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ABSTRACT  13 

Taste and odor problems can impede public trust in drinking water, and impose major costs on 14 

water utilities. The ability to forecast taste and odor events in source waters, in advance, is 15 

shown for the first time in this paper. This could allow water utilities to adapt treatment, and 16 

where effective treatment is not available, consumers could be warned. A unique 24-year time 17 

series, from an important drinking water reservoir in Saskatchewan, Canada, is used to develop 18 

forecasting models of odor using physical, chemical, and biotic predictors. We demonstrate, 19 

using linear regression and random forest models, that odor events can be forecast at 0-26 week 20 

time lags, and that the models are able to capture a significant increase in odor threshold number 21 

in the mid-1990s.  Models with a fortnight time-lag show high predictive capacity (R2 = 0.71 for 22 

random forest; 0.52 for linear regression). Predictive skill declines for time lags from 0 to 15 23 

weeks, then increases again, to R2 values of XX (random forest) and XX (linear regression) at a 24 

26-week lag.  Results of the random forest model demonstrate that phytoplankton taxonomic 25 

data outperform chlorophyll a in terms of predictive importance.    . 26 

  27 



 3 

INTRODUCTION  28 

 29 

Few people want to drink smelly water that tastes funny. It is therefore unsurprising that taste 30 

and odor compounds in drinking water have significant social and economic effects (Vaughn, 31 

1967). Smell and taste are the primary ways people assess the quality and safety of their drinking 32 

water, and as such, the occurrence of taste and odor compounds (TOCs) in treated water can 33 

erode public confidence in drinking water safety (McGuire, 1995). Furthermore, TOC’s may 34 

reflect anthropogenic degradation of water quality (Watson, 2004). While no national estimate of 35 

the cumulative costs of taste and odor issues exists, it is estimated that consumers shifting to 36 

bottled water, associated with TOCs, could cost the US economy more than $813 million 37 

annually (Dodds et al, 2008), and the cost associated with treatment of these problems could be 38 

much higher (Srinivasan and Sorial 2011).  In Buffalo Pound Lake, a drinking water reservoir in 39 

Saskatchewan, Canada, removal of TOCs is estimated to cost $$/annum, or X% of the annual 40 

treatment costs (REF).  Besides affecting drinking water, TOCs also spoil the taste of fish – 41 

creating major issues in the aquaculture industry (Tucker, 2000).   42 

 43 

Taste and odor compounds are produced by a number of different phytoplankton and bacteria 44 

genera. Cyanobacteria and actinobacteria produce two of the most problematic TOCs: geosmin 45 

(trans-1, 10-dimethyl-trans-9-decalol) and MIB (2-methylisoborneoyl). Both compounds are 46 

recalcitrant to common treatment options (Srinivasan and Sorial, 2011) and can be detected at 47 

extremely low concentrations (Suffet et al, 1999). Amongst the cyanobacteria, only filamentous 48 

genera have been found to produce geosmin and MIB (Juttner & Watson, 2007). Like 49 
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cyanobacteria, only a subset of actinobacteria produce geosmin and MIB (Zaitlan & Watson, 50 

2006). Actinobacteria are commonly assumed to contribute to aquatic taste and odor via runoff 51 

from soils into surface waters. However, actinobacteria can also function within aquatic 52 

environments and, for example, can produce MIB by using phytoplankton as a carbon source 53 

(Sugiura et al, 1994). Diatoms and chrysophytes can also produce taste and odor compounds. In 54 

their case, the TOCs are produced as a result of enzymatic degradation of polyunsaturated fatty 55 

acids via bacteria, when the algae die (Watson, 2002). These TOCs are more easily degraded 56 

than geosmin and MIB and as a result, tend to be a lesser issue for drinking water treatment. As 57 

with cyanobacteria and actinomycetes, only particular species of diatoms and chrysophytes are 58 

associated with TOCs. One notable species of diatom producing TOCs is Cyclotella -- a common 59 

constituent of spring blooms in temperate lakes which can produce sulfur-based TOC’s. Beyond 60 

these microbial sources there are a number of other compounds which can cause taste and odor 61 

issues. These include pesticides and other pollutants, and chemicals used in treatment (Young et 62 

al, 1996). 63 

 64 

The development of models for predicting or forecasting taste and odor events has been 65 

hampered by a lack of long-term time series. To date most studies have used linear regression 66 

models that contain common parameters associated with phytoplankton productivity (e.g., 67 

chlorophyll a, turbidity/water transparency, and total phosphorus) to predict concentrations of 68 

taste and odor compounds (Smith et al 2002,  Mau et al 2004, Sugiura et al 2004, Christensen et 69 

al 2006, Dzialowski et al 2009). This linear modelling approach has been extended to non-linear 70 

models, which include a broader range of parameters, including microbial abundance data 71 

(Parinet et al 2010, Parinet et al 2013).  Most recently, non-linear models have been developed 72 
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that include detailed measurements of hydrodynamics and phytoplankton data with a view to 73 

incorporation in hydrodynamic models (Bruder et al 2014).  However, all of these models are 74 

based on short-term datasets which can make assessment of model performance and relationships 75 

among variables difficult. 76 

 77 

In this paper, we develop, for the first time, forecasting models of odor in a drinking water 78 

source. The largest yet published time series of odor dynamics is used to calibrate and validate 79 

random forest and linear regression models. The modelling objective was to predict odor 80 

threshold number a fortnight in advance as this is a timescale which allows preparation of 81 

treatment options and public warning if needed. The time scales upon which odor can be 82 

predicted is also assessed. Finally, the uncertainty of the models predictions is also quantified. 83 

 84 

MATERIALS AND METHODS 85 

 86 

Study site and data description 87 

 88 

Buffalo Pound Lake (Saskatchewan, Canada) (Figure 1) is a eutrophic reservoir that supplies 89 

drinking water to approximately 1/4 of the population of Saskatchewan. The lake is shallow (4 90 

m), narrow (5 km), and long (35 km). Originally a natural lake, the installation of a dam in 1939 91 

means it is best characterized as a reservoir.  Motivated in part by persistent issues with taste and 92 



 6 

odor, the Buffalo Pound water treatment plant has been monitoring a range of water quality 93 

parameters since 1977.  Collected weekly, the data includes odor threshold number (OTN) along 94 

with standard water quality parameters such as chlorophyll a, total phosphorus, temperature and 95 

turbidity (methods summarized in table XX). The data also includes weekly phytoplankton count 96 

data identified to the genus level.  This afforded an opportunity to identify whether 97 

phytoplankton genus abundance provides more skillful predictors than the more commonly used 98 

biogeochemical parameters. In this study, we restrict our analysis to periods where complete 99 

weekly data for the parameters of interest were available.  This meant that possible predictors, 100 

nitrate and ammonia, were excluded from the models (due to variation in measurement 101 

frequency). Furthermore some phytoplankton data is missing and so some years were excluded 102 

due. Nonetheless, despite these shortcomings, 1251 weeks (24 years) of data were left with 103 

which to calibrate and validate forecasting models.  104 

 105 

Odor threshold number 106 

 107 

Odor threshold number (OTN) is an indicator of water odor, determined using serial dilutions 108 

with odor-free water (ASTM D1292-10).  Multiple trained individuals (an odor panel) are asked 109 

to report the first dilution at which the odor can be detected. Despite analytical advances that 110 

now allow the detection of individual TOC compounds at very low concentrations, OTN remains 111 

a common method for determining the magnitude of taste and odor compounds (Rigal et al, 112 

1995).  Advantages of this method include low cost, simplicity (with no complex instrumentation 113 

requirements), and generality – that is -- all compounds perceptible to the odor panel are 114 
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reported, rather than having to test for the tens of compounds that can cause taste and odor 115 

(Young et al, 1996).  Furthermore, if water is from a common source and proper standardized 116 

procedures are followed, variation in human perception is similar to the variation of direct 117 

chemical analysis (Bousquet 1983). As noted, the development of odor models has been 118 

hampered by short time series, which is related to high cost, relatively recent development of 119 

analytical techniques, and methodological changes.  As a result, OTN data constitute a valuable 120 

long-term source of information on odor problems where records and consistent methodology 121 

have been maintained.  122 

Temperature, total phosphorus, turbidity, Chlorophyll a, algal genus.!!!! Hi Helen, just 123 

undeleted these so you have a list for the table. 124 

 125 

Model Development 126 

 127 

The dataset was filtered to exclude parameters, and time periods for which weekly data were 128 

not available. Due to missing phytoplankton data the periods 1985-1987 and 1993-1995 were 129 

omitted from the model. This left 1251 weeks with which to construct the models.  The 130 

following 9 predictors were then chosen for our model-based analyses:  Chl a, turbidity, total 131 

phosphorous, and algal count data for the following taxa: Anabaena sp., Aphanizemenon 132 

sp./Oscillatoria sp., Chlorella sp., Cyclotella sp. and Astrionella sp. Aphanizemenon sp. and 133 

Oscillatoria sp. data were combined because the data record had them sometimes recorded 134 

separately and sometimes together. Linear (regression) and non-linear models (random forests) 135 
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were calibrated and validated (90-10% split) on randomized subsets of the total dataset. This 136 

calibration/validation process was repeated 1000 times in order to quantify the uncertainty 137 

resulting from the choice of calibration and validation dataset. This randomized calibration and 138 

validation was conducted at time-lags of 0 to 26 weeks to quantify how the predictive 139 

performance of the models varied with the forecast time-lag and determine whether the 140 

predictive importance of different variables changed over time. Finally, a student t-test was 141 

carried out to test reports of a significant increase in OTN since approximately 1997. 142 

 143 

The model construction methodology contained elements which were similar for both the linear 144 

regression and random forest models, as well as some which were different. In what follows the 145 

linear regression and random forest models are described, then the general procedure used to 146 

calibrate, validate and measure model performance is explained in detail. 147 

The linear regression model constructed according to equation 1: 148 

𝑦(𝑡) = ∑ 𝑥𝑖(𝑡)𝑛=9
𝑖=1 𝛼𝑖 + 𝛽   (equation 1) 149 

Where 𝑦(𝑡) is the predicted OTN values, 𝛽 is bias, and 𝛼𝑖 are the respective regressors of each of 150 

the n=9 predictor variables 𝑥𝑖(𝑡). Uncertainty in model predictions was calculated at the 95% 151 

confidence level. The primary purpose of using a linear model was to provide a baseline against 152 

which to compare the non-linear random forest model. The R package ‘lm’ (R core team, 2014) 153 

was the implementation used for all linear regression modelling. 154 

 155 
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Random forests are a machine learning method which constructs a non-linear function based on 156 

the mean response of an ensemble of simpler decision tree models (Breiman, 2001). Specifically, 157 

a large number of decision tree models are independently constructed on randomly selected 158 

subsets of a training data set. Each of these simple trees is biased towards predicting their own 159 

particular training data and make poor predictors of the total dataset. However, when the mean 160 

prediction of a large number of these random trees (forest) is calculated they produce good 161 

predictions, and are increasingly being used to model and understand environmental systems 162 

(Cutler, 1998, Kehoe et al 2010). The great benefit of this approach over other machine learning 163 

methods is generality. Increasing model complexity by adding greater numbers of trees does not 164 

lead to a model which perfectly fits the training data, rather the models predictive performance 165 

tends to asymptote with a general diminishing return in predictive performance as more trees are 166 

added (Breiman 2001). This feature means that random forests require no assumptions as to the 167 

complexity of the data on the part of the modeler and so are very useful for discovering hidden 168 

relationships with data, free from a priori assumptions. Furthermore, thanks to the ensemble 169 

approach there is a natural way of estimating predictive uncertainty. Because each tree makes a 170 

prediction, estimation of uncertainty is straightforward.  Here uncertainty is reported as +/-2σ for 171 

each prediction.  A further advantage of random forests is that they are able to also provide 172 

information on the relative importance of different predictors. This is done by considering how 173 

prediction accuracy changes when a given parameter is excluded from the model (here, 174 

calculated as the average reduction in mean square error). All random forest models were 175 

developed within R statistical software with the ‘randomForest’ package (Liaw and Weiner, 176 

2002).  177 
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The same general procedure was followed for the development of both the linear regression and 178 

random forest models. For each model type a random 90% subset of the available dataset was 179 

chosen to be for calibration with the remaining 10% reserved for validation. Models were then 180 

calibrated and validated using procedures for each which are outlines below. The R2: 181 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑓𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1  

 (equation 2) 182 

 183 

 then being calculated and recorded. This process was then repeated 1000 times in order to 184 

quantify the uncertainty related with the choice of calibration and validation data sets but also to 185 

gain insight into the uncertainty in the importance measure of the random forest algorithm. 186 

 187 

RESULTS 188 

Odor threshold number varied both annually and inter-annually over the data record (Figure 1). 189 

In particular, OTN was significantly higher in 1998-2011 compared to 1980-1997 (p<0.001), and 190 

although the most significant annual peak is in August, April is when OTN first increases after 191 

its winter minimum. This coincides with the ice-melt period and the spring phytoplankton 192 

bloom.  193 

Both random forest and linear regression modeling techniques led to good model fits for the 194 

validation data (Figure 2).  The random forest was the better of the two at each time lag (based 195 

on R2); however, the linear regression model predicts the calibration and validation datasets to 196 

similar accuracy (within the 95% confidence levels) at every time lag.  The random forest model 197 
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tended to over-predict the calibration dataset compared to the validation dataset at each time lag 198 

(Figure 2).  Both models showed greater uncertainty in prediction of validation dataset compared 199 

to the prediction of calibration dataset (Figure 2).  200 

The random forest model (R2=0.71) was a better predictor on average of the validation dataset 201 

compared to the linear regression model (R2 =0.52) at the fortnightly time lag (Figure 2). 202 

However, the non-linear random forest model predicts the calibration dataset more accurately 203 

than the validation data set. The linear model in comparison predicts both the calibration and 204 

validation dataset to a similar level of accuracy (Figure 2). This shows that fair comparison of 205 

the predictive ability of different models should only be done on datasets not used in model 206 

training or parameter estimation. Also, as noted above, the uncertainty bounds on sensitivity due 207 

to choice of calibration data set are small compared to the linear regression model. In addition to 208 

fitting the data well, the random forest and linear regression model (not shown) are both able to 209 

capture interannual and decadal variation in odor threshold number including a significant 210 

increase in the mid 1990’s.  211 

The least important predictor in the random forest model was almost always chlorophyll a, 212 

with the exception of the 0-3 week time lags when total phosphorus and Astrionella sp. were the 213 

least important.  Chlorella sp., Cyclotella sp., and Aphanizemenon sp. /Oscillatoria sp. were 214 

consistently better predictors than chlorophyll a. Anabaena sp. was more important at most time 215 

scales except between 11-13 week time-lag where is was similar or equal in predictive 216 

importance to chlorophyll a (both approximately 0.1% MSE). Finally Astrionella sp. was better 217 

at every time lag except from 0-3 weeks where it became progressively worse and is only able to 218 

reduce mean square error on average by 0.07% compared to 0.13% for Chlorophyll a at 0 week 219 

time lag. 220 
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The variation in relative importance of different predictors over time revealed a number of 221 

patterns. Temperature had two peaks in predictive importance at 8 weeks (0.3% MSE) and 26 222 

weeks (0.45% MSE). Total phosphorus decreased in importance as time lag declined, from a 223 

high of 0.21% MSE at 26 weeks’ time lag to a low of 0.09% at 0 weeks’ time lag. Except for a 224 

small decline from 26 week to 24 week time lag, turbidity, increased in importance as time lag 225 

reduced and was the second most important predictor behind Chlorella sp. at time lags shorter 226 

than 3 weeks. Anabaena sp. had peaks in predictive importance at 20 week and 0-5 week time 227 

lag. Finally Aphanizemenon sp. /Oscillatoria sp. (6 weeks) and Astrionella sp. (15 weeks) had 228 

unimodal peaks in relative importance. 229 

 230 

DISCUSSION 231 

 232 

This study reports the first fully validated and operational forecasting model of odor for a 233 

drinking water reservoir. In particular, it is first model to investigate predictive performance at 234 

different time lags; previous models only predict odor events at the present time. Critically, the 235 

model is able to capture a large ten year long increase in odor threshold which begins in 1998; 236 

this appears to be related to an increase in abundance of filamentous cyanobacteria and 237 

Chlorella.  In addition, the model captures a recent (2008-2012) decline and plateau in OTN.  238 

The ability to predict odor at long time lags, as demonstrated here, suggests that long-term 239 

ecological processes are important in driving odor production. 240 

 241 
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Due to the long time series of weekly OTN data, rigorous calibration and validation of models 242 

was possible. The large data set also meant the uncertainty in model predictions and associated 243 

statistics, such as R2 and importance, could be evaluated. Previous modelling studies on odor 244 

have been based on relatively short time series of common odor causing compounds: geosmin 245 

and MIB.  As a result, more limited data has been available for model calibration, and model 246 

validation has only been rarely performed (see table S1).  247 

Given the complexity of odor production processes (Bruder et al. 2014), it is likely that 248 

different predictive models will have to be developed for different systems; however, key 249 

insights can be gleaned by comparing model predictors across ecosystems.  To date, we have 250 

identified 13 models associated with 7 studies that had the explicit goal of prediction of odor, 251 

although all, with the exception of this study, are restricted to real-time prediction (i.e. present 252 

day or week).  Of these studies, 6 of the 13 models included temperature as a predictor variable, 253 

9 of the 13 included a nutrient, and only 3 included chlorophyll (Table S1).  The two studies to 254 

date using algal taxonomy data (Bruder et al. 2014; this study) had the highest predictive 255 

capacity of models reported to date.  Results of importance analyses (Figure 4) demonstrated that 256 

phytoplankton taxonomic data had far greater utility than measurements of chlorophyll a, and, 257 

despite the time-consuming nature of algal counts, where odor prediction, and understanding 258 

long-term ecological change are important (as they are in many bloom-affected reservoirs), clear 259 

value of taxonomic data is demonstrated.   260 

 261 

Anabaena sp., Oscillatoria sp., Aphanizemenon sp. were all important predictors of odor.  262 

They are all cyanobacteria, and all have species which have been proven to produce geosmin.   263 
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Astrionella sp and Cyclotella sp. are associated with odorous alkenes which are produced when 264 

they decay after death (Watson 2004). However, the dominance of Chlorella sp. as a predictor in 265 

our modelling results is surprising given it has not been demonstrated to produce odor. We have 266 

two hypotheses. The first is simply that Buffalo Pound Lake contains a strain of Chlorella sp. 267 

which may actively produce TOCs, or lead to their production upon death and decay.  The 268 

second is that abundance of Chlorella sp. is a proxy for actinobacterial activity. It has been 269 

shown the actinobacteria are able to use carbon fixed by Chlorella sp. to produce taste and odor 270 

compounds (Sugiura et al 1994).  271 

 272 

Forecasting models, like the one presented here, can help inform planning for water treatment 273 

utilities, allowing optimization of treatment, and helping to minimize costs. Addition of activated 274 

carbon is the primary way taste and odor problems are managed (REF); however, this process is 275 

expensive, and there is the potential for cost savings with advance warning. Prediction also 276 

means the public can be warned of possible taste and odor issues ahead of time - increasing 277 

confidence in water treatment organizations. Models like the ones presented here allow managers 278 

to assess the likelihood and expected magnitude of odor problems well in advance. In particular 279 

the approach taken here would allow a manager to start dealing with, and tracking, odor 280 

problems 6 months in advance. 281 

  282 
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FIGURES 284 
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Figure 1. Map of Buffalo Pound Lake and its location within Canada.285 

  286 

 287 
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 288 

  289 

Figure 2. Time series plot of odor threshold number data (bright green dots), model predictions 290 

(black line) and 95% confidence interval of predictions (coral ribbon).  291 

 292 

 293 

  294 
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Figure 3. Predictive accuracy as measured by R2 for different time-lags. The light purple ribbon 295 

is the random forest model R2 performance on validation data (dashed-line is the mean value, 296 

ribbon is ±2σ from mean) while the dark purple ribbon is the random forest model R2 performance 297 

on calibration data (solid-line is the mean value, ribbon is ±2σ from mean). The light coral ribbon 298 

is the linear model R2 performance on validation data (dashed-line is the mean value, ribbon is 299 

±2σ from mean) while the dark coral ribbon is the linear model R2 performance on calibration data 300 

(solid-line is the mean value, ribbon is ±2σ from mean). 301 

 302 

  303 
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Figure 4. Ribbon plots of the relative importance of different predictors at different time-lags. 304 

Importance is measured as the mean reduction in mean square error as a result of using the 305 

predictor. Model was run 5000 times on randomized selections of calibration validation data set to 306 

generate estimates of 95% confidence interval as ± 2σ from mean. 307 

 308 

 309 

  310 
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Study Response Variable Prediction Variables Model type  Calibration R2 (data 

number) 

Validation R2 

(data number) 

Christensen 2006 Geosmin Turbidity (FNU), 

specific conductance 

Linear 0.71(18) NA(NA) 

Smith 2002 Geosmin Chlorophyll a Linear 0.72(6) NA(NA) 

Mau 2004 Geosmin Secchi depth, specific 
conductance, turbidity 

(NTU) 

Linear 0.70(16) NA(NA) 

Sugiura, 2004  MIB Water 

temperature,silicic 
acid, chemical oxygen 

demand  

Linear 0.59(64) 0.26(32) 

Sugiura 2004 MIB Water 

temperature,silicic 
acid, chemical oxygen 

demand 

Artificial neural 

network 
0.65(64) 0.27(32) 

Sugiura, 2004  Geosmin Total phosphorus, 

chemical oxygen 

demand, dissolved 

oxygen  

Linear 0.45(64) 0.28(32) 

Sugiura 2004 Geosmin Total phosphorus, 

chemical oxygen 

demand, dissolved 

oxygen 

Artificial neural 

network 
0.49(64) 0.42(32) 

Dzialowski 2009 Geosmin secchi disk Linear 0.24(57) NA(NA) 

Dzialowski 2009 Geosmin orthophosphate Linear 0.25(57) NA(NA) 

Bruder 2014 Geosmin Pseudanabaena spp., 

diatoms, Planktrothrix 

agardhii, water 
temperature, salinity, 

and TKN 

Neuro-fuzzy 0.83(102) 0.49 (10) 

Bruder 2014 MIB Pseudanabaena spp., 

diatoms, Planktrothrix 

agardhii, water 
temperature, salinity, 

and TKN 

Neuro-fuzzy 0.82(102) 0.70 (7) –three data 

points removed from 

validation set 

This study Odor threshold 

number 

Water temperature, 

total phosphorus, 

Chlorophyll a, 

Anabaena sp., 

Aphanizemenon sp. 

/Oscillatoria sp., 

Chlorella sp., 

Astrionella sp., 

Cyclotella sp., 

Linear 0.54 (875) 0.52 (376) 

This study Odor threshold 

number 

Water temperature, 

total phosphorus, 

Chlorophyll a, 

Anabaena sp., 

Random forest 0.94 (875) 0.71 (376) 
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Aphanizemenon sp. 

/Oscillatoria sp., 

Chlorella sp., 

Astrionella sp., 

Cyclotella sp., 

 311 

 312 

 313 

 314 

 315 

TABLES. Each table must have a brief (one phrase or sentence) title that describes its contents. 316 

The title should follow the format “Table 1. Table Title” (Word Style “VD_Table_Title”). The 317 

title should be understandable without reference to the text. Put details in footnotes, not in the 318 

title (use Word Style “FE_Table_Footnote”). Define nonstandard abbreviations in footnotes. 319 

Use tables (Word Style “TC_Table_Body”) when the data cannot be presented clearly as 320 

narrative, when many precise numbers must be presented, or when more meaningful 321 

interrelationships can be conveyed by the tabular format. Do not use Word Style 322 

“TC_Table_Body” for tables containing artwork. Tables should supplement, not duplicate, text 323 

and figures. Tables should be simple and concise. It is preferable to use the Table Tool in your 324 

word-processing package, placing one entry per cell, to generate tables. 325 

Displayed equations can be inserted where desired making sure they are assigned Word Style 326 

"Normal". Displayed equations can only be one column wide. If the artwork needs to be two 327 

columns wide, it must be relabeled as a figure, chart, or scheme and mentioned as such in the 328 

text. 329 
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