
177

9 CONCLUSIONS

Early lifecycle software design is a people-intensive, non-trivial and demanding task for

software engineers to perform, and a fundamental activity of software development.

Many modern ‘agile’ software development methodologies respect the importance of

human involvement in software development and have adopted incremental delivery

approaches to manually ‘evolve’ the software under development (Boehm and Beck,

2010). Yet the difficulties inherent in early lifecycle software design endure.

Furthermore, existing computational support has limitations, not least a lack of support

for cognitive activities during software design. However, computational intelligence

(such as evolutionary computation and machine learning) has been applied with

promising results in support of interactive search and exploration in a range of other

design fields. Therefore, this thesis is based on the hypothesis that computationally

intelligent tool support can greatly assist the designer with the complexities of

discovering design concepts and information relevant to early lifecycle software design.

9.1 Representation

The aim of computational search and exploration in early lifecycle software design is to

enable the discovery of useful and interesting software designs expressed using Unified

Modelling Language (UML) class models which are demonstrably traceable to the

stated software design problem. To underpin such evolutionary search and exploration

of the early lifecycle software design solution space, it is necessary to represent the

design problem and the design solution such that they are not only sufficiently abstract

for human comprehension and but also a natural fit for computational evolutionary

search. A novel object-based representation is proposed in chapter 4 and comprises

methods and attributes allocated among classes. Indeed, this discrete object-based

representation provides a natural and appropriate abstraction of the essential

characteristics of the software design solution, and directly facilitates effective

visualisation for the interacting human designer. Furthermore, the object-based

representation enables efficient genetic operators and provides a high degree of

traceability from design problem to design solution. A further benefit of the object-

based representation is that it enables estimation of the cardinality of software design

search spaces. Such estimates reveal an exponential growth in the scale of software

design search spaces, which seems likely to increase the cognitive load on the software

178

designer and thus may be one of the many causative factors behind the difficulties of

early lifecycle software design.

9.2 Exploration and Exploitation of Software Design Search Space

Initial experiments described in chapter 6 investigate the performance of the discrete,

object-based software design representation and its associated genetic operators. Results

reveal that using manual parameter tuning, the speed of localised search is highly

satisfactory and that colourful class design visualisations are human comprehensible. In

addition, external coupling is found to be a more useful and tractable quantitative

measure of design fitness than class cohesion, and mutation is found to more

computationally efficient and explorative than crossover on the design problems tested.

Nevertheless, software design problems arise in a wide variety of software development

situations and show a range of scale and complexity. Thus in an attempt to address this

range of scale and complexity, it is concluded that as a basis of user-centred, interactive

evolutionary search, a more flexible, yet robust and scalable approach is required.

Therefore, further experiments into localised search using dynamic parameter control

have been conducted for three real-life example design problems. Results show that

self-adaptation provides a far wider range of mutation probabilities than could have

been anticipated through manual parameter tuning. It is therefore concluded that

dynamic parameter control via self-adaptation of mutation probabilities provides a more

flexible, robust and scalable basis for localised evolutionary search, which in turn might

produce useful and innovative early lifecycle software designs for a variety of software

design problems.

9.3 Collaborative Designer / Computer Interaction

In any interactive evolutionary computation system, it is vital to enable a natural,

collaborative interaction between the human designer and evolutionary search. To

enable this, a number of software agents have been formulated to provide an interactive

framework. By means of this framework, collaborating software agents and the software

designer interact jointly to steer the direction of evolutionary search. As described in

chapter 7, the notion of an interactive design episode has been built upon to provide a

context for software agent-based interaction. At the beginning of a design episode, a

global, multi-objective interactive search is conducted, which allows the designer to

identify promising localised ‘zones’. The number of classes in a software design is

179

important, and so localised zones, in which all software design solutions comprise the

same number of classes, are selected for subsequent localised search. It is concluded

that within an early lifecycle software design episode, this provides an effective, natural

and interactive mechanism to narrow and focus the search to promising localised zones.

At this point in the thesis, an empirical investigation of the interactive

framework of software agents conceived thus far is conducted. As described in chapter

7, although the investigation is of small scale, interesting findings have emerged. For

example, it is observed that when working with the evolutionary search-based

interactive framework, generation of candidate software designs is abundant while

evaluation of the candidate designs is greatly assisted by quantitative fitness values

presented to the designer. In addition, trade-off analysis of software designs is greatly

enhanced. Significantly, the colourful visualisation of UML designs is found to hold

designer engagement, and when combined with enhanced generation of multiple

candidate designs, enables periods of designer reflection thus enabling opportunities for

sudden design discovery. It is concluded that a natural, collaborative interaction

between human designer and the interactive framework of search-based software agents

has been achieved; such a natural, collaborative interaction appears to be effective in

promoting design discovery. It is also noticeable that the participants of the empirical

study enthusiastically suggested possible enhancements to the capabilities of the

interactive framework, not least the opportunity to provide a qualitative evaluation of

the ‘quality’ or ‘appearance’ of the software design.

9.4 Elegance and Dynamic Multi-objective Localised Search

Responding to these suggestions, ways have been formulated to enhance the

interactivity of the framework with respect to the ‘quality’ or ‘appearance’ of software

designs. To facilitate this, four novel software design elegance measures are proposed in

chapter 8 relating to symmetry of distribution of attributes and methods both among

individual classes, and among the design as a whole. Designer interactivity is enhanced

by using the novel elegance measures in two ways. Firstly, elegance measures are

exploited to present elegant software designs to the designer for qualitative evaluation,

which gives the presented designs a more ‘natural’ look. Secondly, regarding designer

qualitative evaluation as ‘reward’, a reward-driven dynamic multi-objective

evolutionary localised search is enabled. In balance with quantitative measures of

design coupling, the dynamic search increasingly weights an average reward for each

180

elegance measure according to their design reward obtained. In this way, search is

increasingly steered toward design solutions reflecting designer elegance intentions.

Experimental results suggest that both enhancements of designer interactivity help to

reduce user fatigue.

 Also mindful of user fatigue, a further enhancement to designer interactivity is

the introduction of a dynamic, fitness proportionate interactive interval, which varies the

number of generations between each designer interaction. During early search, the

interactive interval, in terms of evolutionary generations, is high, emphasising

quantitative coupling fitness. However, as coupling fitness improves, the interactive

interval decreases. Results of experimentation reported in chapter 8 reveal that higher

values of fitness proportionate interactive intervals obtain better reward and facilitate

better search and exploration. It is therefore concluded that fitness proportionate

interactive intervals contribute effectively to reduction of user fatigue. Further results of

experimentation also reveal that when combined with the fitness proportionate

interactive interval, the dynamic, multi-objective search obtains increasing elegance

reward from the designer, and reflects elegance weightings in a timely manner. It is also

significant that designer comment concerning the human experience of interactive

search and exploration is highly positive, reflecting good design discovery and even

genuine enjoyment at times. Thus with regard to overall reduction in user fatigue, it is

concluded that while all the above components play their part, it is their successful

combination and integration as an interactive framework that enables the compelling

designer experience.

Software design elegance is an important but complex factor within interactive

search and exploration. Although elegance plays a crucial part in preventing user

fatigue, design elegance is an abstraction, existing in designer thought. It is interesting

to note that elegance measure 3 (the distribution of internal ‘uses’ among design

classes) and elegance measure 4 (the symmetry of attributes and methods in individual

design classes) appear to attract more reward from designers than elegance 1 (the

symmetry of attributes and methods among all classes of a design), even though

elegance measure 3 has no concrete manifestation in class design visualisations. It is

concluded that class-based symmetry is more highly prized by designers than symmetry

of attributes and methods among the design as a whole. It is conjectured that that this

may be because as the cognitive load of design evaluation reaches a point at which

cognitive load exceeds cognitive capability, the designer focuses attention on ‘chunks’

181

of the design – classes – more than the design as a whole. This is consistent with the

mental ‘clustering’ strategy used by designers as reported, for example, by Lawson

(2006) (see chapter 2, section 2.1.1). It is also conjectured that this mental strategy

becomes more prevalent with design scale. The larger the scale of the design problem,

the more necessary the tactic of ‘divide and conquer’ becomes in order to manage

cognitive load.

9.5 Overall

Taking the results of experimentation in the round, it is concluded that interactive

evolutionary computation does indeed afford significant opportunities for effective

quantitative and qualitative multi-objective search and exploration of the early lifecycle

software design solution space. It is also concluded that the effective integration of

software agents and machine learning within an interactive framework is the single most

crucial factor contributing to its success. This effective integration has resulted in an

engaging and compelling interactive context for the designer to conduct early lifecycle

software design. Finally, it is concluded that such computationally intelligent tool

support for the software designer enables opportunities for the discovery of useful and

elegant UML class designs. It seems likely that the exploitation of such opportunities

might lead to better software design traceability, structural integrity and elegance, which

may in turn, yield significant software development productivity gains.

Nevertheless, results of experimentation have also revealed some limitations for

the computationally intelligently tool support. Firstly, it is evident that the scale of the

Select Cruises design problem is at the limit of effectiveness for the interactive

framework. In one sense, this might not be totally unexpected as Select Cruises is the

largest of the three real-world design problems, with sixteen classes and a search space

cardinality of no less than 1.80947x10
54

 (see chapter 4, section 4.4.3). Even with

colourful design visualisation, the cognitive load of design evaluation of Select Cruises

design solutions is clearly considerable, which might in some part have contributed to

non-linearity of designer focus over design episodes. Secondly, although it is clear that

an engaging and compelling interactive design context has been produced, all

participants in elegance investigations offered suggestions for even greater interactivity.

Recurring participant suggestions include the ability to manually ‘drag ‘n’ drop’

individual attributes and methods from one class to another within a design

visualisation, and the facility to place superior fragments of a design in a portfolio or

182

archive. It is intended to address these interactivity enhancements in future work.

Indeed, the ability to isolate superior fragments (or ‘chunks’) of software designs, and

possibly co-evolve elite subpopulations based on the contents of the portfolio / archive

seems a useful progression for interactive computationally intelligent tool support.

Moreover, this may also enhance natural design interaction, which may in turn help to

increase the scale of design problems that might be usefully addressed. Future work will

also investigate ways in which reward-based learning might be enhanced to more

sensitively reflect designer elegance intentions, and so further reduce user fatigue.

Lastly, some elegance investigation participants pointed out that the computationally

intelligent tool support also offers considerable potential as an adaptive learning

mechanism for software design novices and those coming to early lifecycle software

design for the first time. Although this purpose was not conceived at the time of

investigation, future work will also investigate this intriguing possibility.

