts two residents increase bus frequency between waves three and four compared 

to 17 observed increases. This arises due to its one period lag specification. Model 11 

(Wooldridge state dependence) shows the closest match to observations, but only predicts 

that 11 residents increase bus frequency between waves two and four compared to the 27 
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observed (and 26 predicted by model 8). It overestimates stability in bus use. Model 8 best 

captures the response to the introduction of the new bus service.   

 

Using the panel data models for forecasting  

  

Forecasting implications are compared for the hypothetical scenario of a general 10 minute 

reduction in bus travel times. The forecasts were made for the analysis sample of 186 

residents. It was of interest to compare the forecasts from a state dependence model with 

other models, hence models estimated from three waves of data were used. Socio-economic 

characteristics of the analysis sample were kept constant and set to observed wave one 

values. Initially DIFF_CAR was set to wave one values and then a 10 minute reduction was 

applied for three subsequent time periods. Predictions for models 1, 7, 8 and 11 are shown 

in Fig. 2.  

 

[Fig. 2 here] 

 

There is only any predicted change in bus use between time periods one and two for the 

wave one model (model 1) and random effects model with LOS variable (model 7). A 

substantially larger increase in bus use is predicted from the wave one model, but this model 

overestimates the number of residents who do not initially use bus. A delayed response to 

the intervention (between time periods two and three) is shown for the random effects model 

with lagged LOS variable (model 8). Modest change in bus use is shown for the Wooldridge 

state dependence model (model 11) with only slight change occurring between waves one 

and two and between waves two and three. State variables in the presence of changing 

explanatory variables mean that state dependence models can predict gradual change over 

time (as shown in Kitamura 2000; 124). The modest forecasted change in bus use for model 

11 arises due to the dominance of the initial period state variables. With the context and data 
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used in this study the most realistic forecasts arise from the random effects model 

specification which takes into account lagged responses to the change in LOS (model 8). 

The inclusion of state variables leads to exaggerated predictions of the stability of travel 

choices.    

          

Summary and conclusions 

 

The panel data enabled the effect on travel choices to be represented of changing 

circumstances, past history (both past circumstances and past behaviour) and persistent 

individual differences (unobserved heterogeneity). Cross-sectional data does not allow these 

sources of dynamics to be considered.  

The analysis has shown that treating the panel data observations as independent 

observations does not result in a statistically significant estimate for the LOS variable. 

However, recognizing that the data consists of repeated observations and accounting for 

unobserved heterogeneity indicates a statistically significant effect of LOS. This highlights 

the necessity of recognizing unobserved heterogeneity in panel data. 

It is found that LOS in the previous observation period provides a better explanation of 

bus use than LOS in the current observation period. This is consistent with the observed 

delay in response to the new bus service which presumably arises from residents requiring 

time to become aware and adapt to its introduction. Previous studies have shown the 

importance of past behaviour in determining current behaviour. This can be interpreted as 

habitual behaviour or commitment to the behaviour. The Wooldridge state dependence 

model suggests that bus use initially observed at the start of the survey period exerts a 

continuing influence on bus use. After taking into account initial bus use, subsequent bus 

use is found to be influenced by LOS (with a one-period lagged response) and persistent 

differences due to unobserved factors. 
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The predictions of different model specifications are compared. A wave one cross-

sectional model underestimates initial bus use and predicts larger increases in overall bus 

use than observed. Panel data models slightly underestimate the increase in overall bus use 

compared to that observed, but examination of run patterns shows that their predictions are 

closer to observations than those from the cross-sectional model.      

Panel data models allow dynamic evolution patterns to be forecasted. This is seen for the 

scenario of a general 10-minute reduction in bus travel times. Three different specifications 

are compared and show immediate responses to the intervention, delayed responses and 

gradual responses. The most realistic predictions arise from the model specification which 

takes into account lagged responses to change in LOS and unobserved heterogeneity. The 

state dependence model, which takes into account the influence of past behaviour, leads to 

exaggerated predictions of the stability of travel choices. However, this is a consequence of 

the short panel used and resulting difficulties in addressing the initial conditions problem. In 

principle, a model that recognises the effect of past behaviour (alongside other influences) 

would provide the best basis to represent the gradual responses to a change in the travel 

environment that occurred in this study.  

While a variety of model specifications was tested, there are other promising  

specifications that could be tested in future work. Yanez and Ortúzar (2009) used a random 

parameters framework to allow heterogeneity in relationships (for example, in the extent of 

influence of past behaviour) to be examined. A latent class modelling approach would allow 

groups of individuals with similar relationships to be identified. These approaches increase 

sample size requirements by requiring the estimation of a larger number of parameters, but 

are attractive from a theoretical point of view since dynamic responses are likely to vary 

across the population.              

Ordered response models were estimated in this study and future work should seek to 

develop panel data models for qualitative choices between travel models using traditional 

multinomial logit specifications. It would also be valuable to better understand the 
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behavioural processes that generate the dynamics of travel choices. Structural equation 

modelling (SEM) has been used in some past studies (e.g. Golob, Kitamura and Supernak 

1997) to explore the role of subjective factors (perceptions, attitudes, habits), their inter-

dependency with travel behaviour and how this changes over time. Qualitative research 

would also be helpful to better understand why travel choices are affected, not only by 

current circumstances, but by past circumstances and behaviour.   

 To further develop the capabilities of incorporating dynamics into models it is 

recommended that, in areas where major transport initiatives are being contemplated (and 

therefore survey and monitoring resources can be reasonably justified), priority is given to 

incorporating a panel element in travel surveys. Opportunities should also be explored to 

take advantage of new technologies (smart cards, mobile phone records, on-line booking 

systems) which can automatically track travel behaviour over time. 
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Fig. 1  Bus use frequencies reported by respondents (N=186) 
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Fig. 2  Bus use frequency predictions from models 1, 7, 8 and 11 for 10 minute travel time 

reduction scenario  (N=186) 
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Tables  

 

Table 1  Explanatory variables 
 
 
Explanatory variable Categories Total number of 

respondents at 
wave 1 

Percentage of 
respondents at 
wave 1 

Time non-varying categorical    
Residential area (AREA) 0 = Three Bridges 

1 = Broadfield 
114 
72 

61 
39 

Gender (GENDER) 0 = Female 
1 = Male 

104 
82 

56 
44 

New resident (NEW_RES) 0 = Not new 
resident  
1 = Less than one 
year 

178 
8 

96 
4 

Live with spouse (SPOUSE) 0 = No 
1 = Yes 

83 
103 

45 
55 

Time varying categorical     
Driving licence (LICEN) 0 = No 

1 = Yes 
24 
162 

13 
87 

Full-time employed (OCC_FULL) 0 = No 
1 = Yes 

96 
90 

52 
48 

Part-time employed (OCC_PART) 

 
0 = No 
1 = Yes 

151 
35 

81 
19 

Retired (OCC_RETI) 0 = No 
1 = Yes 

150 
36 

81 
19 

Children in household (CHILD) 0 = No 
1 = Yes 

150 
36 

81 
19 

Cars in household (HH_CAR) 0 = 0 car  
1 = 1 car  
2 or more cars 

19 
94 
73 

10 
51 
39 

No car in household (HHC_0)  0 = No 
1 = Yes 

167 
19 

190 
10 

2+ cars in household (HHC_2) 0 = No 
1 = Yes 

113 
73 

61 
39 

Bus pass (BPASS) 0 = No 
1 = Yes 

165 
21 

89 
11 

Commute to work (COMMU) 0 = No 
1 = Yes 

60 
126 

32 
68 

Job change in last 3 months 
(JOB_CHA) 

0 = No 
1 = Yes 

178 
8 

96 
4 

Explanatory variable Mean  Minimum Maximum 

Time non-varying continuous    
Age (AGE) 48.9 17 82 
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Walk access time to bus stop for bus 
to Gatwick (minutes) (WALK_BUS) 

11.8 (wave 1) 
5.8 (waves 2-4) 

1 (wave 1)  
1 (waves 2-4) 

19 (wave 1)  
12 (waves 2-4) 

Total time to travel to Gatwick by bus 
(minutes) (TOT_BUS) 
 

37.6 (wave 1)  
26.0 (waves 2-4) 

18 (wave 1)  
13 (waves 2-4) 

53 (wave 1)  
40 (waves 2-4) 

Difference in total time to travel to 
Gatwick by bus compared to car 
(minutes) (DIFF_CAR) 

22.7 (wave 1)  
11.1 (waves 2-4) 

9 (wave 1)  
3 (waves 2-4) 

35 (wave  1)  
21 (waves 2-4) 

 
Table 2  Panel data models for four waves of data 
 

 
Model 

Parameter 
estimates  
(t-values in 
brackets) 

1. Wave one 
only 

2. Pooled 3. Random 
effects 

4. Random 
effects with 
lagged LOS 

5. Random 
effects with 
threshold 

change in LOS 

Explanatory 
variables 

     

Constant 0.969 (1.37) 0.269 (0.95) 0.216 (0.23) 1.681 (2.23) 1.420 (1.17) 

AREA 1.224 (3.71) 0.648 (5.73) 1.686 (4.78) 1.112 (3.82) 2.473 (4.48) 

AGE -0.00237 (-
0.29) 

-0.00582 (-
1.51) 

-0.00334 (-
0.25) 

-0.00241 (-
0.22) 

0.00281 (0.20) 

GENDER 0.082 (0.42) 0.023 (0.24) 0.162 (0.47) -0.058 (-0.22) 0.184 (0.55) 

LICEN -0.712 (-2.49) -0.561 (-3.96) -1.608 (-3.51) -2.031 (-5.37) -1.357 (-3.28) 

HHC0 1.016 (3.09) 1.064 (6.65) 2.942 (4.87) 2.718 (6.78) 2.621 (5.52) 

HHC2 -0.509 (-2.40) -0.454 (-4.52) -1.385 (-3.75) -1.758 (-5.52) -1.381 (-3.67) 

BPASS 1.627 (5.37) 1.590 (11.14) 2.670 (11.32) 2.149 (8.73) 2.325 (9.39) 

COMMU 0.427 (1.80) 0.183 (1.62) 0.529 (1.40) 0.502 (1.62) 1.022 (2.62) 

DIFF_CAR -0.0627 (-2.52) -0.00999 (-
1.38) 

-0.0234 (-2.79) - - 

DIFF_CAR  
(one period lagged) 

- - - -0.0325 (-4.20) - 

DIFF_CAR 
(wave 1 value) 

- - - - -0.124 (-3.09) 

DIFF_CAR_RED10 
(reduction in 
DIFF_CAR exceeding 
10 minutes) 

- - - - 0.439 (3.06) 

Threshold 
parameters 

     

1 0.707 (6.64) 0.813 (14.93) 1.759 (18.32) 1.804 (17.45) 1.780 (17.45) 

2 1.312 (9.25) 1.312 (19.60) 2.817 (25.95) 2.907 (24.73) 2.824 (25.45) 

3 2.019 (10.06) 1.930 (21.38) 4.172 (33.33) 4.338 (35.77) 4.174 (33.22) 

Random effect      

σu - - 2.168 (11.05)  2.618 (12.01) 2.246 (11.48) 

ρ= σu
2
/( σε

2
+ σu

2
) - - 0.825 0.873 0.835 

Goodness of fit 
statistics 

     

L(β) (Log lik.with  & 
β) 

-172.2 -736.7 -566.3 -563.1 -565.1 

L(C) (Log lik.with ) -217.7 -916.0 -916.0 -916.0 -916.0 

-2[L(C)- L(β)] 91.1 358.7 699.4 705.8 701.8 

Degrees of freedom 9 9 10 10 11 

No. observations 184 744 744 744 744 
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Table 3  Panel data models for three waves of data 
 

 
Model 

Parameter 
estimates  
(t-values) 

6. Pooled model  7. Random effects 
with LOS 

8. Random effects 
with lagged LOS 

9. Naïve state 
dependence 

10. Orme state 
dependence 

11. Wooldridge 
state 

dependence 

Explanatory 
variables 

      

Constant 0.124 (0.37) 0.622 (0.43) 0.172 (0.16) -0.479 (-1.05) -0.422 (-0.92) 0.425 (0.40) 

AREA 0.453 (2.98) 1.843 (3.18) 1.507 (3.94) 0.235 (1.44) 0.210 (1.25) 0.442 (1.19) 

AGE -0.00664 (-1.49) -0.00856 (-0.51) -0.0120 (-0.77) -0.00882 (-1.42) -0.00942 (-1.49) -0.0241 (-1.69) 

GENDER -0.016 (-0.15) 0.150 (0.35) 0.323 (0.86) -0.007 (-0.05) 0.018 (0.13) 0.114 (0.38) 

LICEN -0.562 (-3.40) -1.836 (-2.95) -1.058 (-2.13) -0.093 (-0.46) -0.113 (-0.55) -1.559 (-0.51) 

HHC0 1.133 (6.14) 2.968 (3.88) 2.958 (5.28) 0.554 (2.08) 0.583 (2.10) 2.995 (0.64) 

HHC2 -0.457 (-3.98) -1.275 (-2.64) -1.338 (-3.40) -0.202 (-1.43) -0.166 (-1.16) -0.547 (-0.33) 

BPASS 1.657 (10.05) 3.200 (6.22) 4.627 (10.76) 0.889 (4.44) 0.905 (4.44) 0.571 (0.21) 

COMMU 0.124 (0.95) 0.454 (0.84) 0.670 (1.57) 0.009 (0.05) -0.027 (-0.14) 0.143 (0.10) 

LICEN mean - - - - - 1.118 (0.34) 

HHC0 mean - - - - - -1.898 (-0.42) 

HHC2 mean - - - - - 0.046 (0.03) 

BPASS mean - - - - - 1.317 (0.44) 

COMMU mean - - - - - -0.404 (-0.27) 

DIFF_CAR 0.0186 (1.20) -0.0257 (-0.41) - - - - 

DIFF_CAR  
(one period lagged) 

- - -0.0334 (-3.02) -0.00480 (-0.42) -0.00462 (-0.41) -0.0227 (-1.64) 

State variables       

yit-1=1 - - - 1.437 (9.20) 1.441 (9.27) 0.106 (0.29) 

yit-1=2 - - - 2.286 (12.11) 2.236 (10.76) 0.356 (0.60) 

yit-1=3 - - - 2.588 (11.10) 2.627 (10.09) 0.567 (0.91) 

yit-1=4 - - - 4.477 (18.70) 4.532 (18.39) 0.634 (0.48) 

Initial state 
variables 

      

yi1=1 - - - - - 2.171 (3.99) 

yi1=2 - - - - - 2.742 (3.77) 

yi1=3 - - - - - 2.494 (3.31) 

yi1=4 - - - - - 5.908 (2.49) 
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Generalised residual       

ei - - - - 0.00441 (0.41) - 

Threshold 
parameters 

      

1 0.859 (13.42) 2.029 (13.75) 2.011 (14.27) 1.344 (11.63) 1.365 (11.65) 1.933 (11.25) 

2 1.330 (17.35) 3.174 (19.61) 3.142 (19.39) 2.072 (13.89) 2.111 (13.83) 2.989 (12.82) 

3 1.928 (18.90) 4.538 (30.05) 4.541 (30.44) 3.065 (17.02) 3.127 (16.72) 4.363 (18.49) 

Random effect       

σu - 2.362 (9.31)  2.618 (12.01) 0.963 x 10
-9

 
(0.00) 

0.846 x 10
-8

 
(0.00) 

1.242 (4.82) 

ρ= σu
2
/( σε

2
+ σu

2
) - 0.848 0.873 0.000 0.000 0.607 

Goodness of fit 
statistics 

      

L(β) (Log lik.with  & 
β) 

-558.5 -441.2 -438.8 -405.3 -400.5 -380.8 

L(C) (Log lik.with ) -696.7 -696.7 -696.7 -696.7 -696.7 -696.7 

-2[L(C)- L(β)] 276.4 511.0 515.8 582.8 592.4 631.8 

Degrees of freedom 9 10 10 14 15 23 

No. observations 558 558 558 558 558 558 
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Table 4  Comparison of observed and predicted run patterns 

 
 

Run patterns  
Observed 

Model predictions 

Wave 
2 

Wave 
3 

Wave 
4 

6. Pooled 
model 

7. 
Random 
effects 

with LOS 

8. 
Random 
effects 

with 
lagged 
LOS 

12. 
Wooldridge 

state 
dependence 

0 0 0 87 142 114 115 109 
0 0 1 8 1 2 2 0 
0 0 2 2 0 0 0 0 
0 1 0 3 0 0 1 0 
0 1 1 9 3 1 18 6 
0 1 2 0 0 0 0 0 
0 2 0 0 0 0 0 0 
0 2 1 2 0 0 0 0 
0 2 2 1 0 1 2 0 
        

1 0 0 3 0 2 1 0 
1 0 1 3 0 0 0 1 
1 0 2 0 0 0 0 0 
1 1 0 1 0 0 0 0 
1 1 1 20 18 36 14 33 
1 1 2 1 0 0 0 3 
1 2 0 0 0 0 0 0 
1 2 1 2 0 0 0 1 
1 2 2 4 0 0 4 2 
        

2 0 0 0 1 1 1 0 
2 0 1 0 0 0 0 0 
2 0 2 1 0 0 0 0 
2 1 0 0 0 0 0 0 
2 1 1 1 0 0 0 1 
2 1 2 2 0 0 0 0 
2 2 0 1 0 0 0 0 
2 2 1 0 0 0 0 0 
2 2 2 35 21 29 28 30 

Total 186 186 186 186 186 

 
Note: Bus use frequencies of 2, 3 and 4 are all recoded as 2 to assist comprehension 

 
 


